Bug 1746084 - Avoid generating InterpolateMatrix operations if there are no size dependencies. r=hiro

The issue here is that we end up with a transition between mismatched
transform lists that ends up generating an InterpolateMatrix {}
operation. So far so good, but we end up interpolating that a lot of
times and generating an unboundedly-deep operation list.

This implementas an optimization that flattens them to a single matrix
when possible (when there's no dependencies on the containing box).

This is similar to:

  2b89cc4df4

We fix the to_pixel_length() behavior for LenghtPercentage to be
correct (and update callers to preserve behavior).

Differential Revision: https://phabricator.services.mozilla.com/D134784
This commit is contained in:
Emilio Cobos Álvarez 2022-01-05 19:10:28 +00:00
Родитель 103100e1ac
Коммит 4924555d6d
2 изменённых файлов: 83 добавлений и 65 удалений

Просмотреть файл

@ -891,25 +891,8 @@ impl Animate for ComputedTransform {
match (this_remainder, other_remainder) {
// If there is a remainder from *both* lists we must have had mismatched functions.
// => Add the remainders to a suitable ___Matrix function.
(Some(this_remainder), Some(other_remainder)) => match procedure {
Procedure::Add => {
debug_assert!(false, "Should have already dealt with add by the point");
return Err(());
},
Procedure::Interpolate { progress } => {
result.push(TransformOperation::InterpolateMatrix {
from_list: Transform(this_remainder.to_vec().into()),
to_list: Transform(other_remainder.to_vec().into()),
progress: Percentage(progress as f32),
});
},
Procedure::Accumulate { count } => {
result.push(TransformOperation::AccumulateMatrix {
from_list: Transform(this_remainder.to_vec().into()),
to_list: Transform(other_remainder.to_vec().into()),
count: cmp::min(count, i32::max_value() as u64) as i32,
});
},
(Some(this_remainder), Some(other_remainder)) => {
result.push(TransformOperation::animate_mismatched_transforms(this_remainder, other_remainder, procedure)?);
},
// If there is a remainder from just one list, then one list must be shorter but
// completely match the type of the corresponding functions in the longer list.
@ -923,36 +906,19 @@ impl Animate for ComputedTransform {
let identity = transform.to_animated_zero().unwrap();
match transform {
// We can't interpolate/accumulate ___Matrix types directly with a
// matrix. Instead we need to wrap it in another ___Matrix type.
TransformOperation::AccumulateMatrix { .. } |
TransformOperation::InterpolateMatrix { .. } => {
let transform_list = Transform(vec![transform.clone()].into());
let identity_list = Transform(vec![identity].into());
let (from_list, to_list) = if fill_right {
(transform_list, identity_list)
let (from, to) = if fill_right {
(transform, &identity)
} else {
(identity_list, transform_list)
(&identity, transform)
};
match procedure {
Procedure::Add => Err(()),
Procedure::Interpolate { progress } => {
Ok(TransformOperation::InterpolateMatrix {
from_list,
to_list,
progress: Percentage(progress as f32),
})
},
Procedure::Accumulate { count } => {
Ok(TransformOperation::AccumulateMatrix {
from_list,
to_list,
count: cmp::min(count, i32::max_value() as u64)
as i32,
})
},
}
TransformOperation::animate_mismatched_transforms(
&[from.clone()],
&[to.clone()],
procedure,
)
},
_ => {
let (lhs, rhs) = if fill_right {
@ -981,9 +947,13 @@ impl ComputeSquaredDistance for ComputedTransform {
// Roll back to matrix interpolation if there is any Err(()) in the
// transform lists, such as mismatched transform functions.
//
// FIXME: Using a zero size here seems a bit sketchy but matches the
// previous behavior.
if squared_dist.is_err() {
let matrix1: Matrix3D = self.to_transform_3d_matrix(None)?.0.into();
let matrix2: Matrix3D = other.to_transform_3d_matrix(None)?.0.into();
let rect = euclid::Rect::zero();
let matrix1: Matrix3D = self.to_transform_3d_matrix(Some(&rect))?.0.into();
let matrix2: Matrix3D = other.to_transform_3d_matrix(Some(&rect))?.0.into();
return matrix1.compute_squared_distance(&matrix2);
}
@ -1141,6 +1111,52 @@ impl Animate for ComputedTransformOperation {
}
}
impl ComputedTransformOperation {
/// If there are no size dependencies, we try to animate in-place, to avoid
/// creating deeply nested Interpolate* operations.
fn try_animate_mismatched_transforms_in_place(
left: &[Self],
right: &[Self],
procedure: Procedure,
) -> Result<Self, ()> {
let (left, _left_3d) = Transform::components_to_transform_3d_matrix(left, None)?;
let (right, _right_3d) = Transform::components_to_transform_3d_matrix(right, None)?;
ComputedTransformOperation::Matrix3D(left.into()).animate(&ComputedTransformOperation::Matrix3D(right.into()), procedure)
}
fn animate_mismatched_transforms(
left: &[Self],
right: &[Self],
procedure: Procedure,
) -> Result<Self, ()> {
if let Ok(op) = Self::try_animate_mismatched_transforms_in_place(left, right, procedure) {
return Ok(op);
}
let from_list = Transform(left.to_vec().into());
let to_list = Transform(right.to_vec().into());
Ok(match procedure {
Procedure::Add => {
debug_assert!(false, "Addition should've been handled earlier");
return Err(())
},
Procedure::Interpolate { progress } => {
Self::InterpolateMatrix {
from_list,
to_list,
progress: Percentage(progress as f32),
}
}
Procedure::Accumulate { count } => {
Self::AccumulateMatrix {
from_list,
to_list,
count: cmp::min(count, i32::max_value() as u64) as i32,
}
}
})
}
}
// This might not be the most useful definition of distance. It might be better, for example,
// to trace the distance travelled by a point as its transform is interpolated between the two
// lists. That, however, proves to be quite complicated so we take a simple approach for now.

