зеркало из https://github.com/mozilla/gecko-dev.git
Bug 1746084 - Avoid generating InterpolateMatrix operations if there are no size dependencies. r=hiro
The issue here is that we end up with a transition between mismatched
transform lists that ends up generating an InterpolateMatrix {}
operation. So far so good, but we end up interpolating that a lot of
times and generating an unboundedly-deep operation list.
This implementas an optimization that flattens them to a single matrix
when possible (when there's no dependencies on the containing box).
This is similar to:
2b89cc4df4
We fix the to_pixel_length() behavior for LenghtPercentage to be
correct (and update callers to preserve behavior).
Differential Revision: https://phabricator.services.mozilla.com/D134784
This commit is contained in:
Родитель
103100e1ac
Коммит
4924555d6d
|
@ -891,25 +891,8 @@ impl Animate for ComputedTransform {
|
|||
match (this_remainder, other_remainder) {
|
||||
// If there is a remainder from *both* lists we must have had mismatched functions.
|
||||
// => Add the remainders to a suitable ___Matrix function.
|
||||
(Some(this_remainder), Some(other_remainder)) => match procedure {
|
||||
Procedure::Add => {
|
||||
debug_assert!(false, "Should have already dealt with add by the point");
|
||||
return Err(());
|
||||
},
|
||||
Procedure::Interpolate { progress } => {
|
||||
result.push(TransformOperation::InterpolateMatrix {
|
||||
from_list: Transform(this_remainder.to_vec().into()),
|
||||
to_list: Transform(other_remainder.to_vec().into()),
|
||||
progress: Percentage(progress as f32),
|
||||
});
|
||||
},
|
||||
Procedure::Accumulate { count } => {
|
||||
result.push(TransformOperation::AccumulateMatrix {
|
||||
from_list: Transform(this_remainder.to_vec().into()),
|
||||
to_list: Transform(other_remainder.to_vec().into()),
|
||||
count: cmp::min(count, i32::max_value() as u64) as i32,
|
||||
});
|
||||
},
|
||||
(Some(this_remainder), Some(other_remainder)) => {
|
||||
result.push(TransformOperation::animate_mismatched_transforms(this_remainder, other_remainder, procedure)?);
|
||||
},
|
||||
// If there is a remainder from just one list, then one list must be shorter but
|
||||
// completely match the type of the corresponding functions in the longer list.
|
||||
|
@ -923,36 +906,19 @@ impl Animate for ComputedTransform {
|
|||
let identity = transform.to_animated_zero().unwrap();
|
||||
|
||||
match transform {
|
||||
// We can't interpolate/accumulate ___Matrix types directly with a
|
||||
// matrix. Instead we need to wrap it in another ___Matrix type.
|
||||
TransformOperation::AccumulateMatrix { .. } |
|
||||
TransformOperation::InterpolateMatrix { .. } => {
|
||||
let transform_list = Transform(vec![transform.clone()].into());
|
||||
let identity_list = Transform(vec![identity].into());
|
||||
let (from_list, to_list) = if fill_right {
|
||||
(transform_list, identity_list)
|
||||
let (from, to) = if fill_right {
|
||||
(transform, &identity)
|
||||
} else {
|
||||
(identity_list, transform_list)
|
||||
(&identity, transform)
|
||||
};
|
||||
|
||||
match procedure {
|
||||
Procedure::Add => Err(()),
|
||||
Procedure::Interpolate { progress } => {
|
||||
Ok(TransformOperation::InterpolateMatrix {
|
||||
from_list,
|
||||
to_list,
|
||||
progress: Percentage(progress as f32),
|
||||
})
|
||||
},
|
||||
Procedure::Accumulate { count } => {
|
||||
Ok(TransformOperation::AccumulateMatrix {
|
||||
from_list,
|
||||
to_list,
|
||||
count: cmp::min(count, i32::max_value() as u64)
|
||||
as i32,
|
||||
})
|
||||
},
|
||||
}
|
||||
TransformOperation::animate_mismatched_transforms(
|
||||
&[from.clone()],
|
||||
&[to.clone()],
|
||||
procedure,
|
||||
)
|
||||
},
|
||||
_ => {
|
||||
let (lhs, rhs) = if fill_right {
|
||||
|
@ -981,9 +947,13 @@ impl ComputeSquaredDistance for ComputedTransform {
|
|||
|
||||
// Roll back to matrix interpolation if there is any Err(()) in the
|
||||
// transform lists, such as mismatched transform functions.
