зеркало из https://github.com/mozilla/gecko-dev.git
Bug 1642028 - cherry-pick Skia blitting cleanups. r=jrmuizel
Differential Revision: https://phabricator.services.mozilla.com/D92476
This commit is contained in:
Родитель
915c793341
Коммит
2ede866d22
|
@ -58,37 +58,114 @@
|
|||
|
||||
return _mm256_add_epi32(src, _mm256_or_si256(rb, ga));
|
||||
}
|
||||
#endif
|
||||
|
||||
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
||||
#include <immintrin.h>
|
||||
|
||||
static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
|
||||
auto SkAlphaMulQ_SSE2 = [](const __m128i& c, const __m128i& scale) {
|
||||
const __m128i mask = _mm_set1_epi32(0xFF00FF);
|
||||
__m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
|
||||
__m128i scale = _mm_sub_epi32(_mm_set1_epi32(256),
|
||||
_mm_srli_epi32(src, 24));
|
||||
__m128i scale_x2 = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
|
||||
|
||||
// uint32_t rb = ((c & mask) * scale) >> 8
|
||||
__m128i rb = _mm_and_si128(mask, c);
|
||||
rb = _mm_mullo_epi16(rb, s);
|
||||
rb = _mm_srli_epi16(rb, 8);
|
||||
__m128i rb = _mm_and_si128(_mm_set1_epi32(0x00ff00ff), dst);
|
||||
rb = _mm_mullo_epi16(rb, scale_x2);
|
||||
rb = _mm_srli_epi16(rb, 8);
|
||||
|
||||
// uint32_t ag = ((c >> 8) & mask) * scale
|
||||
__m128i ag = _mm_srli_epi16(c, 8);
|
||||
ag = _mm_mullo_epi16(ag, s);
|
||||
__m128i ga = _mm_srli_epi16(dst, 8);
|
||||
ga = _mm_mullo_epi16(ga, scale_x2);
|
||||
ga = _mm_andnot_si128(_mm_set1_epi32(0x00ff00ff), ga);
|
||||
|
||||
// (rb & mask) | (ag & ~mask)
|
||||
ag = _mm_andnot_si128(mask, ag);
|
||||
return _mm_or_si128(rb, ag);
|
||||
return _mm_add_epi32(src, _mm_or_si128(rb, ga));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(SK_ARM_HAS_NEON)
|
||||
#include <arm_neon.h>
|
||||
// SkMulDiv255Round() applied to each lane.
|
||||
static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
|
||||
uint16x8_t prod = vmull_u8(x, y);
|
||||
return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
|
||||
}
|
||||
static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
|
||||
uint8x8_t nalphas = vmvn_u8(src.val[3]); // 256 - alpha
|
||||
return {
|
||||
vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0])),
|
||||
vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1])),
|
||||
vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2])),
|
||||
vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3])),
|
||||
};
|
||||
return _mm_add_epi32(src,
|
||||
SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256),
|
||||
_mm_srli_epi32(src, 24))));
|
||||
}
|
||||
// Variant assuming dst and src contain the color components of two consecutive pixels.
|
||||
static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
|
||||
const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
|
||||
uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
|
||||
return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace SK_OPTS_NS {
|
||||
|
||||
/*not static*/
|
||||
inline void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
|
||||
SkASSERT(alpha == 0xFF);
|
||||
sk_msan_assert_initialized(src, src+len);
|
||||
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
|
||||
while (len >= 8) {
|
||||
_mm256_storeu_si256((__m256i*)dst,
|
||||
SkPMSrcOver_AVX2(_mm256_loadu_si256((const __m256i*)src),
|
||||
_mm256_loadu_si256((const __m256i*)dst)));
|
||||
src += 8;
|
||||
dst += 8;
|
||||
len -= 8;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
||||
while (len >= 4) {
|
||||
_mm_storeu_si128((__m128i*)dst, SkPMSrcOver_SSE2(_mm_loadu_si128((const __m128i*)src),
|
||||
_mm_loadu_si128((const __m128i*)dst)));
|
||||
src += 4;
|
||||
dst += 4;
|
||||
len -= 4;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(SK_ARM_HAS_NEON)
|
||||
while (len >= 8) {
|
||||
vst4_u8((uint8_t*)dst, SkPMSrcOver_neon8(vld4_u8((const uint8_t*)dst),
|
||||
vld4_u8((const uint8_t*)src)));
|
||||
src += 8;
|
||||
dst += 8;
|
||||
len -= 8;
|
||||
}
|
||||
|
||||
while (len >= 2) {
|
||||
vst1_u8((uint8_t*)dst, SkPMSrcOver_neon2(vld1_u8((const uint8_t*)dst),
|
||||
vld1_u8((const uint8_t*)src)));
|
||||
src += 2;
|
||||
dst += 2;
|
||||
len -= 2;
|
||||
}
|
||||
|
||||
if (len != 0) {
|
||||
uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8((uint64_t)*dst),
|
||||
vcreate_u8((uint64_t)*src));
|
||||
vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
|
||||
}
|
||||
return;
|
||||
#endif
|
||||
|
||||
while (len --> 0) {
|
||||
*dst = SkPMSrcOver(*src, *dst);
|
||||
src++;
|
||||
dst++;
|
||||
}
|
||||
}
|
||||
|
||||
// Blend constant color over count src pixels, writing into dst.