Просмотреть файл

@ -404,15 +404,7 @@ impl ToAbsoluteLength for ComputedLength {
impl ToAbsoluteLength for ComputedLengthPercentage {
#[inline]
fn to_pixel_length(&self, containing_len: Option<ComputedLength>) -> Result<CSSFloat, ()> {
match containing_len {
Some(relative_len) => Ok(self.resolve(relative_len).px()),
// If we don't have reference box, we cannot resolve the used value,
// so only retrieve the length part. This will be used for computing
// distance without any layout info.
//
// FIXME(emilio): This looks wrong.
None => Ok(self.resolve(Zero::zero()).px()),
}
Ok(self.maybe_percentage_relative_to(containing_len).ok_or(())?.px())
}
}
@ -572,12 +564,21 @@ impl<T> Transform<T> {
impl<T: ToMatrix> Transform<T> {
/// Return the equivalent 3d matrix of this transform list.
///
/// We return a pair: the first one is the transform matrix, and the second one
/// indicates if there is any 3d transform function in this transform list.
#[cfg_attr(rustfmt, rustfmt_skip)]
pub fn to_transform_3d_matrix(
&self,
reference_box: Option<&Rect<ComputedLength>>
) -> Result<(Transform3D<CSSFloat>, bool), ()> {
Self::components_to_transform_3d_matrix(&self.0, reference_box)
}
/// Converts a series of components to a 3d matrix.
pub fn components_to_transform_3d_matrix(
ops: &[T],
reference_box: Option<&Rect<ComputedLength>>
) -> Result<(Transform3D<CSSFloat>, bool), ()> {
let cast_3d_transform = |m: Transform3D<f64>| -> Transform3D<CSSFloat> {
use std::{f32, f64};
@ -590,26 +591,27 @@ impl<T: ToMatrix> Transform<T> {
)
};
let (m, is_3d) = self.to_transform_3d_matrix_f64(reference_box)?;
let (m, is_3d) = Self::components_to_transform_3d_matrix_f64(ops, reference_box)?;
Ok((cast_3d_transform(m), is_3d))
}
/// Same as Transform::to_transform_3d_matrix but a f64 version.
pub fn to_transform_3d_matrix_f64(
&self,
fn components_to_transform_3d_matrix_f64(
ops: &[T],
reference_box: Option<&Rect<ComputedLength>>,
) -> Result<(Transform3D<f64>, bool), ()> {
// We intentionally use Transform3D<f64> during computation to avoid error propagation
// because using f32 to compute triangle functions (e.g. in rotation()) is not
// accurate enough. In Gecko, we also use "double" to compute the triangle functions.
// Therefore, let's use Transform3D<f64> during matrix computation and cast it into f32
// in the end.
// We intentionally use Transform3D<f64> during computation to avoid
// error propagation because using f32 to compute triangle functions
// (e.g. in rotation()) is not accurate enough. In Gecko, we also use
// "double" to compute the triangle functions. Therefore, let's use
// Transform3D<f64> during matrix computation and cast it into f32 in
// the end.
let mut transform = Transform3D::<f64>::identity();
let mut contain_3d = false;
for operation in &*self.0 {
for operation in ops {
let matrix = operation.to_3d_matrix(reference_box)?;
contain_3d |= operation.is_3d();
contain_3d = contain_3d || operation.is_3d();
transform = matrix.then(&transform);
}