Bug 1481681: Sync some dependencies with servo. r=me

This commit is contained in:
Emilio Cobos Álvarez 2018-08-08 00:48:25 +02:00
Родитель cfc260de8d
Коммит 4d3c28d75d
36 изменённых файлов: 19 добавлений и 8424 удалений

36
Cargo.lock сгенерированный
Просмотреть файл

@ -28,15 +28,6 @@ dependencies = [
"winapi 0.3.4 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "app_units"
version = "0.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"num-traits 0.1.43 (registry+https://github.com/rust-lang/crates.io-index)",
"serde 1.0.66 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "app_units"
version = "0.7.0"
@ -676,14 +667,6 @@ name = "error-chain"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "euclid"
version = "0.18.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"num-traits 0.1.43 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "euclid"
version = "0.19.0"
@ -1152,9 +1135,9 @@ dependencies = [
name = "malloc_size_of"
version = "0.0.1"
dependencies = [
"app_units 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)",
"app_units 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
"cssparser 0.24.0 (registry+https://github.com/rust-lang/crates.io-index)",
"euclid 0.18.1 (registry+https://github.com/rust-lang/crates.io-index)",
"euclid 0.19.0 (registry+https://github.com/rust-lang/crates.io-index)",
"hashglobe 0.1.0",
"selectors 0.19.0",
"servo_arc 0.1.1",
@ -1962,7 +1945,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
name = "style"
version = "0.0.1"
dependencies = [
"app_units 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)",
"app_units 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
"arrayvec 0.4.6 (registry+https://github.com/rust-lang/crates.io-index)",
"atomic_refcell 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
"bindgen 0.37.4 (registry+https://github.com/rust-lang/crates.io-index)",
@ -1970,7 +1953,7 @@ dependencies = [
"byteorder 1.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
"cfg-if 0.1.2 (registry+https://github.com/rust-lang/crates.io-index)",
"cssparser 0.24.0 (registry+https://github.com/rust-lang/crates.io-index)",
"euclid 0.18.1 (registry+https://github.com/rust-lang/crates.io-index)",
"euclid 0.19.0 (registry+https://github.com/rust-lang/crates.io-index)",
"fallible 0.0.1",
"fxhash 0.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
"hashglobe 0.1.0",
@ -1992,7 +1975,7 @@ dependencies = [
"parking_lot 0.6.3 (registry+https://github.com/rust-lang/crates.io-index)",
"precomputed-hash 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
"rayon 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
"regex 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
"regex 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
"selectors 0.19.0",
"servo_arc 0.1.1",
"smallbitvec 2.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
@ -2023,10 +2006,10 @@ dependencies = [
name = "style_traits"
version = "0.0.1"
dependencies = [
"app_units 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)",
"app_units 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
"bitflags 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)",
"cssparser 0.24.0 (registry+https://github.com/rust-lang/crates.io-index)",
"euclid 0.18.1 (registry+https://github.com/rust-lang/crates.io-index)",
"euclid 0.19.0 (registry+https://github.com/rust-lang/crates.io-index)",
"malloc_size_of 0.0.1",
"malloc_size_of_derive 0.0.1",
"selectors 0.19.0",
@ -2041,12 +2024,11 @@ dependencies = [
"cssparser 0.24.0 (registry+https://github.com/rust-lang/crates.io-index)",
"cstr 0.1.3 (registry+https://github.com/rust-lang/crates.io-index)",
"env_logger 0.5.6 (registry+https://github.com/rust-lang/crates.io-index)",
"euclid 0.18.1 (registry+https://github.com/rust-lang/crates.io-index)",
"geckoservo 0.0.1",
"libc 0.2.39 (registry+https://github.com/rust-lang/crates.io-index)",
"log 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
"malloc_size_of 0.0.1",
"regex 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
"regex 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
"selectors 0.19.0",
"size_of_test 0.0.1",
"smallvec 0.6.3 (registry+https://github.com/rust-lang/crates.io-index)",
@ -2559,7 +2541,6 @@ dependencies = [
"checksum adler32 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "6cbd0b9af8587c72beadc9f72d35b9fbb070982c9e6203e46e93f10df25f8f45"
"checksum aho-corasick 0.6.3 (registry+https://github.com/rust-lang/crates.io-index)" = "500909c4f87a9e52355b26626d890833e9e1d53ac566db76c36faa984b889699"
"checksum ansi_term 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ee49baf6cb617b853aa8d93bf420db2383fab46d314482ca2803b40d5fde979b"
"checksum app_units 0.6.0 (registry+https://github.com/rust-lang/crates.io-index)" = "29069a9b483f7780aebb55dafb360c6225eefdc1f98c8d336a65148fd10c37b1"
"checksum app_units 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "9dadc668390b373e73e4abbfc1f07238b09a25858f2f39c06cebc6d8e141d774"
"checksum arrayvec 0.4.6 (registry+https://github.com/rust-lang/crates.io-index)" = "2f0ef4a9820019a0c91d918918c93dc71d469f581a49b47ddc1d285d4270bbe2"
"checksum ascii-canvas 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "b385d69402821a1c254533a011a312531cbcc0e3e24f19bbb4747a5a2daf37e2"
@ -2623,7 +2604,6 @@ dependencies = [
"checksum encoding_rs 0.8.4 (registry+https://github.com/rust-lang/crates.io-index)" = "88a1b66a0d28af4b03a8c8278c6dcb90e6e600d89c14500a9e7a02e64b9ee3ac"
"checksum env_logger 0.5.6 (registry+https://github.com/rust-lang/crates.io-index)" = "0561146661ae44c579e993456bc76d11ce1e0c7d745e57b2fa7146b6e49fa2ad"
"checksum error-chain 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ff511d5dc435d703f4971bc399647c9bc38e20cb41452e3b9feb4765419ed3f3"
"checksum euclid 0.18.1 (registry+https://github.com/rust-lang/crates.io-index)" = "47d5eb6310c8dd3e79f973952ddcb180bf6a98c01d341add49126a094b5598cc"
"checksum euclid 0.19.0 (registry+https://github.com/rust-lang/crates.io-index)" = "70a2ebdf55fb9d6329046e026329a55ef8fbaae5ea833f56e170beb3125a8a5f"
"checksum fixedbitset 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)" = "85cb8fec437468d86dc7c83ca7cfc933341d561873275f22dd5eedefa63a6478"
"checksum flate2 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "9fac2277e84e5e858483756647a9d0aa8d9a2b7cba517fd84325a0aaa69a0909"

Просмотреть файл

@ -10,7 +10,7 @@ name = "fallible"
path = "lib.rs"
[dependencies]
smallvec = "0.6"
smallvec = "0.6.2"
hashglobe = { path = "../hashglobe" }
# This crate effectively does nothing except if the `known_system_malloc`

Просмотреть файл

@ -23,9 +23,9 @@ servo = [
]
[dependencies]
app_units = "0.6"
app_units = "0.7"
cssparser = "0.24.0"
euclid = "0.18"
euclid = "0.19"
hashglobe = { path = "../hashglobe" }
hyper = { version = "0.10", optional = true }
hyper_serde = { version = "0.8", optional = true }

Просмотреть файл

@ -29,7 +29,7 @@ fxhash = "0.2"
phf = "0.7.18"
precomputed-hash = "0.1"
servo_arc = { version = "0.1", path = "../servo_arc" }
smallvec = "0.6"
smallvec = "0.6.2"
thin-slice = "0.1.0"
[build-dependencies]

Просмотреть файл

@ -25,7 +25,7 @@ servo = ["serde", "style_traits/servo", "servo_atoms", "servo_config", "html5eve
gecko_debug = ["nsstring/gecko_debug"]
[dependencies]
app_units = "0.6"
app_units = "0.7"
arrayvec = "0.4.6"
atomic_refcell = "0.1"
bitflags = "1.0"
@ -34,7 +34,7 @@ cfg-if = "0.1.0"
cssparser = "0.24.0"
new_debug_unreachable = "1.0"
encoding_rs = {version = "0.7", optional = true}
euclid = "0.18"
euclid = "0.19"
fallible = { path = "../fallible" }
fxhash = "0.2"
hashglobe = { path = "../hashglobe" }
@ -61,7 +61,7 @@ servo_arc = { path = "../servo_arc" }
servo_atoms = {path = "../atoms", optional = true}
servo_config = {path = "../config", optional = true}
smallbitvec = "2.1.1"
smallvec = "0.6"
smallvec = "0.6.2"
string_cache = { version = "0.7", optional = true }
style_derive = {path = "../style_derive"}
style_traits = {path = "../style_traits"}
@ -80,6 +80,6 @@ kernel32-sys = "0.2"
lazy_static = "1"
log = "0.4"
bindgen = { version = "0.37", optional = true, default-features = false }
regex = {version = "0.2", optional = true}
regex = {version = "1.0", optional = true}
walkdir = "2.1.4"
toml = {version = "0.4.5", optional = true, default-features = false}

Просмотреть файл

@ -14,10 +14,10 @@ servo = ["serde", "servo_atoms", "cssparser/serde", "webrender_api", "servo_url"
gecko = []
[dependencies]
app_units = "0.6"
app_units = "0.7"
cssparser = "0.24.0"
bitflags = "1.0"
euclid = "0.18"
euclid = "0.19"
malloc_size_of = { path = "../malloc_size_of" }
malloc_size_of_derive = { path = "../malloc_size_of_derive" }
selectors = { path = "../selectors" }

Просмотреть файл

@ -16,7 +16,6 @@ atomic_refcell = "0.1"
cssparser = "0.24.0"
cstr = "0.1.2"
env_logger = { version = "0.5", default-features = false }
euclid = "0.18"
geckoservo = {path = "../../../ports/geckolib"}
libc = "0.2"
log = {version = "0.4", features = ["release_max_level_info"]}
@ -28,4 +27,4 @@ style_traits = {path = "../../../components/style_traits"}
style = {path = "../../../components/style", features = ["gecko"]}
[build-dependencies]
regex = "0.2"
regex = "1.0"

Просмотреть файл

@ -1 +0,0 @@
{"files":{".travis.yml":"6b96b2c6bfd7e1acef4b825a2813fc4277859eb9400a16800db8835c25e4087d","Cargo.toml":"e57a15878e84c4628d1ed9cb2db5d6d255eb49f26216dbc46f8912bbdfcfd4b2","README.md":"9f048d969f9f8333cdcdb892744cd0816e4f2922c8817fa5e9e07f9472fe1050","src/app_unit.rs":"bc6bc0f5063bf27c27a84a931b51ee1e4930550af84a4351c1eed81f88f13f00","src/lib.rs":"ed615683418d93046fedb019baf87513c8c490203099144c298bb48e845137b2"},"package":"29069a9b483f7780aebb55dafb360c6225eefdc1f98c8d336a65148fd10c37b1"}

Просмотреть файл

@ -1,8 +0,0 @@
language: rust
notifications:
webhooks: http://build.servo.org:54856/travis
rust:
- stable
- beta
- nightly

25
third_party/rust/app_units-0.6.0/Cargo.toml поставляемый
Просмотреть файл

@ -1,25 +0,0 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g. crates.io) dependencies
#
# If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're
# editing this file be aware that the upstream Cargo.toml
# will likely look very different (and much more reasonable)
[package]
name = "app_units"
version = "0.6.0"
authors = ["The Servo Project Developers"]
description = "Servo app units type (Au)"
documentation = "http://doc.servo.org/app_units/"
license = "MPL-2.0"
repository = "https://github.com/servo/app_units"
[dependencies.num-traits]
version = "0.1.32"
[dependencies.serde]
version = "1.0"

3
third_party/rust/app_units-0.6.0/README.md поставляемый
Просмотреть файл

@ -1,3 +0,0 @@
# app-units
[Documentation](http://doc.servo.org/app_units/index.html)