|
||||
/*not static*/
|
||||
inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
|
||||
constexpr int N = 4; // 8, 16 also reasonable choices
|
||||
using U32 = skvx::Vec< N, uint32_t>;
|
||||
|
@ -120,259 +197,6 @@ inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, Sk
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(SK_ARM_HAS_NEON)
|
||||
|
||||
// Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i],
|
||||
// y[i] are the i-th lanes of the corresponding NEON vectors.
|
||||
static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
|
||||
uint16x8_t prod = vmull_u8(x, y);
|
||||
return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
|
||||
}
|
||||
|
||||
// The implementations of SkPMSrcOver below perform alpha blending consistently with
|
||||
// SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as:
|
||||
//
|
||||
// result_i = src_i + rint(g(src_alpha, dst_i))
|
||||
//
|
||||
// where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer.
|
||||
|
||||
// In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value
|
||||
// of the same color component for 8 consecutive pixels. The result of this function follows the
|
||||
// same convention.
|
||||
static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
|
||||
uint8x8_t nalphas = vmvn_u8(src.val[3]);
|
||||
uint8x8x4_t result;
|
||||
result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0]));
|
||||
result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1]));
|
||||
result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2]));
|
||||
result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3]));
|
||||
return result;
|
||||
}
|
||||
|
||||
// In this variant of SkPMSrcOver dst and src contain the color components of two consecutive
|
||||
// pixels. The return value follows the same convention.
|
||||
static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
|
||||
const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
|
||||
uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
|
||||
return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*not static*/ inline
|
||||
void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
|
||||
SkASSERT(alpha == 0xFF);
|
||||
sk_msan_assert_initialized(src, src+len);
|
||||
// Require AVX2 because of AVX2 integer calculation intrinsics in SrcOver
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
|
||||
while (len >= 32) {
|
||||
// Load 32 source pixels.
|
||||
auto s0 = _mm256_loadu_si256((const __m256i*)(src) + 0),
|
||||
s1 = _mm256_loadu_si256((const __m256i*)(src) + 1),
|
||||
s2 = _mm256_loadu_si256((const __m256i*)(src) + 2),
|
||||
s3 = _mm256_loadu_si256((const __m256i*)(src) + 3);
|
||||
|
||||
const auto alphaMask = _mm256_set1_epi32(0xFF000000);
|
||||
|
||||
auto ORed = _mm256_or_si256(s3, _mm256_or_si256(s2, _mm256_or_si256(s1, s0)));
|
||||
if (_mm256_testz_si256(ORed, alphaMask)) {
|
||||
// All 32 source pixels are transparent. Nothing to do.
|
||||
src += 32;
|
||||
dst += 32;
|
||||
len -= 32;
|
||||
continue;
|
||||
}
|
||||
|
||||
auto d0 = (__m256i*)(dst) + 0,
|
||||
d1 = (__m256i*)(dst) + 1,
|
||||
d2 = (__m256i*)(dst) + 2,
|
||||
d3 = (__m256i*)(dst) + 3;
|
||||
|
||||
auto ANDed = _mm256_and_si256(s3, _mm256_and_si256(s2, _mm256_and_si256(s1, s0)));
|
||||
if (_mm256_testc_si256(ANDed, alphaMask)) {
|
||||
// All 32 source pixels are opaque. SrcOver becomes Src.
|
||||
_mm256_storeu_si256(d0, s0);
|
||||
_mm256_storeu_si256(d1, s1);
|
||||
_mm256_storeu_si256(d2, s2);
|
||||
_mm256_storeu_si256(d3, s3);
|
||||
src += 32;
|
||||
dst += 32;
|
||||
len -= 32;
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: This math is wrong.
|
||||
// Do SrcOver.
|
||||
_mm256_storeu_si256(d0, SkPMSrcOver_AVX2(s0, _mm256_loadu_si256(d0)));
|
||||
_mm256_storeu_si256(d1, SkPMSrcOver_AVX2(s1, _mm256_loadu_si256(d1)));
|
||||
_mm256_storeu_si256(d2, SkPMSrcOver_AVX2(s2, _mm256_loadu_si256(d2)));
|
||||
_mm256_storeu_si256(d3, SkPMSrcOver_AVX2(s3, _mm256_loadu_si256(d3)));
|
||||
src += 32;
|
||||
dst += 32;
|
||||
len -= 32;
|
||||
}
|
||||
|
||||
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
|
||||
while (len >= 16) {
|
||||
// Load 16 source pixels.
|
||||
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
|
||||
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
|
||||
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
|
||||
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
|
||||
|
||||
const auto alphaMask = _mm_set1_epi32(0xFF000000);
|
||||
|
||||
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
|
||||
if (_mm_testz_si128(ORed, alphaMask)) {
|
||||
// All 16 source pixels are transparent. Nothing to do.