|
||||
//
|
||||
// FIXME: Using a zero size here seems a bit sketchy but matches the
|
||||
// previous behavior.
|
||||
if squared_dist.is_err() {
|
||||
let matrix1: Matrix3D = self.to_transform_3d_matrix(None)?.0.into();
|
||||
let matrix2: Matrix3D = other.to_transform_3d_matrix(None)?.0.into();
|
||||
let rect = euclid::Rect::zero();
|
||||
let matrix1: Matrix3D = self.to_transform_3d_matrix(Some(&rect))?.0.into();
|
||||
let matrix2: Matrix3D = other.to_transform_3d_matrix(Some(&rect))?.0.into();
|
||||
return matrix1.compute_squared_distance(&matrix2);
|
||||
}
|
||||
|
||||
|
@ -1141,6 +1111,52 @@ impl Animate for ComputedTransformOperation {
|
|||
}
|
||||
}
|
||||
|
||||
impl ComputedTransformOperation {
|
||||
/// If there are no size dependencies, we try to animate in-place, to avoid
|
||||
/// creating deeply nested Interpolate* operations.
|
||||
fn try_animate_mismatched_transforms_in_place(
|
||||
left: &[Self],
|
||||
right: &[Self],
|
||||
procedure: Procedure,
|
||||
) -> Result<Self, ()> {
|
||||
let (left, _left_3d) = Transform::components_to_transform_3d_matrix(left, None)?;
|
||||
let (right, _right_3d) = Transform::components_to_transform_3d_matrix(right, None)?;
|
||||
ComputedTransformOperation::Matrix3D(left.into()).animate(&ComputedTransformOperation::Matrix3D(right.into()), procedure)
|
||||
}
|
||||
|
||||
fn animate_mismatched_transforms(
|
||||
left: &[Self],
|
||||
right: &[Self],
|
||||
procedure: Procedure,
|
||||
) -> Result<Self, ()> {
|
||||
if let Ok(op) = Self::try_animate_mismatched_transforms_in_place(left, right, procedure) {
|
||||
return Ok(op);
|
||||
}
|
||||
let from_list = Transform(left.to_vec().into());
|
||||
let to_list = Transform(right.to_vec().into());
|
||||
Ok(match procedure {
|
||||
Procedure::Add => {
|
||||
debug_assert!(false, "Addition should've been handled earlier");
|
||||
return Err(())
|
||||
},
|
||||
Procedure::Interpolate { progress } => {
|
||||
Self::InterpolateMatrix {
|
||||
from_list,
|
||||
to_list,
|
||||
progress: Percentage(progress as f32),
|
||||
}
|
||||
}
|
||||
Procedure::Accumulate { count } => {
|
||||
Self::AccumulateMatrix {
|
||||
from_list,
|
||||
to_list,
|
||||
count: cmp::min(count, i32::max_value() as u64) as i32,
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// This might not be the most useful definition of distance. It might be better, for example,
|
||||
// to trace the distance travelled by a point as its transform is interpolated between the two
|
||||
// lists. That, however, proves to be quite complicated so we take a simple approach for now.
|
||||
|
|
|
@ -404,15 +404,7 @@ impl ToAbsoluteLength for ComputedLength {
|
|||
impl ToAbsoluteLength for ComputedLengthPercentage {
|
||||
#[inline]
|
||||
fn to_pixel_length(&self, containing_len: Option<ComputedLength>) -> Result<CSSFloat, ()> {
|
||||
match containing_len {
|
||||
Some(relative_len) => Ok(self.resolve(relative_len).px()),
|
||||
// If we don't have reference box, we cannot resolve the used value,
|
||||
// so only retrieve the length part. This will be used for computing
|
||||
// distance without any layout info.