Просмотреть файл

@ -1,369 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use num_traits::Zero;
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
use std::default::Default;
use std::fmt;
use std::i32;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign};
/// The number of app units in a pixel.
pub const AU_PER_PX: i32 = 60;
#[derive(Clone, Copy, Hash, PartialEq, PartialOrd, Eq, Ord)]
/// An App Unit, the fundamental unit of length in Servo. Usually
/// 1/60th of a pixel (see AU_PER_PX)
///
/// Please ensure that the values are between MIN_AU and MAX_AU.
/// It is safe to construct invalid Au values, but it may lead to
/// panics and overflows.
pub struct Au(pub i32);
impl<'de> Deserialize<'de> for Au {
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Au, D::Error> {
Ok(Au(try!(i32::deserialize(deserializer))).clamp())
}
}
impl Serialize for Au {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
self.0.serialize(serializer)
}
}
impl Default for Au {
#[inline]
fn default() -> Au {
Au(0)
}
}
impl Zero for Au {
#[inline]
fn zero() -> Au {
Au(0)
}
#[inline]
fn is_zero(&self) -> bool {
self.0 == 0
}
}
// (1 << 30) - 1 lets us add/subtract two Au and check for overflow
// after the operation. Gecko uses the same min/max values
pub const MAX_AU: Au = Au((1 << 30) - 1);
pub const MIN_AU: Au = Au(- ((1 << 30) - 1));
impl fmt::Debug for Au {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}px", self.to_f64_px())
}
}
impl Add for Au {
type Output = Au;
#[inline]
fn add(self, other: Au) -> Au {
Au(self.0 + other.0).clamp()
}
}
impl Sub for Au {
type Output = Au;
#[inline]
fn sub(self, other: Au) -> Au {
Au(self.0 - other.0).clamp()
}
}
impl Mul<i32> for Au {
type Output = Au;
#[inline]
fn mul(self, other: i32) -> Au {
if let Some(new) = self.0.checked_mul(other) {
Au(new).clamp()
} else if (self.0 > 0) ^ (other > 0) {
MIN_AU
} else {
MAX_AU
}
}
}
impl Div<i32> for Au {
type Output = Au;
#[inline]
fn div(self, other: i32) -> Au {
Au(self.0 / other)
}
}
impl Rem<i32> for Au {
type Output = Au;
#[inline]
fn rem(self, other: i32) -> Au {
Au(self.0 % other)
}
}
impl Neg for Au {
type Output = Au;
#[inline]
fn neg(self) -> Au {
Au(-self.0)
}
}
impl AddAssign for Au {
#[inline]
fn add_assign(&mut self, other: Au) {
*self = *self + other;
self.clamp_self();
}
}
impl SubAssign for Au {
#[inline]
fn sub_assign(&mut self, other: Au) {
*self = *self - other;
self.clamp_self();
}
}
impl MulAssign<i32> for Au {
#[inline]
fn mul_assign(&mut self, other: i32) {
*self = *self * other;
self.clamp_self();
}
}
impl DivAssign<i32> for Au {
#[inline]
fn div_assign(&mut self, other: i32) {
*self = *self / other;
self.clamp_self();
}
}
impl Au {
/// FIXME(pcwalton): Workaround for lack of cross crate inlining of newtype structs!
#[inline]
pub fn new(value: i32) -> Au {
Au(value).clamp()
}
#[inline]
fn clamp(self) -> Self {
if self.0 > MAX_AU.0 {
MAX_AU
} else if self.0 < MIN_AU.0 {
MIN_AU
} else {
self
}
}
#[inline]
fn clamp_self(&mut self) {
*self = Au::clamp(*self)
}
#[inline]
pub fn scale_by(self, factor: f32) -> Au {
let new_float = ((self.0 as f64) * factor as f64).round();
Au::from_f64_au(new_float)
}
#[inline]
/// Scale, but truncate (useful for viewport-relative units)
pub fn scale_by_trunc(self, factor: f32) -> Au {
let new_float = ((self.0 as f64) * factor as f64).trunc();
Au::from_f64_au(new_float)
}
#[inline]
pub fn from_f64_au(float: f64) -> Self {
// We *must* operate in f64. f32 isn't precise enough
// to handle MAX_AU
Au(float.min(MAX_AU.0 as f64)
.max(MIN_AU.0 as f64)
as i32)
}
#[inline]
pub fn from_px(px: i32) -> Au {
Au(px) * AU_PER_PX
}
/// Rounds this app unit down to the pixel towards zero and returns it.
#[inline]
pub fn to_px(self) -> i32 {
self.0 / AU_PER_PX
}
/// Ceil this app unit to the appropriate pixel boundary and return it.
#[inline]
pub fn ceil_to_px(self) -> i32 {
((self.0 as f64) / (AU_PER_PX as f64)).ceil() as i32
}
#[inline]
pub fn to_nearest_px(self) -> i32 {
((self.0 as f64) / (AU_PER_PX as f64)).round() as i32
}
#[inline]
pub fn to_nearest_pixel(self, pixels_per_px: f32) -> f32 {
((self.0 as f32) / (AU_PER_PX as f32) * pixels_per_px).round() / pixels_per_px
}
#[inline]
pub fn to_f32_px(self) -> f32 {
(self.0 as f32) / (AU_PER_PX as f32)
}
#[inline]
pub fn to_f64_px(self) -> f64 {
(self.0 as f64) / (AU_PER_PX as f64)
}
#[inline]
pub fn from_f32_px(px: f32) -> Au {
let float = (px * AU_PER_PX as f32).round();
Au::from_f64_au(float as f64)
}
#[inline]
pub fn from_f64_px(px: f64) -> Au {
let float = (px * AU_PER_PX as f64).round();
Au::from_f64_au(float)
}
#[inline]
pub fn abs(self) -> Self {
Au(self.0.abs())
}
}
#[test]
fn create() {
assert_eq!(Au::zero(), Au(0));
assert_eq!(Au::default(), Au(0));
assert_eq!(Au::new(7), Au(7));
}
#[test]
fn operations() {
assert_eq!(Au(7) + Au(5), Au(12));
assert_eq!(MAX_AU + Au(1), MAX_AU);
assert_eq!(Au(7) - Au(5), Au(2));
assert_eq!(MIN_AU - Au(1), MIN_AU);
assert_eq!(Au(7) * 5, Au(35));
assert_eq!(MAX_AU * -1, MIN_AU);
assert_eq!(MIN_AU * -1, MAX_AU);
assert_eq!(Au(35) / 5, Au(7));
assert_eq!(Au(35) % 6, Au(5));
assert_eq!(-Au(7), Au(-7));
}
#[test]
fn saturate() {
let half = MAX_AU / 2;
assert_eq!(half + half + half + half + half, MAX_AU);
assert_eq!(-half - half - half - half - half, MIN_AU);
assert_eq!(half * -10, MIN_AU);
assert_eq!(-half * 10, MIN_AU);
assert_eq!(half * 10, MAX_AU);
assert_eq!(-half * -10, MAX_AU);
}
#[test]
fn scale() {
assert_eq!(Au(12).scale_by(1.5), Au(18));
assert_eq!(Au(12).scale_by(1.7), Au(20));
assert_eq!(Au(12).scale_by(1.8), Au(22));
assert_eq!(Au(12).scale_by_trunc(1.8), Au(21));
}
#[test]
fn abs() {
assert_eq!(Au(-10).abs(), Au(10));
}
#[test]
fn convert() {
assert_eq!(Au::from_px(5), Au(300));
assert_eq!(Au(300).to_px(), 5);
assert_eq!(Au(330).to_px(), 5);
assert_eq!(Au(350).to_px(), 5);
assert_eq!(Au(360).to_px(), 6);
assert_eq!(Au(300).ceil_to_px(), 5);
assert_eq!(Au(310).ceil_to_px(), 6);
assert_eq!(Au(330).ceil_to_px(), 6);
assert_eq!(Au(350).ceil_to_px(), 6);
assert_eq!(Au(360).ceil_to_px(), 6);
assert_eq!(Au(300).to_nearest_px(), 5);
assert_eq!(Au(310).to_nearest_px(), 5);
assert_eq!(Au(330).to_nearest_px(), 6);
assert_eq!(Au(350).to_nearest_px(), 6);
assert_eq!(Au(360).to_nearest_px(), 6);
assert_eq!(Au(60).to_nearest_pixel(2.), 1.);
assert_eq!(Au(70).to_nearest_pixel(2.), 1.);
assert_eq!(Au(80).to_nearest_pixel(2.), 1.5);
assert_eq!(Au(90).to_nearest_pixel(2.), 1.5);
assert_eq!(Au(100).to_nearest_pixel(2.), 1.5);
assert_eq!(Au(110).to_nearest_pixel(2.), 2.);
assert_eq!(Au(120).to_nearest_pixel(2.), 2.);
assert_eq!(Au(300).to_f32_px(), 5.);
assert_eq!(Au(312).to_f32_px(), 5.2);
assert_eq!(Au(330).to_f32_px(), 5.5);
assert_eq!(Au(348).to_f32_px(), 5.8);
assert_eq!(Au(360).to_f32_px(), 6.);
assert_eq!((Au(367).to_f32_px() * 1000.).round(), 6_117.);
assert_eq!((Au(368).to_f32_px() * 1000.).round(), 6_133.);
assert_eq!(Au(300).to_f64_px(), 5.);
assert_eq!(Au(312).to_f64_px(), 5.2);
assert_eq!(Au(330).to_f64_px(), 5.5);
assert_eq!(Au(348).to_f64_px(), 5.8);
assert_eq!(Au(360).to_f64_px(), 6.);
assert_eq!((Au(367).to_f64_px() * 1000.).round(), 6_117.);
assert_eq!((Au(368).to_f64_px() * 1000.).round(), 6_133.);
assert_eq!(Au::from_f32_px(5.), Au(300));
assert_eq!(Au::from_f32_px(5.2), Au(312));
assert_eq!(Au::from_f32_px(5.5), Au(330));
assert_eq!(Au::from_f32_px(5.8), Au(348));
assert_eq!(Au::from_f32_px(6.), Au(360));
assert_eq!(Au::from_f32_px(6.12), Au(367));
assert_eq!(Au::from_f32_px(6.13), Au(368));
assert_eq!(Au::from_f64_px(5.), Au(300));
assert_eq!(Au::from_f64_px(5.2), Au(312));
assert_eq!(Au::from_f64_px(5.5), Au(330));
assert_eq!(Au::from_f64_px(5.8), Au(348));
assert_eq!(Au::from_f64_px(6.), Au(360));
assert_eq!(Au::from_f64_px(6.12), Au(367));
assert_eq!(Au::from_f64_px(6.13), Au(368));
}

14
third_party/rust/app_units-0.6.0/src/lib.rs поставляемый
Просмотреть файл

@ -1,14 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! An Au is an "App Unit" and represents 1/60th of a CSS pixel. It was
//! originally proposed in 2002 as a standard unit of measure in Gecko.
//! See <https://bugzilla.mozilla.org/show_bug.cgi?id=177805> for more info.
extern crate num_traits;
extern crate serde;
mod app_unit;
pub use app_unit::{Au, MIN_AU, MAX_AU, AU_PER_PX};

Просмотреть файл

@ -1 +0,0 @@
{"files":{".travis.yml":"301590735ff27f124c03cef8598aa5397c88c59aba3d058edf0bde532965c346","COPYRIGHT":"ec82b96487e9e778ee610c7ab245162464782cfa1f555c2299333f8dbe5c036a","Cargo.toml":"d67b137d287c8debd8811e4deb3c2973eb9ee1ea11b31fcdd8217591482021f6","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"62065228e42caebca7e7d7db1204cbb867033de5982ca4009928915e4095f3a3","README.md":"625bec69c76ce5423fdd05cfe46922b2680ec517f97c5854ce34798d1d8a9541","src/approxeq.rs":"6594377e8f6c20f88f628520d8de9b9a59c5892a0ee9a6ccd13c8400c1499911","src/homogen.rs":"cb26346ad1ea2797bdc1cac7f532872becabf28a1f9c60792f86ad4a655582f9","src/length.rs":"3171315822707728b1bfbdd04a4190ffb7206b4bfc59e9dd072bb2caa05ff292","src/lib.rs":"b3c2303ab06ce972784c2ec4faa09ecdaa8e0706316f427c8a2009445a52f6e9","src/macros.rs":"877b4bd62b63ea120e568803281e7169f33fb811fe1c1515e56bfc44a74c34a2","src/num.rs":"4439479fad5729073e0bfe0b96b547672a237430d48e564519759b9550baa033","src/point.rs":"d18046853e19012e649a01991d45fdb1ba8f51eb55e52273e68f567cd7df932a","src/rect.rs":"1a4fbcf482e447218894c6a31753cb9b5a6c3e5377447ba7b5bceae7941a0772","src/rotation.rs":"982aaca640215bacc5d2dc60a8949bb2510d5b6d492975b8b6946a7c8f69b496","src/scale.rs":"fc07bcf47f3a1215023c830059f0d270e570cbd37fe8c367ef4a47b191f4ae3e","src/side_offsets.rs":"f114cb881256bbeff2ee2aa305d363e2dea65aa8535140f104f6fa9364bd02f5","src/size.rs":"f6a4f12fc50cc54220af089339cb7fde37f22c6dfcc4c2c676d24caab07b1790","src/transform2d.rs":"137344a16162f5cd1dc4a2ae87b8ea3fdde7597874835582378945f55e45513e","src/transform3d.rs":"efd971ba35e8a9ab59b0c4062b2625532147af0e57bf96b8cd09117524cf23ed","src/trig.rs":"97a263c4f178b0332501659ca8143f9f637a0755aca189dd31ac551bcd4cb73c","src/vector.rs":"d84103384907174d2b2206acd60d6b3261edb3ac971ec5e121ae22ce6bcca5d9"},"package":"47d5eb6310c8dd3e79f973952ddcb180bf6a98c01d341add49126a094b5598cc"}

25
third_party/rust/euclid-0.18.1/.travis.yml поставляемый
Просмотреть файл

@ -1,25 +0,0 @@
language: rust
notifications:
webhooks: http://build.servo.org:54856/travis
rust:
- 1.23.0
- stable
- beta
- nightly
env:
- FEATURES=""
- FEATURES="--features serde"
matrix:
include:
- rust: nightly
env: FEATURES="--features unstable"
- rust: nightly
env: FEATURES="--features unstable,serde"
script:
- cargo build $FEATURES
- cargo test --verbose $FEATURES

5
third_party/rust/euclid-0.18.1/COPYRIGHT поставляемый
Просмотреть файл

@ -1,5 +0,0 @@
Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
<LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
option. All files in the project carrying such notice may not be
copied, modified, or distributed except according to those terms.

38
third_party/rust/euclid-0.18.1/Cargo.toml поставляемый
Просмотреть файл

@ -1,38 +0,0 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g. crates.io) dependencies
#
# If you believe there's an error in this file please file an
# issue against the rust-lang/cargo repository. If you're
# editing this file be aware that the upstream Cargo.toml
# will likely look very different (and much more reasonable)
[package]
name = "euclid"
version = "0.18.1"
authors = ["The Servo Project Developers"]
description = "Geometry primitives"
documentation = "https://docs.rs/euclid/"
keywords = ["matrix", "vector", "linear-algebra", "geometry"]
categories = ["science"]
license = "MIT / Apache-2.0"
repository = "https://github.com/servo/euclid"
[dependencies.num-traits]
version = "0.1.32"
default-features = false
[dependencies.serde]
version = "1.0"
features = ["serde_derive"]
optional = true
[dev-dependencies.rand]
version = "0.4"
[dev-dependencies.serde_test]
version = "1.0"
[features]
unstable = []

201
third_party/rust/euclid-0.18.1/LICENSE-APACHE поставляемый
Просмотреть файл

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
third_party/rust/euclid-0.18.1/LICENSE-MIT поставляемый
Просмотреть файл

@ -1,25 +0,0 @@
Copyright (c) 2012-2013 Mozilla Foundation
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

8
third_party/rust/euclid-0.18.1/README.md поставляемый
Просмотреть файл

@ -1,8 +0,0 @@
# euclid
This is a small library for geometric types with a focus on 2d graphics and
layout.
* [Documentation](https://docs.rs/euclid/)
* [Release notes](https://github.com/servo/euclid/releases)
* [crates.io](https://crates.io/crates/euclid)

Просмотреть файл

@ -1,35 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// Trait for testing approximate equality
pub trait ApproxEq<Eps> {
fn approx_epsilon() -> Eps;
fn approx_eq(&self, other: &Self) -> bool;
fn approx_eq_eps(&self, other: &Self, approx_epsilon: &Eps) -> bool;
}
macro_rules! approx_eq {
($ty:ty, $eps:expr) => (
impl ApproxEq<$ty> for $ty {
#[inline]
fn approx_epsilon() -> $ty { $eps }
#[inline]
fn approx_eq(&self, other: &$ty) -> bool {
self.approx_eq_eps(other, &$eps)
}
#[inline]
fn approx_eq_eps(&self, other: &$ty, approx_epsilon: &$ty) -> bool {
(*self - *other).abs() < *approx_epsilon
}
}
)
}
approx_eq!(f32, 1.0e-6);
approx_eq!(f64, 1.0e-6);

123
third_party/rust/euclid-0.18.1/src/homogen.rs поставляемый
Просмотреть файл

@ -1,123 +0,0 @@
// Copyright 2018 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use point::{TypedPoint2D, TypedPoint3D};
use vector::{TypedVector2D, TypedVector3D};
use num::{One, Zero};
use core::fmt;
use core::marker::PhantomData;
use core::ops::Div;
define_matrix! {
/// Homogeneous vector in 3D space.
pub struct HomogeneousVector<T, U> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
}
impl<T, U> HomogeneousVector<T, U> {
/// Constructor taking scalar values directly.
#[inline]
pub fn new(x: T, y: T, z: T, w: T) -> Self {
HomogeneousVector { x, y, z, w, _unit: PhantomData }
}
}
impl<T: Copy + Div<T, Output=T> + Zero + PartialOrd, U> HomogeneousVector<T, U> {
/// Convert into Cartesian 2D point.
///
/// Returns None if the point is on or behind the W=0 hemisphere.
#[inline]
pub fn to_point2d(&self) -> Option<TypedPoint2D<T, U>> {
if self.w > T::zero() {
Some(TypedPoint2D::new(self.x / self.w, self.y / self.w))
} else {
None
}
}
/// Convert into Cartesian 3D point.
///
/// Returns None if the point is on or behind the W=0 hemisphere.
#[inline]
pub fn to_point3d(&self) -> Option<TypedPoint3D<T, U>> {
if self.w > T::zero() {
Some(TypedPoint3D::new(self.x / self.w, self.y / self.w, self.z / self.w))
} else {
None
}
}
}
impl<T: Zero, U> From<TypedVector2D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(v: TypedVector2D<T, U>) -> Self {
HomogeneousVector::new(v.x, v.y, T::zero(), T::zero())
}
}
impl<T: Zero, U> From<TypedVector3D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(v: TypedVector3D<T, U>) -> Self {
HomogeneousVector::new(v.x, v.y, v.z, T::zero())
}
}
impl<T: Zero + One, U> From<TypedPoint2D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(p: TypedPoint2D<T, U>) -> Self {
HomogeneousVector::new(p.x, p.y, T::zero(), T::one())
}
}
impl<T: One, U> From<TypedPoint3D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(p: TypedPoint3D<T, U>) -> Self {
HomogeneousVector::new(p.x, p.y, p.z, T::one())
}
}
impl<T: fmt::Debug, U> fmt::Debug for HomogeneousVector<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?},{:?},{:?},{:?})", self.x, self.y, self.z, self.w)
}
}
impl<T: fmt::Display, U> fmt::Display for HomogeneousVector<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "({},{},{},{})", self.x, self.y, self.z, self.w)
}
}
#[cfg(test)]
mod homogeneous {
use super::HomogeneousVector;
use point::{Point2D, Point3D};
#[test]
fn roundtrip() {
assert_eq!(Some(Point2D::new(1.0, 2.0)), HomogeneousVector::from(Point2D::new(1.0, 2.0)).to_point2d());
assert_eq!(Some(Point3D::new(1.0, -2.0, 0.1)), HomogeneousVector::from(Point3D::new(1.0, -2.0, 0.1)).to_point3d());
}
#[test]
fn negative() {
assert_eq!(None, HomogeneousVector::<f32, ()>::new(1.0, 2.0, 3.0, 0.0).to_point2d());
assert_eq!(None, HomogeneousVector::<f32, ()>::new(1.0, -2.0, -3.0, -2.0).to_point3d());
}
}

520
third_party/rust/euclid-0.18.1/src/length.rs поставляемый
Просмотреть файл

@ -1,520 +0,0 @@
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A one-dimensional length, tagged with its units.
use scale::TypedScale;
use num::Zero;
use num_traits::{NumCast, Saturating};
use num::One;
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use core::cmp::Ordering;
use core::ops::{Add, Div, Mul, Neg, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, SubAssign};
use core::marker::PhantomData;
use core::fmt;
/// A one-dimensional distance, with value represented by `T` and unit of measurement `Unit`.
///
/// `T` can be any numeric type, for example a primitive type like `u64` or `f32`.
///
/// `Unit` is not used in the representation of a `Length` value. It is used only at compile time
/// to ensure that a `Length` stored with one unit is converted explicitly before being used in an
/// expression that requires a different unit. It may be a type without values, such as an empty
/// enum.
///
/// You can multiply a `Length` by a `scale::TypedScale` to convert it from one unit to
/// another. See the [`TypedScale`] docs for an example.
///
/// [`TypedScale`]: struct.TypedScale.html
#[repr(C)]
pub struct Length<T, Unit>(pub T, #[doc(hidden)] pub PhantomData<Unit>);
impl<T: Clone, Unit> Clone for Length<T, Unit> {
fn clone(&self) -> Self {
Length(self.0.clone(), PhantomData)
}
}
impl<T: Copy, Unit> Copy for Length<T, Unit> {}
#[cfg(feature = "serde")]
impl<'de, Unit, T> Deserialize<'de> for Length<T, Unit>
where
T: Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
Ok(Length(
try!(Deserialize::deserialize(deserializer)),
PhantomData,
))
}
}
#[cfg(feature = "serde")]
impl<T, Unit> Serialize for Length<T, Unit>
where
T: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.0.serialize(serializer)
}
}
impl<T, Unit> Length<T, Unit> {
pub fn new(x: T) -> Self {
Length(x, PhantomData)
}
}
impl<Unit, T: Clone> Length<T, Unit> {
pub fn get(&self) -> T {
self.0.clone()
}
}
impl<T: fmt::Debug + Clone, U> fmt::Debug for Length<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.get().fmt(f)
}
}
impl<T: fmt::Display + Clone, U> fmt::Display for Length<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.get().fmt(f)
}
}
// length + length
impl<U, T: Clone + Add<T, Output = T>> Add for Length<T, U> {
type Output = Length<T, U>;
fn add(self, other: Length<T, U>) -> Length<T, U> {
Length::new(self.get() + other.get())
}
}
// length += length
impl<U, T: Clone + AddAssign<T>> AddAssign for Length<T, U> {
fn add_assign(&mut self, other: Length<T, U>) {
self.0 += other.get();
}
}
// length - length
impl<U, T: Clone + Sub<T, Output = T>> Sub<Length<T, U>> for Length<T, U> {
type Output = Length<T, U>;
fn sub(self, other: Length<T, U>) -> <Self as Sub>::Output {
Length::new(self.get() - other.get())
}
}
// length -= length
impl<U, T: Clone + SubAssign<T>> SubAssign for Length<T, U> {
fn sub_assign(&mut self, other: Length<T, U>) {
self.0 -= other.get();
}
}
// Saturating length + length and length - length.
impl<U, T: Clone + Saturating> Saturating for Length<T, U> {
fn saturating_add(self, other: Length<T, U>) -> Length<T, U> {
Length::new(self.get().saturating_add(other.get()))
}
fn saturating_sub(self, other: Length<T, U>) -> Length<T, U> {
Length::new(self.get().saturating_sub(other.get()))
}
}
// length / length
impl<Src, Dst, T: Clone + Div<T, Output = T>> Div<Length<T, Src>> for Length<T, Dst> {
type Output = TypedScale<T, Src, Dst>;
#[inline]
fn div(self, other: Length<T, Src>) -> TypedScale<T, Src, Dst> {
TypedScale::new(self.get() / other.get())
}
}
// length * scalar
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for Length<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
Length::new(self.get() * scale)
}
}
// length *= scalar
impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Length<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
*self = *self * scale
}
}
// length / scalar
impl<T: Copy + Div<T, Output = T>, U> Div<T> for Length<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
Length::new(self.get() / scale)
}
}
// length /= scalar
impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Length<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
*self = *self / scale
}
}
// length * scaleFactor
impl<Src, Dst, T: Clone + Mul<T, Output = T>> Mul<TypedScale<T, Src, Dst>> for Length<T, Src> {
type Output = Length<T, Dst>;
#[inline]
fn mul(self, scale: TypedScale<T, Src, Dst>) -> Length<T, Dst> {
Length::new(self.get() * scale.get())
}
}
// length / scaleFactor
impl<Src, Dst, T: Clone + Div<T, Output = T>> Div<TypedScale<T, Src, Dst>> for Length<T, Dst> {
type Output = Length<T, Src>;
#[inline]
fn div(self, scale: TypedScale<T, Src, Dst>) -> Length<T, Src> {
Length::new(self.get() / scale.get())
}
}
// -length
impl<U, T: Clone + Neg<Output = T>> Neg for Length<T, U> {
type Output = Length<T, U>;
#[inline]
fn neg(self) -> Length<T, U> {
Length::new(-self.get())
}
}
impl<Unit, T0: NumCast + Clone> Length<T0, Unit> {
/// Cast from one numeric representation to another, preserving the units.
pub fn cast<T1: NumCast + Clone>(&self) -> Length<T1, Unit> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
pub fn try_cast<T1: NumCast + Clone>(&self) -> Option<Length<T1, Unit>> {
NumCast::from(self.get()).map(Length::new)
}
}
impl<Unit, T: Clone + PartialEq> PartialEq for Length<T, Unit> {
fn eq(&self, other: &Self) -> bool {
self.get().eq(&other.get())
}
}
impl<Unit, T: Clone + PartialOrd> PartialOrd for Length<T, Unit> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.get().partial_cmp(&other.get())
}
}
impl<Unit, T: Clone + Eq> Eq for Length<T, Unit> {}
impl<Unit, T: Clone + Ord> Ord for Length<T, Unit> {
fn cmp(&self, other: &Self) -> Ordering {
self.get().cmp(&other.get())
}
}
impl<Unit, T: Zero> Zero for Length<T, Unit> {
fn zero() -> Self {
Length::new(Zero::zero())
}
}
impl<T, U> Length<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this length and another length.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
Length::new(one_t * self.get() + t * other.get())
}
}
#[cfg(test)]
mod tests {
use super::Length;
use num::Zero;
use num_traits::Saturating;
use scale::TypedScale;
use core::f32::INFINITY;
enum Inch {}
enum Mm {}
enum Cm {}
enum Second {}
#[cfg(feature = "serde")]
mod serde {
use super::*;
extern crate serde_test;
use self::serde_test::Token;
use self::serde_test::assert_tokens;
#[test]
fn test_length_serde() {
let one_cm: Length<f32, Mm> = Length::new(10.0);
assert_tokens(&one_cm, &[Token::F32(10.0)]);
}
}
#[test]
fn test_clone() {
// A cloned Length is a separate length with the state matching the
// original Length at the point it was cloned.
let mut variable_length: Length<f32, Inch> = Length::new(12.0);
let one_foot = variable_length.clone();
variable_length.0 = 24.0;
assert_eq!(one_foot.get(), 12.0);
assert_eq!(variable_length.get(), 24.0);
}
#[test]
fn test_get_clones_length_value() {
// Calling get returns a clone of the Length's value.
// To test this, we need something clone-able - hence a vector.
let mut length: Length<Vec<i32>, Inch> = Length::new(vec![1, 2, 3]);
let value = length.get();
length.0.push(4);
assert_eq!(value, vec![1, 2, 3]);
assert_eq!(length.get(), vec![1, 2, 3, 4]);
}
#[test]
fn test_add() {
let length1: Length<u8, Mm> = Length::new(250);
let length2: Length<u8, Mm> = Length::new(5);
let result = length1 + length2;
assert_eq!(result.get(), 255);
}
#[test]
fn test_addassign() {
let one_cm: Length<f32, Mm> = Length::new(10.0);
let mut measurement: Length<f32, Mm> = Length::new(5.0);
measurement += one_cm;
assert_eq!(measurement.get(), 15.0);
}
#[test]
fn test_sub() {
let length1: Length<u8, Mm> = Length::new(250);
let length2: Length<u8, Mm> = Length::new(5);
let result = length1 - length2;
assert_eq!(result.get(), 245);
}
#[test]
fn test_subassign() {
let one_cm: Length<f32, Mm> = Length::new(10.0);
let mut measurement: Length<f32, Mm> = Length::new(5.0);
measurement -= one_cm;
assert_eq!(measurement.get(), -5.0);
}
#[test]
fn test_saturating_add() {
let length1: Length<u8, Mm> = Length::new(250);
let length2: Length<u8, Mm> = Length::new(6);
let result = length1.saturating_add(length2);
assert_eq!(result.get(), 255);
}
#[test]
fn test_saturating_sub() {
let length1: Length<u8, Mm> = Length::new(5);
let length2: Length<u8, Mm> = Length::new(10);
let result = length1.saturating_sub(length2);
assert_eq!(result.get(), 0);
}
#[test]
fn test_division_by_length() {
// Division results in a TypedScale from denominator units
// to numerator units.
let length: Length<f32, Cm> = Length::new(5.0);
let duration: Length<f32, Second> = Length::new(10.0);
let result = length / duration;
let expected: TypedScale<f32, Second, Cm> = TypedScale::new(0.5);
assert_eq!(result, expected);
}
#[test]
fn test_multiplication() {
let length_mm: Length<f32, Mm> = Length::new(10.0);
let cm_per_mm: TypedScale<f32, Mm, Cm> = TypedScale::new(0.1);
let result = length_mm * cm_per_mm;
let expected: Length<f32, Cm> = Length::new(1.0);
assert_eq!(result, expected);
}
#[test]
fn test_multiplication_with_scalar() {
let length_mm: Length<f32, Mm> = Length::new(10.0);
let result = length_mm * 2.0;
let expected: Length<f32, Mm> = Length::new(20.0);
assert_eq!(result, expected);
}
#[test]
fn test_multiplication_assignment() {
let mut length: Length<f32, Mm> = Length::new(10.0);
length *= 2.0;
let expected: Length<f32, Mm> = Length::new(20.0);
assert_eq!(length, expected);
}
#[test]
fn test_division_by_scalefactor() {
let length: Length<f32, Cm> = Length::new(5.0);
let cm_per_second: TypedScale<f32, Second, Cm> = TypedScale::new(10.0);
let result = length / cm_per_second;
let expected: Length<f32, Second> = Length::new(0.5);
assert_eq!(result, expected);
}
#[test]
fn test_division_by_scalar() {
let length: Length<f32, Cm> = Length::new(5.0);
let result = length / 2.0;
let expected: Length<f32, Cm> = Length::new(2.5);
assert_eq!(result, expected);
}
#[test]
fn test_division_assignment() {
let mut length: Length<f32, Mm> = Length::new(10.0);
length /= 2.0;
let expected: Length<f32, Mm> = Length::new(5.0);
assert_eq!(length, expected);
}
#[test]
fn test_negation() {
let length: Length<f32, Cm> = Length::new(5.0);
let result = -length;
let expected: Length<f32, Cm> = Length::new(-5.0);
assert_eq!(result, expected);
}
#[test]
fn test_cast() {
let length_as_i32: Length<i32, Cm> = Length::new(5);
let result: Length<f32, Cm> = length_as_i32.cast();
let length_as_f32: Length<f32, Cm> = Length::new(5.0);
assert_eq!(result, length_as_f32);
}
#[test]
fn test_equality() {
let length_5_point_0: Length<f32, Cm> = Length::new(5.0);
let length_5_point_1: Length<f32, Cm> = Length::new(5.1);
let length_0_point_1: Length<f32, Cm> = Length::new(0.1);
assert!(length_5_point_0 == length_5_point_1 - length_0_point_1);
assert!(length_5_point_0 != length_5_point_1);
}
#[test]
fn test_order() {
let length_5_point_0: Length<f32, Cm> = Length::new(5.0);
let length_5_point_1: Length<f32, Cm> = Length::new(5.1);
let length_0_point_1: Length<f32, Cm> = Length::new(0.1);
assert!(length_5_point_0 < length_5_point_1);
assert!(length_5_point_0 <= length_5_point_1);
assert!(length_5_point_0 <= length_5_point_1 - length_0_point_1);
assert!(length_5_point_1 > length_5_point_0);
assert!(length_5_point_1 >= length_5_point_0);
assert!(length_5_point_0 >= length_5_point_1 - length_0_point_1);
}
#[test]
fn test_zero_add() {
type LengthCm = Length<f32, Cm>;
let length: LengthCm = Length::new(5.0);
let result = length - LengthCm::zero();
assert_eq!(result, length);
}
#[test]
fn test_zero_division() {
type LengthCm = Length<f32, Cm>;
let length: LengthCm = Length::new(5.0);
let length_zero: LengthCm = Length::zero();
let result = length / length_zero;
let expected: TypedScale<f32, Cm, Cm> = TypedScale::new(INFINITY);
assert_eq!(result, expected);
}
}

129
third_party/rust/euclid-0.18.1/src/lib.rs поставляемый
Просмотреть файл

@ -1,129 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg_attr(feature = "unstable", feature(fn_must_use))]
#![cfg_attr(not(test), no_std)]
//! A collection of strongly typed math tools for computer graphics with an inclination
//! towards 2d graphics and layout.
//!
//! All types are generic over the scalar type of their component (`f32`, `i32`, etc.),
//! and tagged with a generic Unit parameter which is useful to prevent mixing
//! values from different spaces. For example it should not be legal to translate
//! a screen-space position by a world-space vector and this can be expressed using
//! the generic Unit parameter.
//!
//! This unit system is not mandatory and all Typed* structures have an alias
//! with the default unit: `UnknownUnit`.
//! for example ```Point2D<T>``` is equivalent to ```TypedPoint2D<T, UnknownUnit>```.
//! Client code typically creates a set of aliases for each type and doesn't need
//! to deal with the specifics of typed units further. For example:
//!
//! ```rust
//! use euclid::*;
//! pub struct ScreenSpace;
//! pub type ScreenPoint = TypedPoint2D<f32, ScreenSpace>;
//! pub type ScreenSize = TypedSize2D<f32, ScreenSpace>;
//! pub struct WorldSpace;
//! pub type WorldPoint = TypedPoint3D<f32, WorldSpace>;
//! pub type ProjectionMatrix = TypedTransform3D<f32, WorldSpace, ScreenSpace>;
//! // etc...
//! ```
//!
//! All euclid types are marked `#[repr(C)]` in order to facilitate exposing them to
//! foreign function interfaces (provided the underlying scalar type is also `repr(C)`).
//!
//! Components are accessed in their scalar form by default for convenience, and most
//! types additionally implement strongly typed accessors which return typed ```Length``` wrappers.
//! For example:
//!
//! ```rust
//! # use euclid::*;
//! # pub struct WorldSpace;
//! # pub type WorldPoint = TypedPoint3D<f32, WorldSpace>;
//! let p = WorldPoint::new(0.0, 1.0, 1.0);
//! // p.x is an f32.
//! println!("p.x = {:?} ", p.x);
//! // p.x is a Length<f32, WorldSpace>.
//! println!("p.x_typed() = {:?} ", p.x_typed());
//! // Length::get returns the scalar value (f32).
//! assert_eq!(p.x, p.x_typed().get());
//! ```
#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;
extern crate num_traits;
#[cfg(test)]
extern crate rand;
#[cfg(test)]
use std as core;
pub use length::Length;
pub use scale::TypedScale;
pub use transform2d::{Transform2D, TypedTransform2D};
pub use transform3d::{Transform3D, TypedTransform3D};
pub use point::{Point2D, Point3D, TypedPoint2D, TypedPoint3D, point2, point3};
pub use vector::{TypedVector2D, TypedVector3D, Vector2D, Vector3D, vec2, vec3};
pub use vector::{BoolVector2D, BoolVector3D, bvec2, bvec3};
pub use homogen::HomogeneousVector;
pub use rect::{rect, Rect, TypedRect};
pub use rotation::{Angle, Rotation2D, Rotation3D, TypedRotation2D, TypedRotation3D};
pub use side_offsets::{SideOffsets2D, TypedSideOffsets2D};
pub use size::{Size2D, TypedSize2D, size2};
pub use trig::Trig;
#[macro_use]
mod macros;
pub mod approxeq;
mod homogen;
pub mod num;
mod length;
mod point;
mod rect;
mod rotation;
mod scale;
mod side_offsets;
mod size;
mod transform2d;
mod transform3d;
mod trig;
mod vector;
/// The default unit.
#[derive(Clone, Copy)]
pub struct UnknownUnit;
/// Temporary alias to facilitate the transition to the new naming scheme
#[deprecated]
pub type Matrix2D<T> = Transform2D<T>;
/// Temporary alias to facilitate the transition to the new naming scheme
#[deprecated]
pub type TypedMatrix2D<T, Src, Dst> = TypedTransform2D<T, Src, Dst>;
/// Temporary alias to facilitate the transition to the new naming scheme
#[deprecated]
pub type Matrix4D<T> = Transform3D<T>;
/// Temporary alias to facilitate the transition to the new naming scheme
#[deprecated]
pub type TypedMatrix4D<T, Src, Dst> = TypedTransform3D<T, Src, Dst>;
/// Temporary alias to facilitate the transition to the new naming scheme
#[deprecated]
pub type ScaleFactor<T, Src, Dst> = TypedScale<T, Src, Dst>;
/// Temporary alias to facilitate the transition to the new naming scheme
#[deprecated]
pub use Angle as Radians;

86
third_party/rust/euclid-0.18.1/src/macros.rs поставляемый
Просмотреть файл

@ -1,86 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
macro_rules! define_matrix {
(
$(#[$attr:meta])*
pub struct $name:ident<T, $($phantom:ident),+> {
$(pub $field:ident: T,)+
}
) => (
#[repr(C)]
$(#[$attr])*
pub struct $name<T, $($phantom),+> {
$(pub $field: T,)+
// Keep this (secretly) public for the few cases where we would like to
// create static constants which currently can't be initialized with a
// function.
#[doc(hidden)]
pub _unit: PhantomData<($($phantom),+)>
}
impl<T: Clone, $($phantom),+> Clone for $name<T, $($phantom),+> {
fn clone(&self) -> Self {
$name {
$($field: self.$field.clone(),)+
_unit: PhantomData,
}
}
}
impl<T: Copy, $($phantom),+> Copy for $name<T, $($phantom),+> {}
#[cfg(feature = "serde")]
impl<'de, T, $($phantom),+> ::serde::Deserialize<'de> for $name<T, $($phantom),+>
where T: ::serde::Deserialize<'de>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: ::serde::Deserializer<'de>
{
let ($($field,)+) =
try!(::serde::Deserialize::deserialize(deserializer));
Ok($name {
$($field: $field,)+
_unit: PhantomData,
})
}
}
#[cfg(feature = "serde")]
impl<T, $($phantom),+> ::serde::Serialize for $name<T, $($phantom),+>
where T: ::serde::Serialize
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: ::serde::Serializer
{
($(&self.$field,)+).serialize(serializer)
}
}
impl<T, $($phantom),+> ::core::cmp::Eq for $name<T, $($phantom),+>
where T: ::core::cmp::Eq {}
impl<T, $($phantom),+> ::core::cmp::PartialEq for $name<T, $($phantom),+>
where T: ::core::cmp::PartialEq
{
fn eq(&self, other: &Self) -> bool {
true $(&& self.$field == other.$field)+
}
}
impl<T, $($phantom),+> ::core::hash::Hash for $name<T, $($phantom),+>
where T: ::core::hash::Hash
{
fn hash<H: ::core::hash::Hasher>(&self, h: &mut H) {
$(self.$field.hash(h);)+
}
}
)
}

85
third_party/rust/euclid-0.18.1/src/num.rs поставляемый
Просмотреть файл

@ -1,85 +0,0 @@
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A one-dimensional length, tagged with its units.
use num_traits;
pub trait Zero {
fn zero() -> Self;
}
impl<T: num_traits::Zero> Zero for T {
fn zero() -> T {
num_traits::Zero::zero()
}
}
pub trait One {
fn one() -> Self;
}
impl<T: num_traits::One> One for T {
fn one() -> T {
num_traits::One::one()
}
}
pub trait Round: Copy {
fn round(self) -> Self;
}
pub trait Floor: Copy {
fn floor(self) -> Self;
}
pub trait Ceil: Copy {
fn ceil(self) -> Self;
}
macro_rules! num_int {
($ty:ty) => (
impl Round for $ty {
#[inline]
fn round(self) -> $ty { self }
}
impl Floor for $ty {
#[inline]
fn floor(self) -> $ty { self }
}
impl Ceil for $ty {
#[inline]
fn ceil(self) -> $ty { self }
}
)
}
macro_rules! num_float {
($ty:ty) => (
impl Round for $ty {
#[inline]
fn round(self) -> $ty { self.round() }
}
impl Floor for $ty {
#[inline]
fn floor(self) -> $ty { self.floor() }
}
impl Ceil for $ty {
#[inline]
fn ceil(self) -> $ty { self.ceil() }
}
)
}
num_int!(i16);
num_int!(u16);
num_int!(i32);
num_int!(u32);
num_int!(i64);
num_int!(u64);
num_int!(isize);
num_int!(usize);
num_float!(f32);
num_float!(f64);

918
third_party/rust/euclid-0.18.1/src/point.rs поставляемый
Просмотреть файл

@ -1,918 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use approxeq::ApproxEq;
use length::Length;
use scale::TypedScale;
use size::TypedSize2D;
use num::*;
use num_traits::{Float, NumCast};
use vector::{TypedVector2D, TypedVector3D, vec2, vec3};
use core::fmt;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
use core::marker::PhantomData;
define_matrix! {
/// A 2d Point tagged with a unit.
pub struct TypedPoint2D<T, U> {
pub x: T,
pub y: T,
}
}
/// Default 2d point type with no unit.
///
/// `Point2D` provides the same methods as `TypedPoint2D`.
pub type Point2D<T> = TypedPoint2D<T, UnknownUnit>;
impl<T: Copy + Zero, U> TypedPoint2D<T, U> {
/// Constructor, setting all components to zero.
#[inline]
pub fn origin() -> Self {
point2(Zero::zero(), Zero::zero())
}
#[inline]
pub fn zero() -> Self {
Self::origin()
}
/// Convert into a 3d point.
#[inline]
pub fn to_3d(&self) -> TypedPoint3D<T, U> {
point3(self.x, self.y, Zero::zero())
}
}
impl<T: fmt::Debug, U> fmt::Debug for TypedPoint2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?},{:?})", self.x, self.y)
}
}
impl<T: fmt::Display, U> fmt::Display for TypedPoint2D<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "({},{})", self.x, self.y)
}
}
impl<T, U> TypedPoint2D<T, U> {
/// Constructor taking scalar values directly.
#[inline]
pub fn new(x: T, y: T) -> Self {
TypedPoint2D {
x,
y,
_unit: PhantomData,
}
}
}
impl<T: Copy, U> TypedPoint2D<T, U> {
/// Constructor taking properly typed Lengths instead of scalar values.
#[inline]
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self {
point2(x.0, y.0)
}
/// Create a 3d point from this one, using the specified z value.
#[inline]
pub fn extend(&self, z: T) -> TypedPoint3D<T, U> {
point3(self.x, self.y, z)
}
/// Cast this point into a vector.
///
/// Equivalent to subtracting the origin from this point.
#[inline]
pub fn to_vector(&self) -> TypedVector2D<T, U> {
vec2(self.x, self.y)
}
/// Swap x and y.
#[inline]
pub fn yx(&self) -> Self {
point2(self.y, self.x)
}
/// Returns self.x as a Length carrying the unit.
#[inline]
pub fn x_typed(&self) -> Length<T, U> {
Length::new(self.x)
}
/// Returns self.y as a Length carrying the unit.
#[inline]
pub fn y_typed(&self) -> Length<T, U> {
Length::new(self.y)
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Point2D<T> {
point2(self.x, self.y)
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(p: &Point2D<T>) -> Self {
point2(p.x, p.y)
}
#[inline]
pub fn to_array(&self) -> [T; 2] {
[self.x, self.y]
}
}
impl<T: Copy + Add<T, Output = T>, U> TypedPoint2D<T, U> {
#[inline]
pub fn add_size(&self, other: &TypedSize2D<T, U>) -> Self {
point2(self.x + other.width, self.y + other.height)
}
}
impl<T: Copy + Add<T, Output = T>, U> Add<TypedSize2D<T, U>> for TypedPoint2D<T, U> {
type Output = Self;
#[inline]
fn add(self, other: TypedSize2D<T, U>) -> Self {
point2(self.x + other.width, self.y + other.height)
}
}
impl<T: Copy + Add<T, Output = T>, U> AddAssign<TypedVector2D<T, U>> for TypedPoint2D<T, U> {
#[inline]
fn add_assign(&mut self, other: TypedVector2D<T, U>) {
*self = *self + other
}
}
impl<T: Copy + Sub<T, Output = T>, U> SubAssign<TypedVector2D<T, U>> for TypedPoint2D<T, U> {
#[inline]
fn sub_assign(&mut self, other: TypedVector2D<T, U>) {
*self = *self - other
}
}
impl<T: Copy + Add<T, Output = T>, U> Add<TypedVector2D<T, U>> for TypedPoint2D<T, U> {
type Output = Self;
#[inline]
fn add(self, other: TypedVector2D<T, U>) -> Self {
point2(self.x + other.x, self.y + other.y)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub for TypedPoint2D<T, U> {
type Output = TypedVector2D<T, U>;
#[inline]
fn sub(self, other: Self) -> TypedVector2D<T, U> {
vec2(self.x - other.x, self.y - other.y)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub<TypedVector2D<T, U>> for TypedPoint2D<T, U> {
type Output = Self;
#[inline]
fn sub(self, other: TypedVector2D<T, U>) -> Self {
point2(self.x - other.x, self.y - other.y)
}
}
impl<T: Float, U> TypedPoint2D<T, U> {
#[inline]
pub fn min(self, other: Self) -> Self {
point2(self.x.min(other.x), self.y.min(other.y))
}
#[inline]
pub fn max(self, other: Self) -> Self {
point2(self.x.max(other.x), self.y.max(other.y))
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for TypedPoint2D<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
point2(self.x * scale, self.y * scale)
}
}
impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for TypedPoint2D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
*self = *self * scale
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for TypedPoint2D<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
point2(self.x / scale, self.y / scale)
}
}
impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for TypedPoint2D<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
*self = *self / scale
}
}
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<TypedScale<T, U1, U2>> for TypedPoint2D<T, U1> {
type Output = TypedPoint2D<T, U2>;
#[inline]
fn mul(self, scale: TypedScale<T, U1, U2>) -> TypedPoint2D<T, U2> {
point2(self.x * scale.get(), self.y * scale.get())
}
}
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<TypedScale<T, U1, U2>> for TypedPoint2D<T, U2> {
type Output = TypedPoint2D<T, U1>;
#[inline]
fn div(self, scale: TypedScale<T, U1, U2>) -> TypedPoint2D<T, U1> {
point2(self.x / scale.get(), self.y / scale.get())
}
}
impl<T: Round, U> TypedPoint2D<T, U> {
/// Rounds each component to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
/// For example `{ -0.1, -0.8 }.round() == { 0.0, -1.0 }`.
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn round(&self) -> Self {
point2(self.x.round(), self.y.round())
}
}
impl<T: Ceil, U> TypedPoint2D<T, U> {
/// Rounds each component to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
/// For example `{ -0.1, -0.8 }.ceil() == { 0.0, 0.0 }`.
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn ceil(&self) -> Self {
point2(self.x.ceil(), self.y.ceil())
}
}
impl<T: Floor, U> TypedPoint2D<T, U> {
/// Rounds each component to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
/// For example `{ -0.1, -0.8 }.floor() == { -1.0, -1.0 }`.
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn floor(&self) -> Self {
point2(self.x.floor(), self.y.floor())
}
}
impl<T: NumCast + Copy, U> TypedPoint2D<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
#[inline]
pub fn cast<NewT: NumCast + Copy>(&self) -> TypedPoint2D<NewT, U> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<TypedPoint2D<NewT, U>> {
match (NumCast::from(self.x), NumCast::from(self.y)) {
(Some(x), Some(y)) => Some(point2(x, y)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` point.
#[inline]
pub fn to_f32(&self) -> TypedPoint2D<f32, U> {
self.cast()
}
/// Cast into an `f64` point.
#[inline]
pub fn to_f64(&self) -> TypedPoint2D<f64, U> {
self.cast()
}
/// Cast into an `usize` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> TypedPoint2D<usize, U> {
self.cast()
}
/// Cast into an `u32` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> TypedPoint2D<u32, U> {
self.cast()
}
/// Cast into an i32 point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> TypedPoint2D<i32, U> {
self.cast()
}
/// Cast into an i64 point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> TypedPoint2D<i64, U> {
self.cast()
}
}
impl<T, U> TypedPoint2D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this point and another point.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
point2(one_t * self.x + t * other.x, one_t * self.y + t * other.y)
}
}
impl<T: Copy + ApproxEq<T>, U> ApproxEq<TypedPoint2D<T, U>> for TypedPoint2D<T, U> {
#[inline]
fn approx_epsilon() -> Self {
point2(T::approx_epsilon(), T::approx_epsilon())
}
#[inline]
fn approx_eq(&self, other: &Self) -> bool {
self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y)
}
#[inline]
fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)
}
}
impl<T: Copy, U> Into<[T; 2]> for TypedPoint2D<T, U> {
fn into(self) -> [T; 2] {
self.to_array()
}
}
impl<T: Copy, U> From<[T; 2]> for TypedPoint2D<T, U> {
fn from(array: [T; 2]) -> Self {
point2(array[0], array[1])
}
}
define_matrix! {
/// A 3d Point tagged with a unit.
pub struct TypedPoint3D<T, U> {
pub x: T,
pub y: T,
pub z: T,
}
}
/// Default 3d point type with no unit.
///
/// `Point3D` provides the same methods as `TypedPoint3D`.
pub type Point3D<T> = TypedPoint3D<T, UnknownUnit>;
impl<T: Copy + Zero, U> TypedPoint3D<T, U> {
/// Constructor, setting all components to zero.
#[inline]
pub fn origin() -> Self {
point3(Zero::zero(), Zero::zero(), Zero::zero())
}
}
impl<T: Copy + One, U> TypedPoint3D<T, U> {
#[inline]
pub fn to_array_4d(&self) -> [T; 4] {
[self.x, self.y, self.z, One::one()]
}
}
impl<T, U> TypedPoint3D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this point and another point.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
point3(
one_t * self.x + t * other.x,
one_t * self.y + t * other.y,
one_t * self.z + t * other.z,
)
}
}
impl<T: fmt::Debug, U> fmt::Debug for TypedPoint3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?},{:?},{:?})", self.x, self.y, self.z)
}
}
impl<T: fmt::Display, U> fmt::Display for TypedPoint3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({},{},{})", self.x, self.y, self.z)
}
}
impl<T: Copy, U> TypedPoint3D<T, U> {
/// Constructor taking scalar values directly.
#[inline]
pub fn new(x: T, y: T, z: T) -> Self {
TypedPoint3D {
x,
y,
z,
_unit: PhantomData,
}
}
/// Constructor taking properly typed Lengths instead of scalar values.
#[inline]
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Self {
point3(x.0, y.0, z.0)
}
/// Cast this point into a vector.
///
/// Equivalent to subtracting the origin to this point.
#[inline]
pub fn to_vector(&self) -> TypedVector3D<T, U> {
vec3(self.x, self.y, self.z)
}
/// Returns a 2d point using this point's x and y coordinates
#[inline]
pub fn xy(&self) -> TypedPoint2D<T, U> {
point2(self.x, self.y)
}
/// Returns a 2d point using this point's x and z coordinates
#[inline]
pub fn xz(&self) -> TypedPoint2D<T, U> {
point2(self.x, self.z)
}
/// Returns a 2d point using this point's x and z coordinates
#[inline]
pub fn yz(&self) -> TypedPoint2D<T, U> {
point2(self.y, self.z)
}
/// Returns self.x as a Length carrying the unit.
#[inline]
pub fn x_typed(&self) -> Length<T, U> {
Length::new(self.x)
}
/// Returns self.y as a Length carrying the unit.
#[inline]
pub fn y_typed(&self) -> Length<T, U> {
Length::new(self.y)
}
/// Returns self.z as a Length carrying the unit.
#[inline]
pub fn z_typed(&self) -> Length<T, U> {
Length::new(self.z)
}
#[inline]
pub fn to_array(&self) -> [T; 3] {
[self.x, self.y, self.z]
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Point3D<T> {
point3(self.x, self.y, self.z)
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(p: &Point3D<T>) -> Self {
point3(p.x, p.y, p.z)
}
/// Convert into a 2d point.
#[inline]
pub fn to_2d(&self) -> TypedPoint2D<T, U> {
self.xy()
}
}
impl<T: Copy + Add<T, Output = T>, U> AddAssign<TypedVector3D<T, U>> for TypedPoint3D<T, U> {
#[inline]
fn add_assign(&mut self, other: TypedVector3D<T, U>) {
*self = *self + other
}
}
impl<T: Copy + Sub<T, Output = T>, U> SubAssign<TypedVector3D<T, U>> for TypedPoint3D<T, U> {
#[inline]
fn sub_assign(&mut self, other: TypedVector3D<T, U>) {
*self = *self - other
}
}
impl<T: Copy + Add<T, Output = T>, U> Add<TypedVector3D<T, U>> for TypedPoint3D<T, U> {
type Output = Self;
#[inline]
fn add(self, other: TypedVector3D<T, U>) -> Self {
point3(self.x + other.x, self.y + other.y, self.z + other.z)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub for TypedPoint3D<T, U> {
type Output = TypedVector3D<T, U>;
#[inline]
fn sub(self, other: Self) -> TypedVector3D<T, U> {
vec3(self.x - other.x, self.y - other.y, self.z - other.z)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub<TypedVector3D<T, U>> for TypedPoint3D<T, U> {
type Output = Self;
#[inline]
fn sub(self, other: TypedVector3D<T, U>) -> Self {
point3(self.x - other.x, self.y - other.y, self.z - other.z)
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for TypedPoint3D<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
point3(self.x * scale, self.y * scale, self.z * scale)
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for TypedPoint3D<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
point3(self.x / scale, self.y / scale, self.z / scale)
}
}
impl<T: Float, U> TypedPoint3D<T, U> {
#[inline]
pub fn min(self, other: Self) -> Self {
point3(
self.x.min(other.x),
self.y.min(other.y),
self.z.min(other.z),
)
}
#[inline]
pub fn max(self, other: Self) -> Self {
point3(
self.x.max(other.x),
self.y.max(other.y),
self.z.max(other.z),
)
}
}
impl<T: Round, U> TypedPoint3D<T, U> {
/// Rounds each component to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn round(&self) -> Self {
point3(self.x.round(), self.y.round(), self.z.round())
}
}
impl<T: Ceil, U> TypedPoint3D<T, U> {
/// Rounds each component to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn ceil(&self) -> Self {
point3(self.x.ceil(), self.y.ceil(), self.z.ceil())
}
}
impl<T: Floor, U> TypedPoint3D<T, U> {
/// Rounds each component to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn floor(&self) -> Self {
point3(self.x.floor(), self.y.floor(), self.z.floor())
}
}
impl<T: NumCast + Copy, U> TypedPoint3D<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
#[inline]
pub fn cast<NewT: NumCast + Copy>(&self) -> TypedPoint3D<NewT, U> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
#[inline]
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<TypedPoint3D<NewT, U>> {
match (
NumCast::from(self.x),
NumCast::from(self.y),
NumCast::from(self.z),
) {
(Some(x), Some(y), Some(z)) => Some(point3(x, y, z)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` point.
#[inline]
pub fn to_f32(&self) -> TypedPoint3D<f32, U> {
self.cast()
}
/// Cast into an `f64` point.
#[inline]
pub fn to_f64(&self) -> TypedPoint3D<f64, U> {
self.cast()
}
/// Cast into an `usize` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> TypedPoint3D<usize, U> {
self.cast()
}
/// Cast into an `u32` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> TypedPoint3D<u32, U> {
self.cast()
}
/// Cast into an `i32` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> TypedPoint3D<i32, U> {
self.cast()
}
/// Cast into an `i64` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> TypedPoint3D<i64, U> {
self.cast()
}
}
impl<T: Copy + ApproxEq<T>, U> ApproxEq<TypedPoint3D<T, U>> for TypedPoint3D<T, U> {
#[inline]
fn approx_epsilon() -> Self {
point3(
T::approx_epsilon(),
T::approx_epsilon(),
T::approx_epsilon(),
)
}
#[inline]
fn approx_eq(&self, other: &Self) -> bool {
self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y) && self.z.approx_eq(&other.z)
}
#[inline]
fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)
&& self.z.approx_eq_eps(&other.z, &eps.z)
}
}
impl<T: Copy, U> Into<[T; 3]> for TypedPoint3D<T, U> {
fn into(self) -> [T; 3] {
self.to_array()
}
}
impl<T: Copy, U> From<[T; 3]> for TypedPoint3D<T, U> {
fn from(array: [T; 3]) -> Self {
point3(array[0], array[1], array[2])
}
}
pub fn point2<T: Copy, U>(x: T, y: T) -> TypedPoint2D<T, U> {
TypedPoint2D::new(x, y)
}
pub fn point3<T: Copy, U>(x: T, y: T, z: T) -> TypedPoint3D<T, U> {
TypedPoint3D::new(x, y, z)
}
#[cfg(test)]
mod point2d {
use super::Point2D;
#[test]
pub fn test_scalar_mul() {
let p1: Point2D<f32> = Point2D::new(3.0, 5.0);
let result = p1 * 5.0;
assert_eq!(result, Point2D::new(15.0, 25.0));
}
#[test]
pub fn test_min() {
let p1 = Point2D::new(1.0, 3.0);
let p2 = Point2D::new(2.0, 2.0);
let result = p1.min(p2);
assert_eq!(result, Point2D::new(1.0, 2.0));
}
#[test]
pub fn test_max() {
let p1 = Point2D::new(1.0, 3.0);
let p2 = Point2D::new(2.0, 2.0);
let result = p1.max(p2);
assert_eq!(result, Point2D::new(2.0, 3.0));
}
}
#[cfg(test)]
mod typedpoint2d {
use super::{Point2D, TypedPoint2D, point2};
use scale::TypedScale;
use vector::vec2;
pub enum Mm {}
pub enum Cm {}
pub type Point2DMm<T> = TypedPoint2D<T, Mm>;
pub type Point2DCm<T> = TypedPoint2D<T, Cm>;
#[test]
pub fn test_add() {
let p1 = Point2DMm::new(1.0, 2.0);
let p2 = vec2(3.0, 4.0);
let result = p1 + p2;
assert_eq!(result, Point2DMm::new(4.0, 6.0));
}
#[test]
pub fn test_add_assign() {
let mut p1 = Point2DMm::new(1.0, 2.0);
p1 += vec2(3.0, 4.0);
assert_eq!(p1, Point2DMm::new(4.0, 6.0));
}
#[test]
pub fn test_scalar_mul() {
let p1 = Point2DMm::new(1.0, 2.0);
let cm_per_mm: TypedScale<f32, Mm, Cm> = TypedScale::new(0.1);
let result = p1 * cm_per_mm;
assert_eq!(result, Point2DCm::new(0.1, 0.2));
}
#[test]
pub fn test_conv_vector() {
use {Point2D, point2};
for i in 0..100 {
// We don't care about these values as long as they are not the same.
let x = i as f32 * 0.012345;
let y = i as f32 * 0.987654;
let p: Point2D<f32> = point2(x, y);
assert_eq!(p.to_vector().to_point(), p);
}
}
#[test]
pub fn test_swizzling() {
let p: Point2D<i32> = point2(1, 2);
assert_eq!(p.yx(), point2(2, 1));
}
}
#[cfg(test)]
mod point3d {
use super::{Point3D, point2, point3};
#[test]
pub fn test_min() {
let p1 = Point3D::new(1.0, 3.0, 5.0);
let p2 = Point3D::new(2.0, 2.0, -1.0);
let result = p1.min(p2);
assert_eq!(result, Point3D::new(1.0, 2.0, -1.0));
}
#[test]
pub fn test_max() {
let p1 = Point3D::new(1.0, 3.0, 5.0);
let p2 = Point3D::new(2.0, 2.0, -1.0);
let result = p1.max(p2);
assert_eq!(result, Point3D::new(2.0, 3.0, 5.0));
}
#[test]
pub fn test_conv_vector() {
use point3;
for i in 0..100 {
// We don't care about these values as long as they are not the same.
let x = i as f32 * 0.012345;
let y = i as f32 * 0.987654;
let z = x * y;
let p: Point3D<f32> = point3(x, y, z);
assert_eq!(p.to_vector().to_point(), p);
}
}
#[test]
pub fn test_swizzling() {
let p: Point3D<i32> = point3(1, 2, 3);
assert_eq!(p.xy(), point2(1, 2));
assert_eq!(p.xz(), point2(1, 3));
assert_eq!(p.yz(), point2(2, 3));
}
}

838
third_party/rust/euclid-0.18.1/src/rect.rs поставляемый
Просмотреть файл

@ -1,838 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use length::Length;
use scale::TypedScale;
use num::*;
use point::TypedPoint2D;
use vector::TypedVector2D;
use side_offsets::TypedSideOffsets2D;
use size::TypedSize2D;
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, Mul, Sub};
/// A 2d Rectangle optionally tagged with a unit.
#[repr(C)]
pub struct TypedRect<T, U = UnknownUnit> {
pub origin: TypedPoint2D<T, U>,
pub size: TypedSize2D<T, U>,
}
/// The default rectangle type with no unit.
pub type Rect<T> = TypedRect<T, UnknownUnit>;
#[cfg(feature = "serde")]
impl<'de, T: Copy + Deserialize<'de>, U> Deserialize<'de> for TypedRect<T, U> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let (origin, size) = try!(Deserialize::deserialize(deserializer));
Ok(TypedRect::new(origin, size))
}
}
#[cfg(feature = "serde")]
impl<T: Serialize, U> Serialize for TypedRect<T, U> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
(&self.origin, &self.size).serialize(serializer)
}
}
impl<T: Hash, U> Hash for TypedRect<T, U> {
fn hash<H: Hasher>(&self, h: &mut H) {
self.origin.hash(h);
self.size.hash(h);
}
}
impl<T: Copy, U> Copy for TypedRect<T, U> {}
impl<T: Copy, U> Clone for TypedRect<T, U> {
fn clone(&self) -> Self {
*self
}
}
impl<T: PartialEq, U> PartialEq<TypedRect<T, U>> for TypedRect<T, U> {
fn eq(&self, other: &Self) -> bool {
self.origin.eq(&other.origin) && self.size.eq(&other.size)
}
}
impl<T: Eq, U> Eq for TypedRect<T, U> {}
impl<T: fmt::Debug, U> fmt::Debug for TypedRect<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "TypedRect({:?} at {:?})", self.size, self.origin)
}
}
impl<T: fmt::Display, U> fmt::Display for TypedRect<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "Rect({} at {})", self.size, self.origin)
}
}
impl<T, U> TypedRect<T, U> {
/// Constructor.
pub fn new(origin: TypedPoint2D<T, U>, size: TypedSize2D<T, U>) -> Self {
TypedRect {
origin,
size,
}
}
}
impl<T, U> TypedRect<T, U>
where
T: Copy + Zero
{
/// Creates a rect of the given size, at offset zero.
pub fn from_size(size: TypedSize2D<T, U>) -> Self {
TypedRect {
origin: TypedPoint2D::zero(),
size,
}
}
}
impl<T, U> TypedRect<T, U>
where
T: Copy + Clone + Zero + PartialOrd + PartialEq + Add<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
pub fn intersects(&self, other: &Self) -> bool {
self.origin.x < other.origin.x + other.size.width
&& other.origin.x < self.origin.x + self.size.width
&& self.origin.y < other.origin.y + other.size.height
&& other.origin.y < self.origin.y + self.size.height
}
#[inline]
pub fn max_x(&self) -> T {
self.origin.x + self.size.width
}
#[inline]
pub fn min_x(&self) -> T {
self.origin.x
}
#[inline]
pub fn max_y(&self) -> T {
self.origin.y + self.size.height
}
#[inline]
pub fn min_y(&self) -> T {
self.origin.y
}
#[inline]
pub fn max_x_typed(&self) -> Length<T, U> {
Length::new(self.max_x())
}
#[inline]
pub fn min_x_typed(&self) -> Length<T, U> {
Length::new(self.min_x())
}
#[inline]
pub fn max_y_typed(&self) -> Length<T, U> {
Length::new(self.max_y())
}
#[inline]
pub fn min_y_typed(&self) -> Length<T, U> {
Length::new(self.min_y())
}
#[inline]
pub fn intersection(&self, other: &Self) -> Option<Self> {
if !self.intersects(other) {
return None;
}
let upper_left = TypedPoint2D::new(
max(self.min_x(), other.min_x()),
max(self.min_y(), other.min_y()),
);
let lower_right_x = min(self.max_x(), other.max_x());
let lower_right_y = min(self.max_y(), other.max_y());
Some(TypedRect::new(
upper_left,
TypedSize2D::new(lower_right_x - upper_left.x, lower_right_y - upper_left.y),
))
}
/// Returns the same rectangle, translated by a vector.
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn translate(&self, by: &TypedVector2D<T, U>) -> Self {
Self::new(self.origin + *by, self.size)
}
/// Returns true if this rectangle contains the point. Points are considered
/// in the rectangle if they are on the left or top edge, but outside if they
/// are on the right or bottom edge.
#[inline]
pub fn contains(&self, other: &TypedPoint2D<T, U>) -> bool {
self.origin.x <= other.x && other.x < self.origin.x + self.size.width
&& self.origin.y <= other.y && other.y < self.origin.y + self.size.height
}
/// Returns true if this rectangle contains the interior of rect. Always
/// returns true if rect is empty, and always returns false if rect is
/// nonempty but this rectangle is empty.
#[inline]
pub fn contains_rect(&self, rect: &Self) -> bool {
rect.is_empty()
|| (self.min_x() <= rect.min_x() && rect.max_x() <= self.max_x()
&& self.min_y() <= rect.min_y() && rect.max_y() <= self.max_y())
}
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn inflate(&self, width: T, height: T) -> Self {
TypedRect::new(
TypedPoint2D::new(self.origin.x - width, self.origin.y - height),
TypedSize2D::new(
self.size.width + width + width,
self.size.height + height + height,
),
)
}
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn inflate_typed(&self, width: Length<T, U>, height: Length<T, U>) -> Self {
self.inflate(width.get(), height.get())
}
#[inline]
pub fn top_right(&self) -> TypedPoint2D<T, U> {
TypedPoint2D::new(self.max_x(), self.origin.y)
}
#[inline]
pub fn bottom_left(&self) -> TypedPoint2D<T, U> {
TypedPoint2D::new(self.origin.x, self.max_y())
}
#[inline]
pub fn bottom_right(&self) -> TypedPoint2D<T, U> {
TypedPoint2D::new(self.max_x(), self.max_y())
}
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn translate_by_size(&self, size: &TypedSize2D<T, U>) -> Self {
self.translate(&size.to_vector())
}
/// Calculate the size and position of an inner rectangle.
///
/// Subtracts the side offsets from all sides. The horizontal and vertical
/// offsets must not be larger than the original side length.
pub fn inner_rect(&self, offsets: TypedSideOffsets2D<T, U>) -> Self {
let rect = TypedRect::new(
TypedPoint2D::new(
self.origin.x + offsets.left,
self.origin.y + offsets.top
),
TypedSize2D::new(
self.size.width - offsets.horizontal(),
self.size.height - offsets.vertical()
)
);
debug_assert!(rect.size.width >= Zero::zero());
debug_assert!(rect.size.height >= Zero::zero());
rect
}
/// Calculate the size and position of an outer rectangle.
///
/// Add the offsets to all sides. The expanded rectangle is returned.
pub fn outer_rect(&self, offsets: TypedSideOffsets2D<T, U>) -> Self {
TypedRect::new(
TypedPoint2D::new(
self.origin.x - offsets.left,
self.origin.y - offsets.top
),
TypedSize2D::new(
self.size.width + offsets.horizontal(),
self.size.height + offsets.vertical()
)
)
}
/// Returns the smallest rectangle defined by the top/bottom/left/right-most
/// points provided as parameter.
///
/// Note: This function has a behavior that can be surprising because
/// the right-most and bottom-most points are exactly on the edge
/// of the rectangle while the `contains` function is has exclusive
/// semantic on these edges. This means that the right-most and bottom-most
/// points provided to `from_points` will count as not contained by the rect.
/// This behavior may change in the future.
pub fn from_points<I>(points: I) -> Self
where
I: IntoIterator,
I::Item: Borrow<TypedPoint2D<T, U>>,
{
let mut points = points.into_iter();
let (mut min_x, mut min_y) = match points.next() {
Some(first) => (first.borrow().x, first.borrow().y),
None => return TypedRect::zero(),
};
let (mut max_x, mut max_y) = (min_x, min_y);
for point in points {
let p = point.borrow();
if p.x < min_x {
min_x = p.x
}
if p.x > max_x {
max_x = p.x
}
if p.y < min_y {
min_y = p.y
}
if p.y > max_y {
max_y = p.y
}
}
TypedRect::new(
TypedPoint2D::new(min_x, min_y),
TypedSize2D::new(max_x - min_x, max_y - min_y),
)
}
}
impl<T, U> TypedRect<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this rectangle and another rectangle.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
Self::new(
self.origin.lerp(other.origin, t),
self.size.lerp(other.size, t),
)
}
}
impl<T, U> TypedRect<T, U>
where
T: Copy + Clone + PartialOrd + Add<T, Output = T> + Sub<T, Output = T> + Zero,
{
#[inline]
pub fn union(&self, other: &Self) -> Self {
if self.size == Zero::zero() {
return *other;
}
if other.size == Zero::zero() {
return *self;
}
let upper_left = TypedPoint2D::new(
min(self.min_x(), other.min_x()),
min(self.min_y(), other.min_y()),
);
let lower_right_x = max(self.max_x(), other.max_x());
let lower_right_y = max(self.max_y(), other.max_y());
TypedRect::new(
upper_left,
TypedSize2D::new(lower_right_x - upper_left.x, lower_right_y - upper_left.y),
)
}
}
impl<T, U> TypedRect<T, U> {
#[inline]
pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
where
T: Copy + Clone + Mul<S, Output = T>,
{
TypedRect::new(
TypedPoint2D::new(self.origin.x * x, self.origin.y * y),
TypedSize2D::new(self.size.width * x, self.size.height * y),
)
}
}
impl<T: Copy + PartialEq + Zero, U> TypedRect<T, U> {
/// Constructor, setting all sides to zero.
pub fn zero() -> Self {
TypedRect::new(TypedPoint2D::origin(), TypedSize2D::zero())
}
/// Returns true if the size is zero, regardless of the origin's value.
pub fn is_empty(&self) -> bool {
self.size.width == Zero::zero() || self.size.height == Zero::zero()
}
}
pub fn min<T: Clone + PartialOrd>(x: T, y: T) -> T {
if x <= y {
x
} else {
y
}
}
pub fn max<T: Clone + PartialOrd>(x: T, y: T) -> T {
if x >= y {
x
} else {
y
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for TypedRect<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
TypedRect::new(self.origin * scale, self.size * scale)
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for TypedRect<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
TypedRect::new(self.origin / scale, self.size / scale)
}
}
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<TypedScale<T, U1, U2>> for TypedRect<T, U1> {
type Output = TypedRect<T, U2>;
#[inline]
fn mul(self, scale: TypedScale<T, U1, U2>) -> TypedRect<T, U2> {
TypedRect::new(self.origin * scale, self.size * scale)
}
}
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<TypedScale<T, U1, U2>> for TypedRect<T, U2> {
type Output = TypedRect<T, U1>;
#[inline]
fn div(self, scale: TypedScale<T, U1, U2>) -> TypedRect<T, U1> {
TypedRect::new(self.origin / scale, self.size / scale)
}
}
impl<T: Copy, Unit> TypedRect<T, Unit> {
/// Drop the units, preserving only the numeric value.
pub fn to_untyped(&self) -> Rect<T> {
TypedRect::new(self.origin.to_untyped(), self.size.to_untyped())
}
/// Tag a unitless value with units.
pub fn from_untyped(r: &Rect<T>) -> TypedRect<T, Unit> {
TypedRect::new(
TypedPoint2D::from_untyped(&r.origin),
TypedSize2D::from_untyped(&r.size),
)
}
}
impl<T0: NumCast + Copy, Unit> TypedRect<T0, Unit> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn cast<T1: NumCast + Copy>(&self) -> TypedRect<T1, Unit> {
TypedRect::new(
self.origin.cast(),
self.size.cast(),
)
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn try_cast<T1: NumCast + Copy>(&self) -> Option<TypedRect<T1, Unit>> {
match (self.origin.try_cast(), self.size.try_cast()) {
(Some(origin), Some(size)) => Some(TypedRect::new(origin, size)),
_ => None,
}
}
}
impl<T: Floor + Ceil + Round + Add<T, Output = T> + Sub<T, Output = T>, U> TypedRect<T, U> {
/// Return a rectangle with edges rounded to integer coordinates, such that
/// the returned rectangle has the same set of pixel centers as the original
/// one.
/// Edges at offset 0.5 round up.
/// Suitable for most places where integral device coordinates
/// are needed, but note that any translation should be applied first to
/// avoid pixel rounding errors.
/// Note that this is *not* rounding to nearest integer if the values are negative.
/// They are always rounding as floor(n + 0.5).
#[cfg_attr(feature = "unstable", must_use)]
pub fn round(&self) -> Self {
let origin = self.origin.round();
let size = self.origin.add_size(&self.size).round() - origin;
TypedRect::new(origin, TypedSize2D::new(size.x, size.y))
}
/// Return a rectangle with edges rounded to integer coordinates, such that
/// the original rectangle contains the resulting rectangle.
#[cfg_attr(feature = "unstable", must_use)]
pub fn round_in(&self) -> Self {
let origin = self.origin.ceil();
let size = self.origin.add_size(&self.size).floor() - origin;
TypedRect::new(origin, TypedSize2D::new(size.x, size.y))
}
/// Return a rectangle with edges rounded to integer coordinates, such that
/// the original rectangle is contained in the resulting rectangle.
#[cfg_attr(feature = "unstable", must_use)]
pub fn round_out(&self) -> Self {
let origin = self.origin.floor();
let size = self.origin.add_size(&self.size).ceil() - origin;
TypedRect::new(origin, TypedSize2D::new(size.x, size.y))
}
}
// Convenience functions for common casts
impl<T: NumCast + Copy, Unit> TypedRect<T, Unit> {
/// Cast into an `f32` rectangle.
pub fn to_f32(&self) -> TypedRect<f32, Unit> {
self.cast()
}
/// Cast into an `f64` rectangle.
pub fn to_f64(&self) -> TypedRect<f64, Unit> {
self.cast()
}
/// Cast into an `usize` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_usize(&self) -> TypedRect<usize, Unit> {
self.cast()
}
/// Cast into an `u32` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_u32(&self) -> TypedRect<u32, Unit> {
self.cast()
}
/// Cast into an `i32` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_i32(&self) -> TypedRect<i32, Unit> {
self.cast()
}
/// Cast into an `i64` rectangle, truncating decimals if any.
///
/// When casting from floating point rectangles, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_i64(&self) -> TypedRect<i64, Unit> {
self.cast()
}
}
impl<T, U> From<TypedSize2D<T, U>> for TypedRect<T, U>
where T: Copy + Zero
{
fn from(size: TypedSize2D<T, U>) -> Self {
Self::from_size(size)
}
}
/// Shorthand for `TypedRect::new(TypedPoint2D::new(x, y), TypedSize2D::new(w, h))`.
pub fn rect<T: Copy, U>(x: T, y: T, w: T, h: T) -> TypedRect<T, U> {
TypedRect::new(TypedPoint2D::new(x, y), TypedSize2D::new(w, h))
}
#[cfg(test)]
mod tests {
use point::Point2D;
use vector::vec2;
use side_offsets::SideOffsets2D;
use size::Size2D;
use super::*;
#[test]
fn test_min_max() {
assert!(min(0u32, 1u32) == 0u32);
assert!(min(-1.0f32, 0.0f32) == -1.0f32);
assert!(max(0u32, 1u32) == 1u32);
assert!(max(-1.0f32, 0.0f32) == 0.0f32);
}
#[test]
fn test_translate() {
let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
let pp = p.translate(&vec2(10, 15));
assert!(pp.size.width == 50);
assert!(pp.size.height == 40);
assert!(pp.origin.x == 10);
assert!(pp.origin.y == 15);
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
let rr = r.translate(&vec2(0, -10));
assert!(rr.size.width == 50);
assert!(rr.size.height == 40);
assert!(rr.origin.x == -10);
assert!(rr.origin.y == -15);
}
#[test]
fn test_translate_by_size() {
let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
let pp = p.translate_by_size(&Size2D::new(10, 15));
assert!(pp.size.width == 50);
assert!(pp.size.height == 40);
assert!(pp.origin.x == 10);
assert!(pp.origin.y == 15);
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
let rr = r.translate_by_size(&Size2D::new(0, -10));
assert!(rr.size.width == 50);
assert!(rr.size.height == 40);
assert!(rr.origin.x == -10);
assert!(rr.origin.y == -15);
}
#[test]
fn test_union() {
let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40));
let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5));
let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15));
let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200));
let pq = p.union(&q);
assert!(pq.origin == Point2D::new(0, 0));
assert!(pq.size == Size2D::new(50, 40));
let pr = p.union(&r);
assert!(pr.origin == Point2D::new(-15, -30));
assert!(pr.size == Size2D::new(200, 70));
let ps = p.union(&s);
assert!(ps.origin == Point2D::new(0, -15));
assert!(ps.size == Size2D::new(270, 200));
}
#[test]
fn test_intersection() {
let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10));
let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8));
let pq = p.intersection(&q);
assert!(pq.is_some());
let pq = pq.unwrap();
assert!(pq.origin == Point2D::new(5, 15));
assert!(pq.size == Size2D::new(5, 5));
let pr = p.intersection(&r);
assert!(pr.is_some());
let pr = pr.unwrap();
assert!(pr.origin == Point2D::new(0, 0));
assert!(pr.size == Size2D::new(3, 3));
let qr = q.intersection(&r);
assert!(qr.is_none());
}
#[test]
fn test_contains() {
let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200));
assert!(r.contains(&Point2D::new(0, 50)));
assert!(r.contains(&Point2D::new(-10, 200)));
// The `contains` method is inclusive of the top/left edges, but not the
// bottom/right edges.
assert!(r.contains(&Point2D::new(-20, 15)));
assert!(!r.contains(&Point2D::new(80, 15)));
assert!(!r.contains(&Point2D::new(80, 215)));
assert!(!r.contains(&Point2D::new(-20, 215)));
// Points beyond the top-left corner.
assert!(!r.contains(&Point2D::new(-25, 15)));
assert!(!r.contains(&Point2D::new(-15, 10)));
// Points beyond the top-right corner.
assert!(!r.contains(&Point2D::new(85, 20)));
assert!(!r.contains(&Point2D::new(75, 10)));
// Points beyond the bottom-right corner.
assert!(!r.contains(&Point2D::new(85, 210)));
assert!(!r.contains(&Point2D::new(75, 220)));
// Points beyond the bottom-left corner.
assert!(!r.contains(&Point2D::new(-25, 210)));
assert!(!r.contains(&Point2D::new(-15, 220)));
let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0));
assert!(r.contains_rect(&r));
assert!(!r.contains_rect(&r.translate(&vec2(0.1, 0.0))));
assert!(!r.contains_rect(&r.translate(&vec2(-0.1, 0.0))));
assert!(!r.contains_rect(&r.translate(&vec2(0.0, 0.1))));
assert!(!r.contains_rect(&r.translate(&vec2(0.0, -0.1))));
// Empty rectangles are always considered as contained in other rectangles,
// even if their origin is not.
let p = Point2D::new(1.0, 1.0);
assert!(!r.contains(&p));
assert!(r.contains_rect(&Rect::new(p, Size2D::zero())));
}
#[test]
fn test_scale() {
let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
let pp = p.scale(10, 15);
assert!(pp.size.width == 500);
assert!(pp.size.height == 600);
assert!(pp.origin.x == 0);
assert!(pp.origin.y == 0);
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
let rr = r.scale(1, 20);
assert!(rr.size.width == 50);
assert!(rr.size.height == 800);
assert!(rr.origin.x == -10);
assert!(rr.origin.y == -100);
}
#[test]
fn test_inflate() {
let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10));
let pp = p.inflate(10, 20);
assert!(pp.size.width == 30);
assert!(pp.size.height == 50);
assert!(pp.origin.x == -10);
assert!(pp.origin.y == -20);
let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));
let rr = r.inflate(-2, -5);
assert!(rr.size.width == 6);
assert!(rr.size.height == 10);
assert!(rr.origin.x == 2);
assert!(rr.origin.y == 5);
}
#[test]
fn test_inner_outer_rect() {
let inner_rect: Rect<i32> = Rect::new(Point2D::new(20, 40), Size2D::new(80, 100));
let offsets = SideOffsets2D::new(20, 10, 10, 10);
let outer_rect = inner_rect.outer_rect(offsets);
assert_eq!(outer_rect.origin.x, 10);
assert_eq!(outer_rect.origin.y, 20);
assert_eq!(outer_rect.size.width, 100);
assert_eq!(outer_rect.size.height, 130);
assert_eq!(outer_rect.inner_rect(offsets), inner_rect);
}
#[test]
fn test_min_max_x_y() {
let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));
assert!(p.max_y() == 40);
assert!(p.min_y() == 0);
assert!(p.max_x() == 50);
assert!(p.min_x() == 0);
let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));
assert!(r.max_y() == 35);
assert!(r.min_y() == -5);
assert!(r.max_x() == 40);
assert!(r.min_x() == -10);
}
#[test]
fn test_is_empty() {
assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty());
assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty());
assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty());
assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty());
assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty());
}
#[test]
fn test_round() {
let mut x = -2.0;
let mut y = -2.0;
let mut w = -2.0;
let mut h = -2.0;
while x < 2.0 {
while y < 2.0 {
while w < 2.0 {
while h < 2.0 {
let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h));
assert!(rect.contains_rect(&rect.round_in()));
assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect));
assert!(rect.round_out().contains_rect(&rect));
assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out()));
assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round()));
assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect));
h += 0.1;
}
w += 0.1;
}
y += 0.1;
}
x += 0.1
}
}
}

1057
third_party/rust/euclid-0.18.1/src/rotation.rs поставляемый

Разница между файлами не показана из-за своего большого размера Загрузить разницу

235
third_party/rust/euclid-0.18.1/src/scale.rs поставляемый
Просмотреть файл

@ -1,235 +0,0 @@
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A type-checked scaling factor between units.
use num::One;
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use core::fmt;
use core::ops::{Add, Div, Mul, Neg, Sub};
use core::marker::PhantomData;
use {TypedPoint2D, TypedRect, TypedSize2D, TypedVector2D};
/// A scaling factor between two different units of measurement.
///
/// This is effectively a type-safe float, intended to be used in combination with other types like
/// `length::Length` to enforce conversion between systems of measurement at compile time.
///
/// `Src` and `Dst` represent the units before and after multiplying a value by a `TypedScale`. They
/// may be types without values, such as empty enums. For example:
///
/// ```rust
/// use euclid::TypedScale;
/// use euclid::Length;
/// enum Mm {};
/// enum Inch {};
///
/// let mm_per_inch: TypedScale<f32, Inch, Mm> = TypedScale::new(25.4);
///
/// let one_foot: Length<f32, Inch> = Length::new(12.0);
/// let one_foot_in_mm: Length<f32, Mm> = one_foot * mm_per_inch;
/// ```
#[repr(C)]
pub struct TypedScale<T, Src, Dst>(pub T, #[doc(hidden)] pub PhantomData<(Src, Dst)>);
#[cfg(feature = "serde")]
impl<'de, T, Src, Dst> Deserialize<'de> for TypedScale<T, Src, Dst>
where
T: Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<TypedScale<T, Src, Dst>, D::Error>
where
D: Deserializer<'de>,
{
Ok(TypedScale(
try!(Deserialize::deserialize(deserializer)),
PhantomData,
))
}
}
#[cfg(feature = "serde")]
impl<T, Src, Dst> Serialize for TypedScale<T, Src, Dst>
where
T: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.0.serialize(serializer)
}
}
impl<T, Src, Dst> TypedScale<T, Src, Dst> {
pub fn new(x: T) -> Self {
TypedScale(x, PhantomData)
}
}
impl<T: Clone, Src, Dst> TypedScale<T, Src, Dst> {
pub fn get(&self) -> T {
self.0.clone()
}
}
impl<Src, Dst> TypedScale<f32, Src, Dst> {
/// Identity scaling, could be used to safely transit from one space to another.
pub const ONE: Self = TypedScale(1.0, PhantomData);
}
impl<T: Clone + One + Div<T, Output = T>, Src, Dst> TypedScale<T, Src, Dst> {
/// The inverse TypedScale (1.0 / self).
pub fn inv(&self) -> TypedScale<T, Dst, Src> {
let one: T = One::one();
TypedScale::new(one / self.get())
}
}
// scale0 * scale1
impl<T: Clone + Mul<T, Output = T>, A, B, C> Mul<TypedScale<T, B, C>> for TypedScale<T, A, B> {
type Output = TypedScale<T, A, C>;
#[inline]
fn mul(self, other: TypedScale<T, B, C>) -> TypedScale<T, A, C> {
TypedScale::new(self.get() * other.get())
}
}
// scale0 + scale1
impl<T: Clone + Add<T, Output = T>, Src, Dst> Add for TypedScale<T, Src, Dst> {
type Output = TypedScale<T, Src, Dst>;
#[inline]
fn add(self, other: TypedScale<T, Src, Dst>) -> TypedScale<T, Src, Dst> {
TypedScale::new(self.get() + other.get())
}
}
// scale0 - scale1
impl<T: Clone + Sub<T, Output = T>, Src, Dst> Sub for TypedScale<T, Src, Dst> {
type Output = TypedScale<T, Src, Dst>;
#[inline]
fn sub(self, other: TypedScale<T, Src, Dst>) -> TypedScale<T, Src, Dst> {
TypedScale::new(self.get() - other.get())
}
}
impl<T: NumCast + Clone, Src, Dst0> TypedScale<T, Src, Dst0> {
/// Cast from one numeric representation to another, preserving the units.
pub fn cast<T1: NumCast + Clone>(&self) -> TypedScale<T1, Src, Dst0> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
pub fn try_cast<T1: NumCast + Clone>(&self) -> Option<TypedScale<T1, Src, Dst0>> {
NumCast::from(self.get()).map(TypedScale::new)
}
}
impl<T, Src, Dst> TypedScale<T, Src, Dst>
where
T: Copy + Clone + Mul<T, Output = T> + Neg<Output = T> + PartialEq + One,
{
/// Returns the given point transformed by this scale.
#[inline]
pub fn transform_point(&self, point: &TypedPoint2D<T, Src>) -> TypedPoint2D<T, Dst> {
TypedPoint2D::new(point.x * self.get(), point.y * self.get())
}
/// Returns the given vector transformed by this scale.
#[inline]
pub fn transform_vector(&self, vec: &TypedVector2D<T, Src>) -> TypedVector2D<T, Dst> {
TypedVector2D::new(vec.x * self.get(), vec.y * self.get())
}
/// Returns the given vector transformed by this scale.
#[inline]
pub fn transform_size(&self, size: &TypedSize2D<T, Src>) -> TypedSize2D<T, Dst> {
TypedSize2D::new(size.width * self.get(), size.height * self.get())
}
/// Returns the given rect transformed by this scale.
#[inline]
pub fn transform_rect(&self, rect: &TypedRect<T, Src>) -> TypedRect<T, Dst> {
TypedRect::new(
self.transform_point(&rect.origin),
self.transform_size(&rect.size),
)
}
/// Returns the inverse of this scale.
#[inline]
pub fn inverse(&self) -> TypedScale<T, Dst, Src> {
TypedScale::new(-self.get())
}
/// Returns true if this scale has no effect.
#[inline]
pub fn is_identity(&self) -> bool {
self.get() == T::one()
}
}
// FIXME: Switch to `derive(PartialEq, Clone)` after this Rust issue is fixed:
// https://github.com/mozilla/rust/issues/7671
impl<T: PartialEq, Src, Dst> PartialEq for TypedScale<T, Src, Dst> {
fn eq(&self, other: &TypedScale<T, Src, Dst>) -> bool {
self.0 == other.0
}
}
impl<T: Clone, Src, Dst> Clone for TypedScale<T, Src, Dst> {
fn clone(&self) -> TypedScale<T, Src, Dst> {
TypedScale::new(self.get())
}
}
impl<T: Copy, Src, Dst> Copy for TypedScale<T, Src, Dst> {}
impl<T: fmt::Debug, Src, Dst> fmt::Debug for TypedScale<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl<T: fmt::Display, Src, Dst> fmt::Display for TypedScale<T, Src, Dst> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
#[cfg(test)]
mod tests {
use super::TypedScale;
enum Inch {}
enum Cm {}
enum Mm {}
#[test]
fn test_scale() {
let mm_per_inch: TypedScale<f32, Inch, Mm> = TypedScale::new(25.4);
let cm_per_mm: TypedScale<f32, Mm, Cm> = TypedScale::new(0.1);
let mm_per_cm: TypedScale<f32, Cm, Mm> = cm_per_mm.inv();
assert_eq!(mm_per_cm.get(), 10.0);
let cm_per_inch: TypedScale<f32, Inch, Cm> = mm_per_inch * cm_per_mm;
assert_eq!(cm_per_inch, TypedScale::new(2.54));
let a: TypedScale<isize, Inch, Inch> = TypedScale::new(2);
let b: TypedScale<isize, Inch, Inch> = TypedScale::new(3);
assert!(a != b);
assert_eq!(a, a.clone());
assert_eq!(a.clone() + b.clone(), TypedScale::new(5));
assert_eq!(a - b, TypedScale::new(-1));
}
}

Просмотреть файл

@ -1,138 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A group of side offsets, which correspond to top/left/bottom/right for borders, padding,
//! and margins in CSS.
use super::UnknownUnit;
use length::Length;
use num::Zero;
use core::fmt;
use core::ops::Add;
use core::marker::PhantomData;
/// A group of side offsets, which correspond to top/left/bottom/right for borders, padding,
/// and margins in CSS, optionally tagged with a unit.
define_matrix! {
pub struct TypedSideOffsets2D<T, U> {
pub top: T,
pub right: T,
pub bottom: T,
pub left: T,
}
}
impl<T: fmt::Debug, U> fmt::Debug for TypedSideOffsets2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"({:?},{:?},{:?},{:?})",
self.top, self.right, self.bottom, self.left
)
}
}
/// The default side offset type with no unit.
pub type SideOffsets2D<T> = TypedSideOffsets2D<T, UnknownUnit>;
impl<T: Copy, U> TypedSideOffsets2D<T, U> {
/// Constructor taking a scalar for each side.
pub fn new(top: T, right: T, bottom: T, left: T) -> Self {
TypedSideOffsets2D {
top,
right,
bottom,
left,
_unit: PhantomData,
}
}
/// Constructor taking a typed Length for each side.
pub fn from_lengths(
top: Length<T, U>,
right: Length<T, U>,
bottom: Length<T, U>,
left: Length<T, U>,
) -> Self {
TypedSideOffsets2D::new(top.0, right.0, bottom.0, left.0)
}
/// Access self.top as a typed Length instead of a scalar value.
pub fn top_typed(&self) -> Length<T, U> {
Length::new(self.top)
}
/// Access self.right as a typed Length instead of a scalar value.
pub fn right_typed(&self) -> Length<T, U> {
Length::new(self.right)
}
/// Access self.bottom as a typed Length instead of a scalar value.
pub fn bottom_typed(&self) -> Length<T, U> {
Length::new(self.bottom)
}
/// Access self.left as a typed Length instead of a scalar value.
pub fn left_typed(&self) -> Length<T, U> {
Length::new(self.left)
}
/// Constructor setting the same value to all sides, taking a scalar value directly.
pub fn new_all_same(all: T) -> Self {
TypedSideOffsets2D::new(all, all, all, all)
}
/// Constructor setting the same value to all sides, taking a typed Length.
pub fn from_length_all_same(all: Length<T, U>) -> Self {
TypedSideOffsets2D::new_all_same(all.0)
}
}
impl<T, U> TypedSideOffsets2D<T, U>
where
T: Add<T, Output = T> + Copy,
{
pub fn horizontal(&self) -> T {
self.left + self.right
}
pub fn vertical(&self) -> T {
self.top + self.bottom
}
pub fn horizontal_typed(&self) -> Length<T, U> {
Length::new(self.horizontal())
}
pub fn vertical_typed(&self) -> Length<T, U> {
Length::new(self.vertical())
}
}
impl<T, U> Add for TypedSideOffsets2D<T, U>
where
T: Copy + Add<T, Output = T>,
{
type Output = Self;
fn add(self, other: Self) -> Self {
TypedSideOffsets2D::new(
self.top + other.top,
self.right + other.right,
self.bottom + other.bottom,
self.left + other.left,
)
}
}
impl<T: Copy + Zero, U> TypedSideOffsets2D<T, U> {
/// Constructor, setting all sides to zero.
pub fn zero() -> Self {
TypedSideOffsets2D::new(Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero())
}
}

382
third_party/rust/euclid-0.18.1/src/size.rs поставляемый
Просмотреть файл

@ -1,382 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use length::Length;
use scale::TypedScale;
use vector::{TypedVector2D, vec2, BoolVector2D};
use num::*;
use num_traits::{NumCast, Signed};
use core::fmt;
use core::ops::{Add, Div, Mul, Sub};
use core::marker::PhantomData;
/// A 2d size tagged with a unit.
define_matrix! {
pub struct TypedSize2D<T, U> {
pub width: T,
pub height: T,
}
}
/// Default 2d size type with no unit.
///
/// `Size2D` provides the same methods as `TypedSize2D`.
pub type Size2D<T> = TypedSize2D<T, UnknownUnit>;
impl<T: fmt::Debug, U> fmt::Debug for TypedSize2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}×{:?}", self.width, self.height)
}
}
impl<T: fmt::Display, U> fmt::Display for TypedSize2D<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "({}x{})", self.width, self.height)
}
}
impl<T, U> TypedSize2D<T, U> {
/// Constructor taking scalar values.
pub fn new(width: T, height: T) -> Self {
TypedSize2D {
width,
height,
_unit: PhantomData,
}
}
}
impl<T: Clone, U> TypedSize2D<T, U> {
/// Constructor taking scalar strongly typed lengths.
pub fn from_lengths(width: Length<T, U>, height: Length<T, U>) -> Self {
TypedSize2D::new(width.get(), height.get())
}
}
impl<T: Round, U> TypedSize2D<T, U> {
/// Rounds each component to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn round(&self) -> Self {
TypedSize2D::new(self.width.round(), self.height.round())
}
}
impl<T: Ceil, U> TypedSize2D<T, U> {
/// Rounds each component to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn ceil(&self) -> Self {
TypedSize2D::new(self.width.ceil(), self.height.ceil())
}
}
impl<T: Floor, U> TypedSize2D<T, U> {
/// Rounds each component to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn floor(&self) -> Self {
TypedSize2D::new(self.width.floor(), self.height.floor())
}
}
impl<T: Copy + Add<T, Output = T>, U> Add for TypedSize2D<T, U> {
type Output = Self;
fn add(self, other: Self) -> Self {
TypedSize2D::new(self.width + other.width, self.height + other.height)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub for TypedSize2D<T, U> {
type Output = Self;
fn sub(self, other: Self) -> Self {
TypedSize2D::new(self.width - other.width, self.height - other.height)
}
}
impl<T: Copy + Clone + Mul<T>, U> TypedSize2D<T, U> {
pub fn area(&self) -> T::Output {
self.width * self.height
}
}
impl<T, U> TypedSize2D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this size and another size.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
size2(
one_t * self.width + t * other.width,
one_t * self.height + t * other.height,
)
}
}
impl<T: Zero + PartialOrd, U> TypedSize2D<T, U> {
pub fn is_empty_or_negative(&self) -> bool {
let zero = T::zero();
self.width <= zero || self.height <= zero
}
}
impl<T: Zero, U> TypedSize2D<T, U> {
pub fn zero() -> Self {
TypedSize2D::new(Zero::zero(), Zero::zero())
}
}
impl<T: Zero, U> Zero for TypedSize2D<T, U> {
fn zero() -> Self {
TypedSize2D::new(Zero::zero(), Zero::zero())
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for TypedSize2D<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
TypedSize2D::new(self.width * scale, self.height * scale)
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for TypedSize2D<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
TypedSize2D::new(self.width / scale, self.height / scale)
}
}
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<TypedScale<T, U1, U2>> for TypedSize2D<T, U1> {
type Output = TypedSize2D<T, U2>;
#[inline]
fn mul(self, scale: TypedScale<T, U1, U2>) -> TypedSize2D<T, U2> {
TypedSize2D::new(self.width * scale.get(), self.height * scale.get())
}
}
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<TypedScale<T, U1, U2>> for TypedSize2D<T, U2> {
type Output = TypedSize2D<T, U1>;
#[inline]
fn div(self, scale: TypedScale<T, U1, U2>) -> TypedSize2D<T, U1> {
TypedSize2D::new(self.width / scale.get(), self.height / scale.get())
}
}
impl<T: Copy, U> TypedSize2D<T, U> {
/// Returns self.width as a Length carrying the unit.
#[inline]
pub fn width_typed(&self) -> Length<T, U> {
Length::new(self.width)
}
/// Returns self.height as a Length carrying the unit.
#[inline]
pub fn height_typed(&self) -> Length<T, U> {
Length::new(self.height)
}
#[inline]
pub fn to_array(&self) -> [T; 2] {
[self.width, self.height]
}
#[inline]
pub fn to_vector(&self) -> TypedVector2D<T, U> {
vec2(self.width, self.height)
}
/// Drop the units, preserving only the numeric value.
pub fn to_untyped(&self) -> Size2D<T> {
TypedSize2D::new(self.width, self.height)
}
/// Tag a unitless value with units.
pub fn from_untyped(p: &Size2D<T>) -> Self {
TypedSize2D::new(p.width, p.height)
}
}
impl<T: NumCast + Copy, Unit> TypedSize2D<T, Unit> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn cast<NewT: NumCast + Copy>(&self) -> TypedSize2D<NewT, Unit> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<TypedSize2D<NewT, Unit>> {
match (NumCast::from(self.width), NumCast::from(self.height)) {
(Some(w), Some(h)) => Some(TypedSize2D::new(w, h)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` size.
pub fn to_f32(&self) -> TypedSize2D<f32, Unit> {
self.cast()
}
/// Cast into an `f64` size.
pub fn to_f64(&self) -> TypedSize2D<f64, Unit> {
self.cast()
}
/// Cast into an `uint` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_usize(&self) -> TypedSize2D<usize, Unit> {
self.cast()
}
/// Cast into an `u32` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_u32(&self) -> TypedSize2D<u32, Unit> {
self.cast()
}
/// Cast into an `i32` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_i32(&self) -> TypedSize2D<i32, Unit> {
self.cast()
}
/// Cast into an `i64` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_i64(&self) -> TypedSize2D<i64, Unit> {
self.cast()
}
}
impl<T, U> TypedSize2D<T, U>
where
T: Signed,
{
pub fn abs(&self) -> Self {
size2(self.width.abs(), self.height.abs())
}
pub fn is_positive(&self) -> bool {
self.width.is_positive() && self.height.is_positive()
}
}
impl<T: PartialOrd, U> TypedSize2D<T, U> {
pub fn greater_than(&self, other: &Self) -> BoolVector2D {
BoolVector2D {
x: self.width > other.width,
y: self.height > other.height,
}
}
pub fn lower_than(&self, other: &Self) -> BoolVector2D {
BoolVector2D {
x: self.width < other.width,
y: self.height < other.height,
}
}
}
impl<T: PartialEq, U> TypedSize2D<T, U> {
pub fn equal(&self, other: &Self) -> BoolVector2D {
BoolVector2D {
x: self.width == other.width,
y: self.height == other.height,
}
}
pub fn not_equal(&self, other: &Self) -> BoolVector2D {
BoolVector2D {
x: self.width != other.width,
y: self.height != other.height,
}
}
}
/// Shorthand for `TypedSize2D::new(w, h)`.
pub fn size2<T, U>(w: T, h: T) -> TypedSize2D<T, U> {
TypedSize2D::new(w, h)
}
#[cfg(test)]
mod size2d {
use super::Size2D;
#[test]
pub fn test_add() {
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(3.0, 4.0);
assert_eq!(p1 + p2, Size2D::new(4.0, 6.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 + p2, Size2D::new(1.0, 2.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(-3.0, -4.0);
assert_eq!(p1 + p2, Size2D::new(-2.0, -2.0));
let p1 = Size2D::new(0.0, 0.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 + p2, Size2D::new(0.0, 0.0));
}
#[test]
pub fn test_sub() {
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(3.0, 4.0);
assert_eq!(p1 - p2, Size2D::new(-2.0, -2.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 - p2, Size2D::new(1.0, 2.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(-3.0, -4.0);
assert_eq!(p1 - p2, Size2D::new(4.0, 6.0));
let p1 = Size2D::new(0.0, 0.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 - p2, Size2D::new(0.0, 0.0));
}
#[test]
pub fn test_area() {
let p = Size2D::new(1.5, 2.0);
assert_eq!(p.area(), 3.0);
}
}

Просмотреть файл

@ -1,542 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg_attr(feature = "cargo-clippy", allow(just_underscores_and_digits))]
use super::{UnknownUnit, Angle};
use num::{One, Zero};
use point::TypedPoint2D;
use vector::{TypedVector2D, vec2};
use rect::TypedRect;
use transform3d::TypedTransform3D;
use core::ops::{Add, Mul, Div, Sub, Neg};
use core::marker::PhantomData;
use approxeq::ApproxEq;
use trig::Trig;
use core::fmt;
use num_traits::NumCast;
define_matrix! {
/// A 2d transform stored as a 3 by 2 matrix in row-major order in memory.
///
/// Transforms can be parametrized over the source and destination units, to describe a
/// transformation from a space to another.
/// For example, `TypedTransform2D<f32, WorldSpace, ScreenSpace>::transform_point4d`
/// takes a `TypedPoint2D<f32, WorldSpace>` and returns a `TypedPoint2D<f32, ScreenSpace>`.
///
/// Transforms expose a set of convenience methods for pre- and post-transformations.
/// A pre-transformation corresponds to adding an operation that is applied before
/// the rest of the transformation, while a post-transformation adds an operation
/// that is applied after.
pub struct TypedTransform2D<T, Src, Dst> {
pub m11: T, pub m12: T,
pub m21: T, pub m22: T,
pub m31: T, pub m32: T,
}
}
/// The default 2d transform type with no units.
pub type Transform2D<T> = TypedTransform2D<T, UnknownUnit, UnknownUnit>;
impl<T: Copy, Src, Dst> TypedTransform2D<T, Src, Dst> {
/// Create a transform specifying its matrix elements in row-major order.
pub fn row_major(m11: T, m12: T, m21: T, m22: T, m31: T, m32: T) -> Self {
TypedTransform2D {
m11, m12,
m21, m22,
m31, m32,
_unit: PhantomData,
}
}
/// Create a transform specifying its matrix elements in column-major order.
pub fn column_major(m11: T, m21: T, m31: T, m12: T, m22: T, m32: T) -> Self {
TypedTransform2D {
m11, m12,
m21, m22,
m31, m32,
_unit: PhantomData,
}
}
/// Returns an array containing this transform's terms in row-major order (the order
/// in which the transform is actually laid out in memory).
pub fn to_row_major_array(&self) -> [T; 6] {
[
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32
]
}
/// Returns an array containing this transform's terms in column-major order.
pub fn to_column_major_array(&self) -> [T; 6] {
[
self.m11, self.m21, self.m31,
self.m12, self.m22, self.m32
]
}
/// Returns an array containing this transform's 3 rows in (in row-major order)
/// as arrays.
///
/// This is a convenience method to interface with other libraries like glium.
pub fn to_row_arrays(&self) -> [[T; 2]; 3] {
[
[self.m11, self.m12],
[self.m21, self.m22],
[self.m31, self.m32],
]
}
/// Creates a transform from an array of 6 elements in row-major order.
pub fn from_row_major_array(array: [T; 6]) -> Self {
Self::row_major(
array[0], array[1],
array[2], array[3],
array[4], array[5],
)
}
/// Creates a transform from 3 rows of 2 elements (row-major order).
pub fn from_row_arrays(array: [[T; 2]; 3]) -> Self {
Self::row_major(
array[0][0], array[0][1],
array[1][0], array[1][1],
array[2][0], array[2][1],
)
}
/// Drop the units, preserving only the numeric value.
pub fn to_untyped(&self) -> Transform2D<T> {
Transform2D::row_major(
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32
)
}
/// Tag a unitless value with units.
pub fn from_untyped(p: &Transform2D<T>) -> Self {
TypedTransform2D::row_major(
p.m11, p.m12,
p.m21, p.m22,
p.m31, p.m32
)
}
}
impl<T0: NumCast + Copy, Src, Dst> TypedTransform2D<T0, Src, Dst> {
/// Cast from one numeric representation to another, preserving the units.
pub fn cast<T1: NumCast + Copy>(&self) -> TypedTransform2D<T1, Src, Dst> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
pub fn try_cast<T1: NumCast + Copy>(&self) -> Option<TypedTransform2D<T1, Src, Dst>> {
match (NumCast::from(self.m11), NumCast::from(self.m12),
NumCast::from(self.m21), NumCast::from(self.m22),
NumCast::from(self.m31), NumCast::from(self.m32)) {
(Some(m11), Some(m12),
Some(m21), Some(m22),
Some(m31), Some(m32)) => {
Some(TypedTransform2D::row_major(
m11, m12,
m21, m22,
m31, m32
))
},
_ => None
}
}
}
impl<T, Src, Dst> TypedTransform2D<T, Src, Dst>
where T: Copy +
PartialEq +
One + Zero {
pub fn identity() -> Self {
let (_0, _1) = (Zero::zero(), One::one());
TypedTransform2D::row_major(
_1, _0,
_0, _1,
_0, _0
)
}
// Intentional not public, because it checks for exact equivalence
// while most consumers will probably want some sort of approximate
// equivalence to deal with floating-point errors.
fn is_identity(&self) -> bool {
*self == TypedTransform2D::identity()
}
}
impl<T, Src, Dst> TypedTransform2D<T, Src, Dst>
where T: Copy + Clone +
Add<T, Output=T> +
Mul<T, Output=T> +
Div<T, Output=T> +
Sub<T, Output=T> +
Trig +
PartialOrd +
One + Zero {
/// Returns the multiplication of the two matrices such that mat's transformation
/// applies after self's transformation.
#[cfg_attr(feature = "unstable", must_use)]
pub fn post_mul<NewDst>(&self, mat: &TypedTransform2D<T, Dst, NewDst>) -> TypedTransform2D<T, Src, NewDst> {
TypedTransform2D::row_major(
self.m11 * mat.m11 + self.m12 * mat.m21,
self.m11 * mat.m12 + self.m12 * mat.m22,
self.m21 * mat.m11 + self.m22 * mat.m21,
self.m21 * mat.m12 + self.m22 * mat.m22,
self.m31 * mat.m11 + self.m32 * mat.m21 + mat.m31,
self.m31 * mat.m12 + self.m32 * mat.m22 + mat.m32,
)
}
/// Returns the multiplication of the two matrices such that mat's transformation
/// applies before self's transformation.
#[cfg_attr(feature = "unstable", must_use)]
pub fn pre_mul<NewSrc>(&self, mat: &TypedTransform2D<T, NewSrc, Src>) -> TypedTransform2D<T, NewSrc, Dst> {
mat.post_mul(self)
}
/// Returns a translation transform.
pub fn create_translation(x: T, y: T) -> Self {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
TypedTransform2D::row_major(
_1, _0,
_0, _1,
x, y
)
}
/// Applies a translation after self's transformation and returns the resulting transform.
#[cfg_attr(feature = "unstable", must_use)]
pub fn post_translate(&self, v: TypedVector2D<T, Dst>) -> Self {
self.post_mul(&TypedTransform2D::create_translation(v.x, v.y))
}
/// Applies a translation before self's transformation and returns the resulting transform.
#[cfg_attr(feature = "unstable", must_use)]
pub fn pre_translate(&self, v: TypedVector2D<T, Src>) -> Self {
self.pre_mul(&TypedTransform2D::create_translation(v.x, v.y))
}
/// Returns a scale transform.
pub fn create_scale(x: T, y: T) -> Self {
let _0 = Zero::zero();
TypedTransform2D::row_major(
x, _0,
_0, y,
_0, _0
)
}
/// Applies a scale after self's transformation and returns the resulting transform.
#[cfg_attr(feature = "unstable", must_use)]
pub fn post_scale(&self, x: T, y: T) -> Self {
self.post_mul(&TypedTransform2D::create_scale(x, y))
}
/// Applies a scale before self's transformation and returns the resulting transform.
#[cfg_attr(feature = "unstable", must_use)]
pub fn pre_scale(&self, x: T, y: T) -> Self {
TypedTransform2D::row_major(
self.m11 * x, self.m12,
self.m21, self.m22 * y,
self.m31, self.m32
)
}
/// Returns a rotation transform.
pub fn create_rotation(theta: Angle<T>) -> Self {
let _0 = Zero::zero();
let cos = theta.get().cos();
let sin = theta.get().sin();
TypedTransform2D::row_major(
cos, _0 - sin,
sin, cos,
_0, _0
)
}
/// Applies a rotation after self's transformation and returns the resulting transform.
#[cfg_attr(feature = "unstable", must_use)]
pub fn post_rotate(&self, theta: Angle<T>) -> Self {
self.post_mul(&TypedTransform2D::create_rotation(theta))
}
/// Applies a rotation after self's transformation and returns the resulting transform.
#[cfg_attr(feature = "unstable", must_use)]
pub fn pre_rotate(&self, theta: Angle<T>) -> Self {
self.pre_mul(&TypedTransform2D::create_rotation(theta))
}
/// Returns the given point transformed by this transform.
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn transform_point(&self, point: &TypedPoint2D<T, Src>) -> TypedPoint2D<T, Dst> {
TypedPoint2D::new(point.x * self.m11 + point.y * self.m21 + self.m31,
point.x * self.m12 + point.y * self.m22 + self.m32)
}
/// Returns the given vector transformed by this matrix.
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn transform_vector(&self, vec: &TypedVector2D<T, Src>) -> TypedVector2D<T, Dst> {
vec2(vec.x * self.m11 + vec.y * self.m21,
vec.x * self.m12 + vec.y * self.m22)
}
/// Returns a rectangle that encompasses the result of transforming the given rectangle by this
/// transform.
#[inline]
#[cfg_attr(feature = "unstable", must_use)]
pub fn transform_rect(&self, rect: &TypedRect<T, Src>) -> TypedRect<T, Dst> {
TypedRect::from_points(&[
self.transform_point(&rect.origin),
self.transform_point(&rect.top_right()),
self.transform_point(&rect.bottom_left()),
self.transform_point(&rect.bottom_right()),
])
}
/// Computes and returns the determinant of this transform.
pub fn determinant(&self) -> T {
self.m11 * self.m22 - self.m12 * self.m21
}
/// Returns the inverse transform if possible.
#[cfg_attr(feature = "unstable", must_use)]
pub fn inverse(&self) -> Option<TypedTransform2D<T, Dst, Src>> {
let det = self.determinant();
let _0: T = Zero::zero();
let _1: T = One::one();
if det == _0 {
return None;
}
let inv_det = _1 / det;
Some(TypedTransform2D::row_major(
inv_det * self.m22,
inv_det * (_0 - self.m12),
inv_det * (_0 - self.m21),
inv_det * self.m11,
inv_det * (self.m21 * self.m32 - self.m22 * self.m31),
inv_det * (self.m31 * self.m12 - self.m11 * self.m32),
))
}
/// Returns the same transform with a different destination unit.
#[inline]
pub fn with_destination<NewDst>(&self) -> TypedTransform2D<T, Src, NewDst> {
TypedTransform2D::row_major(
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32,
)
}
/// Returns the same transform with a different source unit.
#[inline]
pub fn with_source<NewSrc>(&self) -> TypedTransform2D<T, NewSrc, Dst> {
TypedTransform2D::row_major(
self.m11, self.m12,
self.m21, self.m22,
self.m31, self.m32,
)
}
}
impl <T, Src, Dst> TypedTransform2D<T, Src, Dst>
where T: Copy + Clone +
Add<T, Output=T> +
Sub<T, Output=T> +
Mul<T, Output=T> +
Div<T, Output=T> +
Neg<Output=T> +
PartialOrd +
Trig +
One + Zero {
/// Create a 3D transform from the current transform
pub fn to_3d(&self) -> TypedTransform3D<T, Src, Dst> {
TypedTransform3D::row_major_2d(self.m11, self.m12, self.m21, self.m22, self.m31, self.m32)
}
}
impl <T, Src, Dst> Default for TypedTransform2D<T, Src, Dst>
where T: Copy + PartialEq + One + Zero
{
fn default() -> Self {
Self::identity()
}
}
impl<T: ApproxEq<T>, Src, Dst> TypedTransform2D<T, Src, Dst> {
pub fn approx_eq(&self, other: &Self) -> bool {
self.m11.approx_eq(&other.m11) && self.m12.approx_eq(&other.m12) &&
self.m21.approx_eq(&other.m21) && self.m22.approx_eq(&other.m22) &&
self.m31.approx_eq(&other.m31) && self.m32.approx_eq(&other.m32)
}
}
impl<T: Copy + fmt::Debug, Src, Dst> fmt::Debug for TypedTransform2D<T, Src, Dst>
where T: Copy + fmt::Debug +
PartialEq +
One + Zero {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_identity() {
write!(f, "[I]")
} else {
self.to_row_major_array().fmt(f)
}
}
}
#[cfg(test)]
mod test {
use super::*;
use approxeq::ApproxEq;
use point::Point2D;
use Angle;
use core::f32::consts::FRAC_PI_2;
type Mat = Transform2D<f32>;
fn rad(v: f32) -> Angle<f32> { Angle::radians(v) }
#[test]
pub fn test_translation() {
let t1 = Mat::create_translation(1.0, 2.0);
let t2 = Mat::identity().pre_translate(vec2(1.0, 2.0));
let t3 = Mat::identity().post_translate(vec2(1.0, 2.0));
assert_eq!(t1, t2);
assert_eq!(t1, t3);
assert_eq!(t1.transform_point(&Point2D::new(1.0, 1.0)), Point2D::new(2.0, 3.0));
assert_eq!(t1.post_mul(&t1), Mat::create_translation(2.0, 4.0));
}
#[test]
pub fn test_rotation() {
let r1 = Mat::create_rotation(rad(FRAC_PI_2));
let r2 = Mat::identity().pre_rotate(rad(FRAC_PI_2));
let r3 = Mat::identity().post_rotate(rad(FRAC_PI_2));
assert_eq!(r1, r2);
assert_eq!(r1, r3);
assert!(r1.transform_point(&Point2D::new(1.0, 2.0)).approx_eq(&Point2D::new(2.0, -1.0)));
assert!(r1.post_mul(&r1).approx_eq(&Mat::create_rotation(rad(FRAC_PI_2*2.0))));
}
#[test]
pub fn test_scale() {
let s1 = Mat::create_scale(2.0, 3.0);
let s2 = Mat::identity().pre_scale(2.0, 3.0);
let s3 = Mat::identity().post_scale(2.0, 3.0);
assert_eq!(s1, s2);
assert_eq!(s1, s3);
assert!(s1.transform_point(&Point2D::new(2.0, 2.0)).approx_eq(&Point2D::new(4.0, 6.0)));
}
#[test]
fn test_column_major() {
assert_eq!(
Mat::row_major(
1.0, 2.0,
3.0, 4.0,
5.0, 6.0
),
Mat::column_major(
1.0, 3.0, 5.0,
2.0, 4.0, 6.0,
)
);
}
#[test]
pub fn test_inverse_simple() {
let m1 = Mat::identity();
let m2 = m1.inverse().unwrap();
assert!(m1.approx_eq(&m2));
}
#[test]
pub fn test_inverse_scale() {
let m1 = Mat::create_scale(1.5, 0.3);
let m2 = m1.inverse().unwrap();
assert!(m1.pre_mul(&m2).approx_eq(&Mat::identity()));
}
#[test]
pub fn test_inverse_translate() {
let m1 = Mat::create_translation(-132.0, 0.3);
let m2 = m1.inverse().unwrap();
assert!(m1.pre_mul(&m2).approx_eq(&Mat::identity()));
}
#[test]
fn test_inverse_none() {
assert!(Mat::create_scale(2.0, 0.0).inverse().is_none());
assert!(Mat::create_scale(2.0, 2.0).inverse().is_some());
}
#[test]
pub fn test_pre_post() {
let m1 = Transform2D::identity().post_scale(1.0, 2.0).post_translate(vec2(1.0, 2.0));
let m2 = Transform2D::identity().pre_translate(vec2(1.0, 2.0)).pre_scale(1.0, 2.0);
assert!(m1.approx_eq(&m2));
let r = Mat::create_rotation(rad(FRAC_PI_2));
let t = Mat::create_translation(2.0, 3.0);
let a = Point2D::new(1.0, 1.0);
assert!(r.post_mul(&t).transform_point(&a).approx_eq(&Point2D::new(3.0, 2.0)));
assert!(t.post_mul(&r).transform_point(&a).approx_eq(&Point2D::new(4.0, -3.0)));
assert!(t.post_mul(&r).transform_point(&a).approx_eq(&r.transform_point(&t.transform_point(&a))));
assert!(r.pre_mul(&t).transform_point(&a).approx_eq(&Point2D::new(4.0, -3.0)));
assert!(t.pre_mul(&r).transform_point(&a).approx_eq(&Point2D::new(3.0, 2.0)));
assert!(t.pre_mul(&r).transform_point(&a).approx_eq(&t.transform_point(&r.transform_point(&a))));
}
#[test]
fn test_size_of() {
use core::mem::size_of;
assert_eq!(size_of::<Transform2D<f32>>(), 6*size_of::<f32>());
assert_eq!(size_of::<Transform2D<f64>>(), 6*size_of::<f64>());
}
#[test]
pub fn test_is_identity() {
let m1 = Transform2D::identity();
assert!(m1.is_identity());
let m2 = m1.post_translate(vec2(0.1, 0.0));
assert!(!m2.is_identity());
}
#[test]
pub fn test_transform_vector() {
// Translation does not apply to vectors.
let m1 = Mat::create_translation(1.0, 1.0);
let v1 = vec2(10.0, -10.0);
assert_eq!(v1, m1.transform_vector(&v1));
}
}

Разница между файлами не показана из-за своего большого размера Загрузить разницу

73
third_party/rust/euclid-0.18.1/src/trig.rs поставляемый
Просмотреть файл

@ -1,73 +0,0 @@
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// Trait for basic trigonometry functions, so they can be used on generic numeric types
pub trait Trig {
fn sin(self) -> Self;
fn cos(self) -> Self;
fn tan(self) -> Self;
fn fast_atan2(y: Self, x: Self) -> Self;
fn degrees_to_radians(deg: Self) -> Self;
fn radians_to_degrees(rad: Self) -> Self;
}
macro_rules! trig {
($ty:ident) => (
impl Trig for $ty {
#[inline]
fn sin(self) -> $ty { self.sin() }
#[inline]
fn cos(self) -> $ty { self.cos() }
#[inline]
fn tan(self) -> $ty { self.tan() }
/// A slightly faster approximation of `atan2`.
///
/// Note that it does not deal with the case where both x and y are 0.
#[inline]
fn fast_atan2(y: $ty, x: $ty) -> $ty {
// This macro is used with f32 and f64 and clippy warns about the extra
// precision with f32.
#![cfg_attr(feature = "cargo-clippy", allow(excessive_precision))]
// See https://math.stackexchange.com/questions/1098487/atan2-faster-approximation#1105038
use core::$ty::consts;
let x_abs = x.abs();
let y_abs = y.abs();
let a = x_abs.min(y_abs) / x_abs.max(y_abs);
let s = a * a;
let mut result = ((-0.046_496_474_9 * s + 0.159_314_22) * s - 0.327_622_764) * s * a + a;
if y_abs > x_abs {
result = consts::FRAC_PI_2 - result;
}
if x < 0.0 {
result = consts::PI - result
}
if y < 0.0 {
result = -result
}
result
}
#[inline]
fn degrees_to_radians(deg: Self) -> Self {
deg.to_radians()
}
#[inline]
fn radians_to_degrees(rad: Self) -> Self {
rad.to_degrees()
}
}
)
}
trig!(f32);
trig!(f64);

1476
third_party/rust/euclid-0.18.1/src/vector.rs поставляемый

Разница между файлами не показана из-за своего большого размера Загрузить разницу