|
||||
src += 16;
|
||||
dst += 16;
|
||||
len -= 16;
|
||||
continue;
|
||||
}
|
||||
|
||||
auto d0 = (__m128i*)(dst) + 0,
|
||||
d1 = (__m128i*)(dst) + 1,
|
||||
d2 = (__m128i*)(dst) + 2,
|
||||
d3 = (__m128i*)(dst) + 3;
|
||||
|
||||
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
|
||||
if (_mm_testc_si128(ANDed, alphaMask)) {
|
||||
// All 16 source pixels are opaque. SrcOver becomes Src.
|
||||
_mm_storeu_si128(d0, s0);
|
||||
_mm_storeu_si128(d1, s1);
|
||||
_mm_storeu_si128(d2, s2);
|
||||
_mm_storeu_si128(d3, s3);
|
||||
src += 16;
|
||||
dst += 16;
|
||||
len -= 16;
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: This math is wrong.
|
||||
// Do SrcOver.
|
||||
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
|
||||
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
|
||||
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
|
||||
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
|
||||
src += 16;
|
||||
dst += 16;
|
||||
len -= 16;
|
||||
}
|
||||
|
||||
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
||||
while (len >= 16) {
|
||||
// Load 16 source pixels.
|
||||
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
|
||||
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
|
||||
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
|
||||
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
|
||||
|
||||
const auto alphaMask = _mm_set1_epi32(0xFF000000);
|
||||
|
||||
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
|
||||
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask),
|
||||
_mm_setzero_si128()))) {
|
||||
// All 16 source pixels are transparent. Nothing to do.
|
||||
src += 16;
|
||||
dst += 16;
|
||||
len -= 16;
|
||||
continue;
|
||||
}
|
||||
|
||||
auto d0 = (__m128i*)(dst) + 0,
|
||||
d1 = (__m128i*)(dst) + 1,
|
||||
d2 = (__m128i*)(dst) + 2,
|
||||
d3 = (__m128i*)(dst) + 3;
|
||||
|
||||
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
|
||||
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask),
|
||||
alphaMask))) {
|
||||
// All 16 source pixels are opaque. SrcOver becomes Src.
|
||||
_mm_storeu_si128(d0, s0);
|
||||
_mm_storeu_si128(d1, s1);
|
||||
_mm_storeu_si128(d2, s2);
|
||||
_mm_storeu_si128(d3, s3);
|
||||
src += 16;
|
||||
dst += 16;
|
||||
len -= 16;
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: This math is wrong.
|
||||
// Do SrcOver.
|
||||
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
|
||||
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
|
||||
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
|
||||
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
|
||||
|
||||
src += 16;
|
||||
dst += 16;
|
||||
len -= 16;
|
||||
}
|
||||
|
||||
#elif defined(SK_ARM_HAS_NEON)
|
||||
// Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it
|
||||
// underperformed on some of the platforms under test for inputs with frequent transitions of
|
||||
// alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth
|
||||
// revisiting the situation in the future.
|
||||
while (len >= 8) {
|
||||
// Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component
|
||||
// for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8
|
||||
// pixels).
|
||||
uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src));
|
||||
src += 8;
|
||||
len -= 8;
|
||||
|
||||
// We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels
|
||||
// are all transparent), the second when all alphas are fully set (they are all opaque).
|
||||
uint8x8_t alphas = src_col.val[3];
|
||||
uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0);
|
||||
if (alphas_u64 == 0) {
|
||||
// All pixels transparent.
|
||||
dst += 8;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (~alphas_u64 == 0) {
|
||||
// All pixels opaque.
|
||||
vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col);
|
||||
dst += 8;
|
||||
continue;
|
||||
}
|
||||
|
||||
uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst));
|
||||
vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col));
|
||||
dst += 8;
|
||||
}
|
||||
|
||||
// Deal with leftover pixels.
|
||||
for (; len >= 2; len -= 2, src += 2, dst += 2) {
|
||||
uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src));
|
||||
uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst));
|
||||
vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2));
|
||||
}
|
||||
|
||||
if (len != 0) {
|
||||
uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src));
|
||||
vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
|
||||
}
|
||||
return;
|
||||
#endif
|
||||
|
||||
while (len-- > 0) {
|
||||
// This 0xFF000000 is not semantically necessary, but for compatibility
|
||||
// with chromium:611002 we need to keep it until we figure out where
|
||||
// the non-premultiplied src values (like 0x00FFFFFF) are coming from.
|
||||
// TODO(mtklein): sort this out and assert *src is premul here.
|
||||
if (*src & 0xFF000000) {
|
||||
*dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst);
|
||||
}
|
||||
src++;
|
||||
dst++;
|
||||
}
|
||||
}
|
||||
|
||||
} // SK_OPTS_NS
|
||||
|
||||
#endif//SkBlitRow_opts_DEFINED
|
||||
|
|
Загрузка…
Ссылка в новой задаче