|
||||
//
|
||||
// FIXME(emilio): This looks wrong.
|
||||
None => Ok(self.resolve(Zero::zero()).px()),
|
||||
}
|
||||
Ok(self.maybe_percentage_relative_to(containing_len).ok_or(())?.px())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -572,12 +564,21 @@ impl<T> Transform<T> {
|
|||
|
||||
impl<T: ToMatrix> Transform<T> {
|
||||
/// Return the equivalent 3d matrix of this transform list.
|
||||
///
|
||||
/// We return a pair: the first one is the transform matrix, and the second one
|
||||
/// indicates if there is any 3d transform function in this transform list.
|
||||
#[cfg_attr(rustfmt, rustfmt_skip)]
|
||||
pub fn to_transform_3d_matrix(
|
||||
&self,
|
||||
reference_box: Option<&Rect<ComputedLength>>
|
||||
) -> Result<(Transform3D<CSSFloat>, bool), ()> {
|
||||
Self::components_to_transform_3d_matrix(&self.0, reference_box)
|
||||
}
|
||||
|
||||
/// Converts a series of components to a 3d matrix.
|
||||
pub fn components_to_transform_3d_matrix(
|
||||
ops: &[T],
|
||||
reference_box: Option<&Rect<ComputedLength>>
|
||||
) -> Result<(Transform3D<CSSFloat>, bool), ()> {
|
||||
let cast_3d_transform = |m: Transform3D<f64>| -> Transform3D<CSSFloat> {
|
||||
use std::{f32, f64};
|
||||
|
@ -590,26 +591,27 @@ impl<T: ToMatrix> Transform<T> {
|
|||
)
|
||||
};
|
||||
|
||||
let (m, is_3d) = self.to_transform_3d_matrix_f64(reference_box)?;
|
||||
let (m, is_3d) = Self::components_to_transform_3d_matrix_f64(ops, reference_box)?;
|
||||
Ok((cast_3d_transform(m), is_3d))
|
||||
}
|
||||
|
||||
/// Same as Transform::to_transform_3d_matrix but a f64 version.
|
||||
pub fn to_transform_3d_matrix_f64(
|
||||
&self,
|
||||
fn components_to_transform_3d_matrix_f64(
|
||||
ops: &[T],
|
||||
reference_box: Option<&Rect<ComputedLength>>,
|
||||
) -> Result<(Transform3D<f64>, bool), ()> {
|
||||
// We intentionally use Transform3D<f64> during computation to avoid error propagation
|
||||
// because using f32 to compute triangle functions (e.g. in rotation()) is not
|
||||
// accurate enough. In Gecko, we also use "double" to compute the triangle functions.
|
||||
// Therefore, let's use Transform3D<f64> during matrix computation and cast it into f32
|
||||
// in the end.
|
||||
// We intentionally use Transform3D<f64> during computation to avoid
|
||||
// error propagation because using f32 to compute triangle functions
|
||||
// (e.g. in rotation()) is not accurate enough. In Gecko, we also use
|
||||
// "double" to compute the triangle functions. Therefore, let's use
|
||||
// Transform3D<f64> during matrix computation and cast it into f32 in
|
||||
// the end.
|
||||
let mut transform = Transform3D::<f64>::identity();
|
||||
let mut contain_3d = false;
|
||||
|
||||
for operation in &*self.0 {
|
||||
for operation in ops {
|
||||
let matrix = operation.to_3d_matrix(reference_box)?;
|
||||
contain_3d |= operation.is_3d();
|
||||
contain_3d = contain_3d || operation.is_3d();
|
||||
transform = matrix.then(&transform);
|
||||
}
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче