Bug 1322093 part 1 - Split up BaselineCacheIR.{cpp,h}. r=h4writer

This commit is contained in:
Jan de Mooij 2016-12-21 12:19:54 +01:00
Родитель 47afdb3f0c
Коммит 52611926d0
5 изменённых файлов: 1037 добавлений и 983 удалений

Просмотреть файл

@ -17,432 +17,6 @@ using namespace js::jit;
using mozilla::Maybe; using mozilla::Maybe;
// OperandLocation represents the location of an OperandId. The operand is
// either in a register or on the stack, and is either boxed or unboxed.
class OperandLocation
{
public:
enum Kind {
Uninitialized = 0,
PayloadReg,
ValueReg,
PayloadStack,
ValueStack,
};
private:
Kind kind_;
union Data {
struct {
Register reg;
JSValueType type;
} payloadReg;
ValueOperand valueReg;
struct {
uint32_t stackPushed;
JSValueType type;
} payloadStack;
uint32_t valueStackPushed;
Data() : valueStackPushed(0) {}
};
Data data_;
public:
OperandLocation() : kind_(Uninitialized) {}
Kind kind() const { return kind_; }
void setUninitialized() {
kind_ = Uninitialized;
}
ValueOperand valueReg() const {
MOZ_ASSERT(kind_ == ValueReg);
return data_.valueReg;
}
Register payloadReg() const {
MOZ_ASSERT(kind_ == PayloadReg);
return data_.payloadReg.reg;
}
uint32_t payloadStack() const {
MOZ_ASSERT(kind_ == PayloadStack);
return data_.payloadStack.stackPushed;
}
uint32_t valueStack() const {
MOZ_ASSERT(kind_ == ValueStack);
return data_.valueStackPushed;
}
JSValueType payloadType() const {
if (kind_ == PayloadReg)
return data_.payloadReg.type;
MOZ_ASSERT(kind_ == PayloadStack);
return data_.payloadStack.type;
}
void setPayloadReg(Register reg, JSValueType type) {
kind_ = PayloadReg;
data_.payloadReg.reg = reg;
data_.payloadReg.type = type;
}
void setValueReg(ValueOperand reg) {
kind_ = ValueReg;
data_.valueReg = reg;
}
void setPayloadStack(uint32_t stackPushed, JSValueType type) {
kind_ = PayloadStack;
data_.payloadStack.stackPushed = stackPushed;
data_.payloadStack.type = type;
}
void setValueStack(uint32_t stackPushed) {
kind_ = ValueStack;
data_.valueStackPushed = stackPushed;
}
bool aliasesReg(Register reg) {
if (kind_ == PayloadReg)
return payloadReg() == reg;
if (kind_ == ValueReg)
return valueReg().aliases(reg);
return false;
}
bool aliasesReg(ValueOperand reg) {
#if defined(JS_NUNBOX32)
return aliasesReg(reg.typeReg()) || aliasesReg(reg.payloadReg());
#else
return aliasesReg(reg.valueReg());
#endif
}
bool operator==(const OperandLocation& other) const {
if (kind_ != other.kind_)
return false;
switch (kind()) {
case Uninitialized:
return true;
case PayloadReg:
return payloadReg() == other.payloadReg() && payloadType() == other.payloadType();
case ValueReg:
return valueReg() == other.valueReg();
case PayloadStack:
return payloadStack() == other.payloadStack() && payloadType() == other.payloadType();
case ValueStack:
return valueStack() == other.valueStack();
}
MOZ_CRASH("Invalid OperandLocation kind");
}
bool operator!=(const OperandLocation& other) const { return !operator==(other); }
};
// Class to track and allocate registers while emitting IC code.
class MOZ_RAII CacheRegisterAllocator
{
// The original location of the inputs to the cache.
Vector<OperandLocation, 4, SystemAllocPolicy> origInputLocations_;
// The current location of each operand.
Vector<OperandLocation, 8, SystemAllocPolicy> operandLocations_;
// The registers allocated while emitting the current CacheIR op.
// This prevents us from allocating a register and then immediately
// clobbering it for something else, while we're still holding on to it.
LiveGeneralRegisterSet currentOpRegs_;
const AllocatableGeneralRegisterSet allocatableRegs_;
// Registers that are currently unused and available.
AllocatableGeneralRegisterSet availableRegs_;
// The number of bytes pushed on the native stack.
uint32_t stackPushed_;
// The index of the CacheIR instruction we're currently emitting.
uint32_t currentInstruction_;
const CacheIRWriter& writer_;
CacheRegisterAllocator(const CacheRegisterAllocator&) = delete;
CacheRegisterAllocator& operator=(const CacheRegisterAllocator&) = delete;
void freeDeadOperandRegisters();
public:
friend class AutoScratchRegister;
friend class AutoScratchRegisterExcluding;
explicit CacheRegisterAllocator(const CacheIRWriter& writer)
: allocatableRegs_(GeneralRegisterSet::All()),
stackPushed_(0),
currentInstruction_(0),
writer_(writer)
{}
MOZ_MUST_USE bool init(const AllocatableGeneralRegisterSet& available) {
availableRegs_ = available;
if (!origInputLocations_.resize(writer_.numInputOperands()))
return false;
if (!operandLocations_.resize(writer_.numOperandIds()))
return false;
return true;
}
OperandLocation operandLocation(size_t i) const {
return operandLocations_[i];
}
OperandLocation origInputLocation(size_t i) const {
return origInputLocations_[i];
}
void initInputLocation(size_t i, ValueOperand reg) {
origInputLocations_[i].setValueReg(reg);
operandLocations_[i] = origInputLocations_[i];
}
void nextOp() {
currentOpRegs_.clear();
currentInstruction_++;
}
uint32_t stackPushed() const {
return stackPushed_;
}
bool isAllocatable(Register reg) const {
return allocatableRegs_.has(reg);
}
// Allocates a new register.
Register allocateRegister(MacroAssembler& masm);
ValueOperand allocateValueRegister(MacroAssembler& masm);
void allocateFixedRegister(MacroAssembler& masm, Register reg);
// Releases a register so it can be reused later.
void releaseRegister(Register reg) {
MOZ_ASSERT(currentOpRegs_.has(reg));
availableRegs_.add(reg);
}
// Removes spilled values from the native stack. This should only be
// called after all registers have been allocated.
void discardStack(MacroAssembler& masm);
// Returns the register for the given operand. If the operand is currently
// not in a register, it will load it into one.
ValueOperand useValueRegister(MacroAssembler& masm, ValOperandId val);
Register useRegister(MacroAssembler& masm, TypedOperandId typedId);
// Allocates an output register for the given operand.
Register defineRegister(MacroAssembler& masm, TypedOperandId typedId);
ValueOperand defineValueRegister(MacroAssembler& masm, ValOperandId val);
};
// RAII class to allocate a scratch register and release it when we're done
// with it.
class MOZ_RAII AutoScratchRegister
{
CacheRegisterAllocator& alloc_;
Register reg_;
public:
AutoScratchRegister(CacheRegisterAllocator& alloc, MacroAssembler& masm,
Register reg = InvalidReg)
: alloc_(alloc)
{
if (reg != InvalidReg) {
alloc.allocateFixedRegister(masm, reg);
reg_ = reg;
} else {
reg_ = alloc.allocateRegister(masm);
}
MOZ_ASSERT(alloc_.currentOpRegs_.has(reg_));
}
~AutoScratchRegister() {
alloc_.releaseRegister(reg_);
}
operator Register() const { return reg_; }
};
// Like AutoScratchRegister, but lets the caller specify a register that should
// not be allocated here.
class MOZ_RAII AutoScratchRegisterExcluding
{
CacheRegisterAllocator& alloc_;
Register reg_;
public:
AutoScratchRegisterExcluding(CacheRegisterAllocator& alloc, MacroAssembler& masm,
Register excluding)
: alloc_(alloc)
{
MOZ_ASSERT(excluding != InvalidReg);
reg_ = alloc.allocateRegister(masm);
if (reg_ == excluding) {
// We need a different register, so try again.
reg_ = alloc.allocateRegister(masm);
MOZ_ASSERT(reg_ != excluding);
alloc_.releaseRegister(excluding);
}
MOZ_ASSERT(alloc_.currentOpRegs_.has(reg_));
}
~AutoScratchRegisterExcluding() {
alloc_.releaseRegister(reg_);
}
operator Register() const { return reg_; }
};
// The FailurePath class stores everything we need to generate a failure path
// at the end of the IC code. The failure path restores the input registers, if
// needed, and jumps to the next stub.
class FailurePath
{
Vector<OperandLocation, 4, SystemAllocPolicy> inputs_;
NonAssertingLabel label_;
uint32_t stackPushed_;
public:
FailurePath() = default;
FailurePath(FailurePath&& other)
: inputs_(Move(other.inputs_)),
label_(other.label_),
stackPushed_(other.stackPushed_)
{}
Label* label() { return &label_; }
void setStackPushed(uint32_t i) { stackPushed_ = i; }
uint32_t stackPushed() const { return stackPushed_; }
bool appendInput(OperandLocation loc) {
return inputs_.append(loc);
}
OperandLocation input(size_t i) const {
return inputs_[i];
}
// If canShareFailurePath(other) returns true, the same machine code will
// be emitted for two failure paths, so we can share them.
bool canShareFailurePath(const FailurePath& other) const {
if (stackPushed_ != other.stackPushed_)
return false;
MOZ_ASSERT(inputs_.length() == other.inputs_.length());
for (size_t i = 0; i < inputs_.length(); i++) {
if (inputs_[i] != other.inputs_[i])
return false;
}
return true;
}
};
// Base class for BaselineCacheIRCompiler and IonCacheIRCompiler.
class MOZ_RAII CacheIRCompiler
{
protected:
JSContext* cx_;
CacheIRReader reader;
const CacheIRWriter& writer_;
MacroAssembler masm;
CacheRegisterAllocator allocator;
Vector<FailurePath, 4, SystemAllocPolicy> failurePaths;
CacheIRCompiler(JSContext* cx, const CacheIRWriter& writer)
: cx_(cx),
reader(writer),
writer_(writer),
allocator(writer_)
{}
void emitFailurePath(size_t i);
};
void
CacheIRCompiler::emitFailurePath(size_t i)
{
FailurePath& failure = failurePaths[i];
masm.bind(failure.label());
uint32_t stackPushed = failure.stackPushed();
size_t numInputOperands = writer_.numInputOperands();
for (size_t j = 0; j < numInputOperands; j++) {
OperandLocation orig = allocator.origInputLocation(j);
OperandLocation cur = failure.input(j);
MOZ_ASSERT(orig.kind() == OperandLocation::ValueReg);
// We have a cycle if a destination register will be used later
// as source register. If that happens, just push the current value
// on the stack and later get it from there.
for (size_t k = j + 1; k < numInputOperands; k++) {
OperandLocation laterSource = failure.input(k);
switch (laterSource.kind()) {
case OperandLocation::ValueReg:
if (orig.aliasesReg(laterSource.valueReg())) {
stackPushed += sizeof(js::Value);
masm.pushValue(laterSource.valueReg());
laterSource.setValueStack(stackPushed);
}
break;
case OperandLocation::PayloadReg:
if (orig.aliasesReg(laterSource.payloadReg())) {
stackPushed += sizeof(uintptr_t);
masm.push(laterSource.payloadReg());
laterSource.setPayloadStack(stackPushed, laterSource.payloadType());
}
break;
case OperandLocation::PayloadStack:
case OperandLocation::ValueStack:
case OperandLocation::Uninitialized:
break;
}
}
switch (cur.kind()) {
case OperandLocation::ValueReg:
masm.moveValue(cur.valueReg(), orig.valueReg());
break;
case OperandLocation::PayloadReg:
masm.tagValue(cur.payloadType(), cur.payloadReg(), orig.valueReg());
break;
case OperandLocation::PayloadStack: {
MOZ_ASSERT(stackPushed >= sizeof(uintptr_t));
Register scratch = orig.valueReg().scratchReg();
if (cur.payloadStack() == stackPushed) {
masm.pop(scratch);
stackPushed -= sizeof(uintptr_t);
} else {
MOZ_ASSERT(cur.payloadStack() < stackPushed);
masm.loadPtr(Address(masm.getStackPointer(), stackPushed - cur.payloadStack()),
scratch);
}
masm.tagValue(cur.payloadType(), scratch, orig.valueReg());
break;
}
case OperandLocation::ValueStack:
MOZ_ASSERT(stackPushed >= sizeof(js::Value));
if (cur.valueStack() == stackPushed) {
masm.popValue(orig.valueReg());
stackPushed -= sizeof(js::Value);
} else {
MOZ_ASSERT(cur.valueStack() < stackPushed);
masm.loadValue(Address(masm.getStackPointer(), stackPushed - cur.valueStack()),
orig.valueReg());
}
break;
default:
MOZ_CRASH();
}
}
allocator.discardStack(masm);
}
// BaselineCacheIRCompiler compiles CacheIR to BaselineIC native code. // BaselineCacheIRCompiler compiles CacheIR to BaselineIC native code.
class MOZ_RAII BaselineCacheIRCompiler : public CacheIRCompiler class MOZ_RAII BaselineCacheIRCompiler : public CacheIRCompiler
{ {
@ -483,28 +57,6 @@ class MOZ_RAII BaselineCacheIRCompiler : public CacheIRCompiler
Address stubAddress(uint32_t offset) const { Address stubAddress(uint32_t offset) const {
return Address(ICStubReg, stubDataOffset_ + offset); return Address(ICStubReg, stubDataOffset_ + offset);
} }
bool addFailurePath(FailurePath** failure) {
FailurePath newFailure;
for (size_t i = 0; i < writer_.numInputOperands(); i++) {
if (!newFailure.appendInput(allocator.operandLocation(i)))
return false;
}
newFailure.setStackPushed(allocator.stackPushed());
// Reuse the previous failure path if the current one is the same, to
// avoid emitting duplicate code.
if (failurePaths.length() > 0 && failurePaths.back().canShareFailurePath(newFailure)) {
*failure = &failurePaths.back();
return true;
}
if (!failurePaths.append(Move(newFailure)))
return false;
*failure = &failurePaths.back();
return true;
}
}; };
// Instructions that have to perform a callVM require a stub frame. Use // Instructions that have to perform a callVM require a stub frame. Use
@ -643,274 +195,6 @@ BaselineCacheIRCompiler::compile()
return newStubCode; return newStubCode;
} }
ValueOperand
CacheRegisterAllocator::useValueRegister(MacroAssembler& masm, ValOperandId op)
{
OperandLocation& loc = operandLocations_[op.id()];
switch (loc.kind()) {
case OperandLocation::ValueReg:
currentOpRegs_.add(loc.valueReg());
return loc.valueReg();
case OperandLocation::ValueStack: {
// The Value is on the stack. If it's on top of the stack, unbox and
// then pop it. If we need the registers later, we can always spill
// back. If it's not on the top of the stack, just unbox.
ValueOperand reg = allocateValueRegister(masm);
if (loc.valueStack() == stackPushed_) {
masm.popValue(reg);
MOZ_ASSERT(stackPushed_ >= sizeof(js::Value));
stackPushed_ -= sizeof(js::Value);
} else {
MOZ_ASSERT(loc.valueStack() < stackPushed_);
masm.loadValue(Address(masm.getStackPointer(), stackPushed_ - loc.valueStack()), reg);
}
loc.setValueReg(reg);
return reg;
}
// The operand should never be unboxed.
case OperandLocation::PayloadStack:
case OperandLocation::PayloadReg:
case OperandLocation::Uninitialized:
break;
}
MOZ_CRASH();
}
Register
CacheRegisterAllocator::useRegister(MacroAssembler& masm, TypedOperandId typedId)
{
OperandLocation& loc = operandLocations_[typedId.id()];
switch (loc.kind()) {
case OperandLocation::PayloadReg:
currentOpRegs_.add(loc.payloadReg());
return loc.payloadReg();
case OperandLocation::ValueReg: {
// It's possible the value is still boxed: as an optimization, we unbox
// the first time we use a value as object.
ValueOperand val = loc.valueReg();
availableRegs_.add(val);
Register reg = val.scratchReg();
availableRegs_.take(reg);
masm.unboxObject(val, reg);
loc.setPayloadReg(reg, typedId.type());
currentOpRegs_.add(reg);
return reg;
}
case OperandLocation::PayloadStack: {
// The payload is on the stack. If it's on top of the stack we can just
// pop it, else we emit a load.
Register reg = allocateRegister(masm);
if (loc.payloadStack() == stackPushed_) {
masm.pop(reg);
MOZ_ASSERT(stackPushed_ >= sizeof(uintptr_t));
stackPushed_ -= sizeof(uintptr_t);
} else {
MOZ_ASSERT(loc.payloadStack() < stackPushed_);
masm.loadPtr(Address(masm.getStackPointer(), stackPushed_ - loc.payloadStack()), reg);
}
loc.setPayloadReg(reg, loc.payloadType());
return reg;
}
case OperandLocation::ValueStack: {
// The value is on the stack, but boxed. If it's on top of the stack we
// unbox it and then remove it from the stack, else we just unbox.
Register reg = allocateRegister(masm);
if (loc.valueStack() == stackPushed_) {
masm.unboxObject(Address(masm.getStackPointer(), 0), reg);
masm.addToStackPtr(Imm32(sizeof(js::Value)));
MOZ_ASSERT(stackPushed_ >= sizeof(js::Value));
stackPushed_ -= sizeof(js::Value);
} else {
MOZ_ASSERT(loc.valueStack() < stackPushed_);
masm.unboxObject(Address(masm.getStackPointer(), stackPushed_ - loc.valueStack()),
reg);
}
loc.setPayloadReg(reg, typedId.type());
return reg;
}
case OperandLocation::Uninitialized:
break;
}
MOZ_CRASH();
}
Register
CacheRegisterAllocator::defineRegister(MacroAssembler& masm, TypedOperandId typedId)
{
OperandLocation& loc = operandLocations_[typedId.id()];
MOZ_ASSERT(loc.kind() == OperandLocation::Uninitialized);
Register reg = allocateRegister(masm);
loc.setPayloadReg(reg, typedId.type());
return reg;
}
ValueOperand
CacheRegisterAllocator::defineValueRegister(MacroAssembler& masm, ValOperandId val)
{
OperandLocation& loc = operandLocations_[val.id()];
MOZ_ASSERT(loc.kind() == OperandLocation::Uninitialized);
ValueOperand reg = allocateValueRegister(masm);
loc.setValueReg(reg);
return reg;
}
void
CacheRegisterAllocator::freeDeadOperandRegisters()
{
// See if any operands are dead so we can reuse their registers. Note that
// we skip the input operands, as those are also used by failure paths, and
// we currently don't track those uses.
for (size_t i = writer_.numInputOperands(); i < operandLocations_.length(); i++) {
if (!writer_.operandIsDead(i, currentInstruction_))
continue;
OperandLocation& loc = operandLocations_[i];
switch (loc.kind()) {
case OperandLocation::PayloadReg:
availableRegs_.add(loc.payloadReg());
break;
case OperandLocation::ValueReg:
availableRegs_.add(loc.valueReg());
break;
case OperandLocation::Uninitialized:
case OperandLocation::PayloadStack:
case OperandLocation::ValueStack:
break;
}
loc.setUninitialized();
}
}
void
CacheRegisterAllocator::discardStack(MacroAssembler& masm)
{
// This should only be called when we are no longer using the operands,
// as we're discarding everything from the native stack. Set all operand
// locations to Uninitialized to catch bugs.
for (size_t i = 0; i < operandLocations_.length(); i++)
operandLocations_[i].setUninitialized();
if (stackPushed_ > 0) {
masm.addToStackPtr(Imm32(stackPushed_));
stackPushed_ = 0;
}
}
Register
CacheRegisterAllocator::allocateRegister(MacroAssembler& masm)
{
if (availableRegs_.empty())
freeDeadOperandRegisters();
if (availableRegs_.empty()) {
// Still no registers available, try to spill unused operands to
// the stack.
for (size_t i = 0; i < operandLocations_.length(); i++) {
OperandLocation& loc = operandLocations_[i];
if (loc.kind() == OperandLocation::PayloadReg) {
Register reg = loc.payloadReg();
if (currentOpRegs_.has(reg))
continue;
masm.push(reg);
stackPushed_ += sizeof(uintptr_t);
loc.setPayloadStack(stackPushed_, loc.payloadType());
availableRegs_.add(reg);
break; // We got a register, so break out of the loop.
}
if (loc.kind() == OperandLocation::ValueReg) {
ValueOperand reg = loc.valueReg();
if (currentOpRegs_.aliases(reg))
continue;
masm.pushValue(reg);
stackPushed_ += sizeof(js::Value);
loc.setValueStack(stackPushed_);
availableRegs_.add(reg);
break; // Break out of the loop.
}
}
}
// At this point, there must be a free register. (Ion ICs don't have as
// many registers available, so once we support Ion code generation, we may
// have to spill some unrelated registers.)
MOZ_RELEASE_ASSERT(!availableRegs_.empty());
Register reg = availableRegs_.takeAny();
currentOpRegs_.add(reg);
return reg;
}
void
CacheRegisterAllocator::allocateFixedRegister(MacroAssembler& masm, Register reg)
{
// Fixed registers should be allocated first, to ensure they're
// still available.
MOZ_ASSERT(!currentOpRegs_.has(reg), "Register is in use");
freeDeadOperandRegisters();
if (availableRegs_.has(reg)) {
availableRegs_.take(reg);
currentOpRegs_.add(reg);
return;
}
// The register must be used by some operand. Spill it to the stack.
for (size_t i = 0; i < operandLocations_.length(); i++) {
OperandLocation& loc = operandLocations_[i];
if (loc.kind() == OperandLocation::PayloadReg) {
if (loc.payloadReg() != reg)
continue;
masm.push(reg);
stackPushed_ += sizeof(uintptr_t);
loc.setPayloadStack(stackPushed_, loc.payloadType());
currentOpRegs_.add(reg);
return;
}
if (loc.kind() == OperandLocation::ValueReg) {
if (!loc.valueReg().aliases(reg))
continue;
masm.pushValue(loc.valueReg());
stackPushed_ += sizeof(js::Value);
loc.setValueStack(stackPushed_);
availableRegs_.add(loc.valueReg());
availableRegs_.take(reg);
currentOpRegs_.add(reg);
return;
}
}
MOZ_CRASH("Invalid register");
}
ValueOperand
CacheRegisterAllocator::allocateValueRegister(MacroAssembler& masm)
{
#ifdef JS_NUNBOX32
Register reg1 = allocateRegister(masm);
Register reg2 = allocateRegister(masm);
return ValueOperand(reg1, reg2);
#else
Register reg = allocateRegister(masm);
return ValueOperand(reg);
#endif
}
bool bool
BaselineCacheIRCompiler::emitGuardIsObject() BaselineCacheIRCompiler::emitGuardIsObject()
{ {
@ -1938,156 +1222,6 @@ BaselineCacheIRCompiler::init(CacheKind kind)
return true; return true;
} }
template <typename T>
static GCPtr<T>*
AsGCPtr(uintptr_t* ptr)
{
return reinterpret_cast<GCPtr<T>*>(ptr);
}
template<class T>
GCPtr<T>&
CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const
{
uint8_t* stubData = (uint8_t*)stub + stubDataOffset_;
MOZ_ASSERT(uintptr_t(stubData) % sizeof(uintptr_t) == 0);
return *AsGCPtr<T>((uintptr_t*)(stubData + offset));
}
template GCPtr<Shape*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<ObjectGroup*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<JSObject*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template <typename T, typename V>
static void
InitGCPtr(uintptr_t* ptr, V val)
{
AsGCPtr<T>(ptr)->init(mozilla::BitwiseCast<T>(val));
}
void
CacheIRWriter::copyStubData(uint8_t* dest) const
{
uintptr_t* destWords = reinterpret_cast<uintptr_t*>(dest);
for (const StubField& field : stubFields_) {
switch (field.type()) {
case StubField::Type::RawWord:
*destWords = field.asWord();
break;
case StubField::Type::Shape:
InitGCPtr<Shape*>(destWords, field.asWord());
break;
case StubField::Type::JSObject:
InitGCPtr<JSObject*>(destWords, field.asWord());
break;
case StubField::Type::ObjectGroup:
InitGCPtr<ObjectGroup*>(destWords, field.asWord());
break;
case StubField::Type::Symbol:
InitGCPtr<JS::Symbol*>(destWords, field.asWord());
break;
case StubField::Type::String:
InitGCPtr<JSString*>(destWords, field.asWord());
break;
case StubField::Type::Id:
InitGCPtr<jsid>(destWords, field.asWord());
break;
case StubField::Type::RawInt64:
*reinterpret_cast<uint64_t*>(destWords) = field.asInt64();
break;
case StubField::Type::Value:
InitGCPtr<JS::Value>(destWords, field.asInt64());
break;
case StubField::Type::Limit:
MOZ_CRASH("Invalid type");
}
destWords += StubField::sizeInBytes(field.type()) / sizeof(uintptr_t);
}
}
bool
CacheIRWriter::stubDataEquals(const uint8_t* stubData) const
{
const uintptr_t* stubDataWords = reinterpret_cast<const uintptr_t*>(stubData);
for (const StubField& field : stubFields_) {
if (field.sizeIsWord()) {
if (field.asWord() != *stubDataWords)
return false;
stubDataWords++;
continue;
}
if (field.asInt64() != *reinterpret_cast<const uint64_t*>(stubDataWords))
return false;
stubDataWords += sizeof(uint64_t) / sizeof(uintptr_t);
}
return true;
}
HashNumber
CacheIRStubKey::hash(const CacheIRStubKey::Lookup& l)
{
HashNumber hash = mozilla::HashBytes(l.code, l.length);
hash = mozilla::AddToHash(hash, uint32_t(l.kind));
hash = mozilla::AddToHash(hash, uint32_t(l.engine));
return hash;
}
bool
CacheIRStubKey::match(const CacheIRStubKey& entry, const CacheIRStubKey::Lookup& l)
{
if (entry.stubInfo->kind() != l.kind)
return false;
if (entry.stubInfo->engine() != l.engine)
return false;
if (entry.stubInfo->codeLength() != l.length)
return false;
if (!mozilla::PodEqual(entry.stubInfo->code(), l.code, l.length))
return false;
return true;
}
CacheIRReader::CacheIRReader(const CacheIRStubInfo* stubInfo)
: CacheIRReader(stubInfo->code(), stubInfo->code() + stubInfo->codeLength())
{}
CacheIRStubInfo*
CacheIRStubInfo::New(CacheKind kind, ICStubEngine engine, bool makesGCCalls,
uint32_t stubDataOffset, const CacheIRWriter& writer)
{
size_t numStubFields = writer.numStubFields();
size_t bytesNeeded = sizeof(CacheIRStubInfo) +
writer.codeLength() +
(numStubFields + 1); // +1 for the GCType::Limit terminator.
uint8_t* p = js_pod_malloc<uint8_t>(bytesNeeded);
if (!p)
return nullptr;
// Copy the CacheIR code.
uint8_t* codeStart = p + sizeof(CacheIRStubInfo);
mozilla::PodCopy(codeStart, writer.codeStart(), writer.codeLength());
static_assert(sizeof(StubField::Type) == sizeof(uint8_t),
"StubField::Type must fit in uint8_t");
// Copy the stub field types.
uint8_t* fieldTypes = codeStart + writer.codeLength();
for (size_t i = 0; i < numStubFields; i++)
fieldTypes[i] = uint8_t(writer.stubFieldType(i));
fieldTypes[numStubFields] = uint8_t(StubField::Type::Limit);
return new(p) CacheIRStubInfo(kind, engine, makesGCCalls, stubDataOffset, codeStart,
writer.codeLength(), fieldTypes);
}
static const size_t MaxOptimizedCacheIRStubs = 16; static const size_t MaxOptimizedCacheIRStubs = 16;
ICStub* ICStub*
@ -2227,67 +1361,6 @@ jit::TraceBaselineCacheIRStub(JSTracer* trc, ICStub* stub, const CacheIRStubInfo
} }
} }
size_t
CacheIRStubInfo::stubDataSize() const
{
size_t field = 0;
size_t size = 0;
while (true) {
StubField::Type type = fieldType(field++);
if (type == StubField::Type::Limit)
return size;
size += StubField::sizeInBytes(type);
}
}
void
CacheIRStubInfo::copyStubData(ICStub* src, ICStub* dest) const
{
uint8_t* srcBytes = reinterpret_cast<uint8_t*>(src);
uint8_t* destBytes = reinterpret_cast<uint8_t*>(dest);
size_t field = 0;
size_t offset = 0;
while (true) {
StubField::Type type = fieldType(field);
switch (type) {
case StubField::Type::RawWord:
*reinterpret_cast<uintptr_t*>(destBytes + offset) =
*reinterpret_cast<uintptr_t*>(srcBytes + offset);
break;
case StubField::Type::RawInt64:
*reinterpret_cast<uint64_t*>(destBytes + offset) =
*reinterpret_cast<uint64_t*>(srcBytes + offset);
break;
case StubField::Type::Shape:
getStubField<Shape*>(dest, offset).init(getStubField<Shape*>(src, offset));
break;
case StubField::Type::JSObject:
getStubField<JSObject*>(dest, offset).init(getStubField<JSObject*>(src, offset));
break;
case StubField::Type::ObjectGroup:
getStubField<ObjectGroup*>(dest, offset).init(getStubField<ObjectGroup*>(src, offset));
break;
case StubField::Type::Symbol:
getStubField<JS::Symbol*>(dest, offset).init(getStubField<JS::Symbol*>(src, offset));
break;
case StubField::Type::String:
getStubField<JSString*>(dest, offset).init(getStubField<JSString*>(src, offset));
break;
case StubField::Type::Id:
getStubField<jsid>(dest, offset).init(getStubField<jsid>(src, offset));
break;
case StubField::Type::Value:
getStubField<Value>(dest, offset).init(getStubField<Value>(src, offset));
break;
case StubField::Type::Limit:
return; // Done.
}
field++;
offset += StubField::sizeInBytes(type);
}
}
uint8_t* uint8_t*
ICCacheIR_Monitored::stubDataStart() ICCacheIR_Monitored::stubDataStart()
{ {

Просмотреть файл

@ -9,6 +9,7 @@
#include "gc/Barrier.h" #include "gc/Barrier.h"
#include "jit/CacheIR.h" #include "jit/CacheIR.h"
#include "jit/CacheIRCompiler.h"
namespace js { namespace js {
namespace jit { namespace jit {
@ -16,62 +17,6 @@ namespace jit {
class ICFallbackStub; class ICFallbackStub;
class ICStub; class ICStub;
// See the 'Sharing Baseline stub code' comment in CacheIR.h for a description
// of this class.
class CacheIRStubInfo
{
// These fields don't require 8 bits, but GCC complains if these fields are
// smaller than the size of the enums.
CacheKind kind_ : 8;
ICStubEngine engine_ : 8;
bool makesGCCalls_ : 1;
uint8_t stubDataOffset_;
const uint8_t* code_;
uint32_t length_;
const uint8_t* fieldTypes_;
CacheIRStubInfo(CacheKind kind, ICStubEngine engine, bool makesGCCalls,
uint32_t stubDataOffset, const uint8_t* code, uint32_t codeLength,
const uint8_t* fieldTypes)
: kind_(kind),
engine_(engine),
makesGCCalls_(makesGCCalls),
stubDataOffset_(stubDataOffset),
code_(code),
length_(codeLength),
fieldTypes_(fieldTypes)
{
MOZ_ASSERT(kind_ == kind, "Kind must fit in bitfield");
MOZ_ASSERT(engine_ == engine, "Engine must fit in bitfield");
MOZ_ASSERT(stubDataOffset_ == stubDataOffset, "stubDataOffset must fit in uint8_t");
}
CacheIRStubInfo(const CacheIRStubInfo&) = delete;
CacheIRStubInfo& operator=(const CacheIRStubInfo&) = delete;
public:
CacheKind kind() const { return kind_; }
ICStubEngine engine() const { return engine_; }
bool makesGCCalls() const { return makesGCCalls_; }
const uint8_t* code() const { return code_; }
uint32_t codeLength() const { return length_; }
uint32_t stubDataOffset() const { return stubDataOffset_; }
size_t stubDataSize() const;
StubField::Type fieldType(uint32_t i) const { return (StubField::Type)fieldTypes_[i]; }
static CacheIRStubInfo* New(CacheKind kind, ICStubEngine engine, bool canMakeCalls,
uint32_t stubDataOffset, const CacheIRWriter& writer);
template <class T>
js::GCPtr<T>& getStubField(ICStub* stub, uint32_t field) const;
void copyStubData(ICStub* src, ICStub* dest) const;
};
void TraceBaselineCacheIRStub(JSTracer* trc, ICStub* stub, const CacheIRStubInfo* stubInfo); void TraceBaselineCacheIRStub(JSTracer* trc, ICStub* stub, const CacheIRStubInfo* stubInfo);
ICStub* AttachBaselineCacheIRStub(JSContext* cx, const CacheIRWriter& writer, ICStub* AttachBaselineCacheIRStub(JSContext* cx, const CacheIRWriter& writer,

Просмотреть файл

@ -0,0 +1,650 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/CacheIRCompiler.h"
using namespace js;
using namespace js::jit;
using mozilla::Maybe;
ValueOperand
CacheRegisterAllocator::useValueRegister(MacroAssembler& masm, ValOperandId op)
{
OperandLocation& loc = operandLocations_[op.id()];
switch (loc.kind()) {
case OperandLocation::ValueReg:
currentOpRegs_.add(loc.valueReg());
return loc.valueReg();
case OperandLocation::ValueStack: {
// The Value is on the stack. If it's on top of the stack, unbox and
// then pop it. If we need the registers later, we can always spill
// back. If it's not on the top of the stack, just unbox.
ValueOperand reg = allocateValueRegister(masm);
if (loc.valueStack() == stackPushed_) {
masm.popValue(reg);
MOZ_ASSERT(stackPushed_ >= sizeof(js::Value));
stackPushed_ -= sizeof(js::Value);
} else {
MOZ_ASSERT(loc.valueStack() < stackPushed_);
masm.loadValue(Address(masm.getStackPointer(), stackPushed_ - loc.valueStack()), reg);
}
loc.setValueReg(reg);
return reg;
}
// The operand should never be unboxed.
case OperandLocation::PayloadStack:
case OperandLocation::PayloadReg:
case OperandLocation::Uninitialized:
break;
}
MOZ_CRASH();
}
Register
CacheRegisterAllocator::useRegister(MacroAssembler& masm, TypedOperandId typedId)
{
OperandLocation& loc = operandLocations_[typedId.id()];
switch (loc.kind()) {
case OperandLocation::PayloadReg:
currentOpRegs_.add(loc.payloadReg());
return loc.payloadReg();
case OperandLocation::ValueReg: {
// It's possible the value is still boxed: as an optimization, we unbox
// the first time we use a value as object.
ValueOperand val = loc.valueReg();
availableRegs_.add(val);
Register reg = val.scratchReg();
availableRegs_.take(reg);
masm.unboxObject(val, reg);
loc.setPayloadReg(reg, typedId.type());
currentOpRegs_.add(reg);
return reg;
}
case OperandLocation::PayloadStack: {
// The payload is on the stack. If it's on top of the stack we can just
// pop it, else we emit a load.
Register reg = allocateRegister(masm);
if (loc.payloadStack() == stackPushed_) {
masm.pop(reg);
MOZ_ASSERT(stackPushed_ >= sizeof(uintptr_t));
stackPushed_ -= sizeof(uintptr_t);
} else {
MOZ_ASSERT(loc.payloadStack() < stackPushed_);
masm.loadPtr(Address(masm.getStackPointer(), stackPushed_ - loc.payloadStack()), reg);
}
loc.setPayloadReg(reg, loc.payloadType());
return reg;
}
case OperandLocation::ValueStack: {
// The value is on the stack, but boxed. If it's on top of the stack we
// unbox it and then remove it from the stack, else we just unbox.
Register reg = allocateRegister(masm);
if (loc.valueStack() == stackPushed_) {
masm.unboxObject(Address(masm.getStackPointer(), 0), reg);
masm.addToStackPtr(Imm32(sizeof(js::Value)));
MOZ_ASSERT(stackPushed_ >= sizeof(js::Value));
stackPushed_ -= sizeof(js::Value);
} else {
MOZ_ASSERT(loc.valueStack() < stackPushed_);
masm.unboxObject(Address(masm.getStackPointer(), stackPushed_ - loc.valueStack()),
reg);
}
loc.setPayloadReg(reg, typedId.type());
return reg;
}
case OperandLocation::Uninitialized:
break;
}
MOZ_CRASH();
}
Register
CacheRegisterAllocator::defineRegister(MacroAssembler& masm, TypedOperandId typedId)
{
OperandLocation& loc = operandLocations_[typedId.id()];
MOZ_ASSERT(loc.kind() == OperandLocation::Uninitialized);
Register reg = allocateRegister(masm);
loc.setPayloadReg(reg, typedId.type());
return reg;
}
ValueOperand
CacheRegisterAllocator::defineValueRegister(MacroAssembler& masm, ValOperandId val)
{
OperandLocation& loc = operandLocations_[val.id()];
MOZ_ASSERT(loc.kind() == OperandLocation::Uninitialized);
ValueOperand reg = allocateValueRegister(masm);
loc.setValueReg(reg);
return reg;
}
void
CacheRegisterAllocator::freeDeadOperandRegisters()
{
// See if any operands are dead so we can reuse their registers. Note that
// we skip the input operands, as those are also used by failure paths, and
// we currently don't track those uses.
for (size_t i = writer_.numInputOperands(); i < operandLocations_.length(); i++) {
if (!writer_.operandIsDead(i, currentInstruction_))
continue;
OperandLocation& loc = operandLocations_[i];
switch (loc.kind()) {
case OperandLocation::PayloadReg:
availableRegs_.add(loc.payloadReg());
break;
case OperandLocation::ValueReg:
availableRegs_.add(loc.valueReg());
break;
case OperandLocation::Uninitialized:
case OperandLocation::PayloadStack:
case OperandLocation::ValueStack:
break;
}
loc.setUninitialized();
}
}
void
CacheRegisterAllocator::discardStack(MacroAssembler& masm)
{
// This should only be called when we are no longer using the operands,
// as we're discarding everything from the native stack. Set all operand
// locations to Uninitialized to catch bugs.
for (size_t i = 0; i < operandLocations_.length(); i++)
operandLocations_[i].setUninitialized();
if (stackPushed_ > 0) {
masm.addToStackPtr(Imm32(stackPushed_));
stackPushed_ = 0;
}
}
Register
CacheRegisterAllocator::allocateRegister(MacroAssembler& masm)
{
if (availableRegs_.empty())
freeDeadOperandRegisters();
if (availableRegs_.empty()) {
// Still no registers available, try to spill unused operands to
// the stack.
for (size_t i = 0; i < operandLocations_.length(); i++) {
OperandLocation& loc = operandLocations_[i];
if (loc.kind() == OperandLocation::PayloadReg) {
Register reg = loc.payloadReg();
if (currentOpRegs_.has(reg))
continue;
masm.push(reg);
stackPushed_ += sizeof(uintptr_t);
loc.setPayloadStack(stackPushed_, loc.payloadType());
availableRegs_.add(reg);
break; // We got a register, so break out of the loop.
}
if (loc.kind() == OperandLocation::ValueReg) {
ValueOperand reg = loc.valueReg();
if (currentOpRegs_.aliases(reg))
continue;
masm.pushValue(reg);
stackPushed_ += sizeof(js::Value);
loc.setValueStack(stackPushed_);
availableRegs_.add(reg);
break; // Break out of the loop.
}
}
}
// At this point, there must be a free register. (Ion ICs don't have as
// many registers available, so once we support Ion code generation, we may
// have to spill some unrelated registers.)
MOZ_RELEASE_ASSERT(!availableRegs_.empty());
Register reg = availableRegs_.takeAny();
currentOpRegs_.add(reg);
return reg;
}
void
CacheRegisterAllocator::allocateFixedRegister(MacroAssembler& masm, Register reg)
{
// Fixed registers should be allocated first, to ensure they're
// still available.
MOZ_ASSERT(!currentOpRegs_.has(reg), "Register is in use");
freeDeadOperandRegisters();
if (availableRegs_.has(reg)) {
availableRegs_.take(reg);
currentOpRegs_.add(reg);
return;
}
// The register must be used by some operand. Spill it to the stack.
for (size_t i = 0; i < operandLocations_.length(); i++) {
OperandLocation& loc = operandLocations_[i];
if (loc.kind() == OperandLocation::PayloadReg) {
if (loc.payloadReg() != reg)
continue;
masm.push(reg);
stackPushed_ += sizeof(uintptr_t);
loc.setPayloadStack(stackPushed_, loc.payloadType());
currentOpRegs_.add(reg);
return;
}
if (loc.kind() == OperandLocation::ValueReg) {
if (!loc.valueReg().aliases(reg))
continue;
masm.pushValue(loc.valueReg());
stackPushed_ += sizeof(js::Value);
loc.setValueStack(stackPushed_);
availableRegs_.add(loc.valueReg());
availableRegs_.take(reg);
currentOpRegs_.add(reg);
return;
}
}
MOZ_CRASH("Invalid register");
}
ValueOperand
CacheRegisterAllocator::allocateValueRegister(MacroAssembler& masm)
{
#ifdef JS_NUNBOX32
Register reg1 = allocateRegister(masm);
Register reg2 = allocateRegister(masm);
return ValueOperand(reg1, reg2);
#else
Register reg = allocateRegister(masm);
return ValueOperand(reg);
#endif
}
bool
CacheRegisterAllocator::init(const AllocatableGeneralRegisterSet& available)
{
availableRegs_ = available;
if (!origInputLocations_.resize(writer_.numInputOperands()))
return false;
if (!operandLocations_.resize(writer_.numOperandIds()))
return false;
return true;
}
size_t
CacheIRStubInfo::stubDataSize() const
{
size_t field = 0;
size_t size = 0;
while (true) {
StubField::Type type = fieldType(field++);
if (type == StubField::Type::Limit)
return size;
size += StubField::sizeInBytes(type);
}
}
void
CacheIRStubInfo::copyStubData(ICStub* src, ICStub* dest) const
{
uint8_t* srcBytes = reinterpret_cast<uint8_t*>(src);
uint8_t* destBytes = reinterpret_cast<uint8_t*>(dest);
size_t field = 0;
size_t offset = 0;
while (true) {
StubField::Type type = fieldType(field);
switch (type) {
case StubField::Type::RawWord:
*reinterpret_cast<uintptr_t*>(destBytes + offset) =
*reinterpret_cast<uintptr_t*>(srcBytes + offset);
break;
case StubField::Type::RawInt64:
*reinterpret_cast<uint64_t*>(destBytes + offset) =
*reinterpret_cast<uint64_t*>(srcBytes + offset);
break;
case StubField::Type::Shape:
getStubField<Shape*>(dest, offset).init(getStubField<Shape*>(src, offset));
break;
case StubField::Type::JSObject:
getStubField<JSObject*>(dest, offset).init(getStubField<JSObject*>(src, offset));
break;
case StubField::Type::ObjectGroup:
getStubField<ObjectGroup*>(dest, offset).init(getStubField<ObjectGroup*>(src, offset));
break;
case StubField::Type::Symbol:
getStubField<JS::Symbol*>(dest, offset).init(getStubField<JS::Symbol*>(src, offset));
break;
case StubField::Type::String:
getStubField<JSString*>(dest, offset).init(getStubField<JSString*>(src, offset));
break;
case StubField::Type::Id:
getStubField<jsid>(dest, offset).init(getStubField<jsid>(src, offset));
break;
case StubField::Type::Value:
getStubField<Value>(dest, offset).init(getStubField<Value>(src, offset));
break;
case StubField::Type::Limit:
return; // Done.
}
field++;
offset += StubField::sizeInBytes(type);
}
}
template <typename T>
static GCPtr<T>*
AsGCPtr(uintptr_t* ptr)
{
return reinterpret_cast<GCPtr<T>*>(ptr);
}
template<class T>
GCPtr<T>&
CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const
{
uint8_t* stubData = (uint8_t*)stub + stubDataOffset_;
MOZ_ASSERT(uintptr_t(stubData) % sizeof(uintptr_t) == 0);
return *AsGCPtr<T>((uintptr_t*)(stubData + offset));
}
template GCPtr<Shape*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<ObjectGroup*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<JSObject*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<JSString*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<JS::Symbol*>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<JS::Value>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template GCPtr<jsid>& CacheIRStubInfo::getStubField(ICStub* stub, uint32_t offset) const;
template <typename T, typename V>
static void
InitGCPtr(uintptr_t* ptr, V val)
{
AsGCPtr<T>(ptr)->init(mozilla::BitwiseCast<T>(val));
}
void
CacheIRWriter::copyStubData(uint8_t* dest) const
{
uintptr_t* destWords = reinterpret_cast<uintptr_t*>(dest);
for (const StubField& field : stubFields_) {
switch (field.type()) {
case StubField::Type::RawWord:
*destWords = field.asWord();
break;
case StubField::Type::Shape:
InitGCPtr<Shape*>(destWords, field.asWord());
break;
case StubField::Type::JSObject:
InitGCPtr<JSObject*>(destWords, field.asWord());
break;
case StubField::Type::ObjectGroup:
InitGCPtr<ObjectGroup*>(destWords, field.asWord());
break;
case StubField::Type::Symbol:
InitGCPtr<JS::Symbol*>(destWords, field.asWord());
break;
case StubField::Type::String:
InitGCPtr<JSString*>(destWords, field.asWord());
break;
case StubField::Type::Id:
InitGCPtr<jsid>(destWords, field.asWord());
break;
case StubField::Type::RawInt64:
*reinterpret_cast<uint64_t*>(destWords) = field.asInt64();
break;
case StubField::Type::Value:
InitGCPtr<JS::Value>(destWords, field.asInt64());
break;
case StubField::Type::Limit:
MOZ_CRASH("Invalid type");
}
destWords += StubField::sizeInBytes(field.type()) / sizeof(uintptr_t);
}
}
bool
CacheIRWriter::stubDataEquals(const uint8_t* stubData) const
{
const uintptr_t* stubDataWords = reinterpret_cast<const uintptr_t*>(stubData);
for (const StubField& field : stubFields_) {
if (field.sizeIsWord()) {
if (field.asWord() != *stubDataWords)
return false;
stubDataWords++;
continue;
}
if (field.asInt64() != *reinterpret_cast<const uint64_t*>(stubDataWords))
return false;
stubDataWords += sizeof(uint64_t) / sizeof(uintptr_t);
}
return true;
}
HashNumber
CacheIRStubKey::hash(const CacheIRStubKey::Lookup& l)
{
HashNumber hash = mozilla::HashBytes(l.code, l.length);
hash = mozilla::AddToHash(hash, uint32_t(l.kind));
hash = mozilla::AddToHash(hash, uint32_t(l.engine));
return hash;
}
bool
CacheIRStubKey::match(const CacheIRStubKey& entry, const CacheIRStubKey::Lookup& l)
{
if (entry.stubInfo->kind() != l.kind)
return false;
if (entry.stubInfo->engine() != l.engine)
return false;
if (entry.stubInfo->codeLength() != l.length)
return false;
if (!mozilla::PodEqual(entry.stubInfo->code(), l.code, l.length))
return false;
return true;
}
CacheIRReader::CacheIRReader(const CacheIRStubInfo* stubInfo)
: CacheIRReader(stubInfo->code(), stubInfo->code() + stubInfo->codeLength())
{}
CacheIRStubInfo*
CacheIRStubInfo::New(CacheKind kind, ICStubEngine engine, bool makesGCCalls,
uint32_t stubDataOffset, const CacheIRWriter& writer)
{
size_t numStubFields = writer.numStubFields();
size_t bytesNeeded = sizeof(CacheIRStubInfo) +
writer.codeLength() +
(numStubFields + 1); // +1 for the GCType::Limit terminator.
uint8_t* p = js_pod_malloc<uint8_t>(bytesNeeded);
if (!p)
return nullptr;
// Copy the CacheIR code.
uint8_t* codeStart = p + sizeof(CacheIRStubInfo);
mozilla::PodCopy(codeStart, writer.codeStart(), writer.codeLength());
static_assert(sizeof(StubField::Type) == sizeof(uint8_t),
"StubField::Type must fit in uint8_t");
// Copy the stub field types.
uint8_t* fieldTypes = codeStart + writer.codeLength();
for (size_t i = 0; i < numStubFields; i++)
fieldTypes[i] = uint8_t(writer.stubFieldType(i));
fieldTypes[numStubFields] = uint8_t(StubField::Type::Limit);
return new(p) CacheIRStubInfo(kind, engine, makesGCCalls, stubDataOffset, codeStart,
writer.codeLength(), fieldTypes);
}
bool
OperandLocation::operator==(const OperandLocation& other) const
{
if (kind_ != other.kind_)
return false;
switch (kind()) {
case Uninitialized:
return true;
case PayloadReg:
return payloadReg() == other.payloadReg() && payloadType() == other.payloadType();
case ValueReg:
return valueReg() == other.valueReg();
case PayloadStack:
return payloadStack() == other.payloadStack() && payloadType() == other.payloadType();
case ValueStack:
return valueStack() == other.valueStack();
}
MOZ_CRASH("Invalid OperandLocation kind");
}
bool
FailurePath::canShareFailurePath(const FailurePath& other) const
{
if (stackPushed_ != other.stackPushed_)
return false;
MOZ_ASSERT(inputs_.length() == other.inputs_.length());
for (size_t i = 0; i < inputs_.length(); i++) {
if (inputs_[i] != other.inputs_[i])
return false;
}
return true;
}
bool
CacheIRCompiler::addFailurePath(FailurePath** failure)
{
FailurePath newFailure;
for (size_t i = 0; i < writer_.numInputOperands(); i++) {
if (!newFailure.appendInput(allocator.operandLocation(i)))
return false;
}
newFailure.setStackPushed(allocator.stackPushed());
// Reuse the previous failure path if the current one is the same, to
// avoid emitting duplicate code.
if (failurePaths.length() > 0 && failurePaths.back().canShareFailurePath(newFailure)) {
*failure = &failurePaths.back();
return true;
}
if (!failurePaths.append(Move(newFailure)))
return false;
*failure = &failurePaths.back();
return true;
}
void
CacheIRCompiler::emitFailurePath(size_t i)
{
FailurePath& failure = failurePaths[i];
masm.bind(failure.label());
uint32_t stackPushed = failure.stackPushed();
size_t numInputOperands = writer_.numInputOperands();
for (size_t j = 0; j < numInputOperands; j++) {
OperandLocation orig = allocator.origInputLocation(j);
OperandLocation cur = failure.input(j);
MOZ_ASSERT(orig.kind() == OperandLocation::ValueReg);
// We have a cycle if a destination register will be used later
// as source register. If that happens, just push the current value
// on the stack and later get it from there.
for (size_t k = j + 1; k < numInputOperands; k++) {
OperandLocation laterSource = failure.input(k);
switch (laterSource.kind()) {
case OperandLocation::ValueReg:
if (orig.aliasesReg(laterSource.valueReg())) {
stackPushed += sizeof(js::Value);
masm.pushValue(laterSource.valueReg());
laterSource.setValueStack(stackPushed);
}
break;
case OperandLocation::PayloadReg:
if (orig.aliasesReg(laterSource.payloadReg())) {
stackPushed += sizeof(uintptr_t);
masm.push(laterSource.payloadReg());
laterSource.setPayloadStack(stackPushed, laterSource.payloadType());
}
break;
case OperandLocation::PayloadStack:
case OperandLocation::ValueStack:
case OperandLocation::Uninitialized:
break;
}
}
switch (cur.kind()) {
case OperandLocation::ValueReg:
masm.moveValue(cur.valueReg(), orig.valueReg());
break;
case OperandLocation::PayloadReg:
masm.tagValue(cur.payloadType(), cur.payloadReg(), orig.valueReg());
break;
case OperandLocation::PayloadStack: {
MOZ_ASSERT(stackPushed >= sizeof(uintptr_t));
Register scratch = orig.valueReg().scratchReg();
if (cur.payloadStack() == stackPushed) {
masm.pop(scratch);
stackPushed -= sizeof(uintptr_t);
} else {
MOZ_ASSERT(cur.payloadStack() < stackPushed);
masm.loadPtr(Address(masm.getStackPointer(), stackPushed - cur.payloadStack()),
scratch);
}
masm.tagValue(cur.payloadType(), scratch, orig.valueReg());
break;
}
case OperandLocation::ValueStack:
MOZ_ASSERT(stackPushed >= sizeof(js::Value));
if (cur.valueStack() == stackPushed) {
masm.popValue(orig.valueReg());
stackPushed -= sizeof(js::Value);
} else {
MOZ_ASSERT(cur.valueStack() < stackPushed);
masm.loadValue(Address(masm.getStackPointer(), stackPushed - cur.valueStack()),
orig.valueReg());
}
break;
default:
MOZ_CRASH();
}
}
allocator.discardStack(masm);
}

Просмотреть файл

@ -0,0 +1,385 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_CacheIRCompiler_h
#define jit_CacheIRCompiler_h
#include "jit/CacheIR.h"
namespace js {
namespace jit {
// OperandLocation represents the location of an OperandId. The operand is
// either in a register or on the stack, and is either boxed or unboxed.
class OperandLocation
{
public:
enum Kind {
Uninitialized = 0,
PayloadReg,
ValueReg,
PayloadStack,
ValueStack,
};
private:
Kind kind_;
union Data {
struct {
Register reg;
JSValueType type;
} payloadReg;
ValueOperand valueReg;
struct {
uint32_t stackPushed;
JSValueType type;
} payloadStack;
uint32_t valueStackPushed;
Data() : valueStackPushed(0) {}
};
Data data_;
public:
OperandLocation() : kind_(Uninitialized) {}
Kind kind() const { return kind_; }
void setUninitialized() {
kind_ = Uninitialized;
}
ValueOperand valueReg() const {
MOZ_ASSERT(kind_ == ValueReg);
return data_.valueReg;
}
Register payloadReg() const {
MOZ_ASSERT(kind_ == PayloadReg);
return data_.payloadReg.reg;
}
uint32_t payloadStack() const {
MOZ_ASSERT(kind_ == PayloadStack);
return data_.payloadStack.stackPushed;
}
uint32_t valueStack() const {
MOZ_ASSERT(kind_ == ValueStack);
return data_.valueStackPushed;
}
JSValueType payloadType() const {
if (kind_ == PayloadReg)
return data_.payloadReg.type;
MOZ_ASSERT(kind_ == PayloadStack);
return data_.payloadStack.type;
}
void setPayloadReg(Register reg, JSValueType type) {
kind_ = PayloadReg;
data_.payloadReg.reg = reg;
data_.payloadReg.type = type;
}
void setValueReg(ValueOperand reg) {
kind_ = ValueReg;
data_.valueReg = reg;
}
void setPayloadStack(uint32_t stackPushed, JSValueType type) {
kind_ = PayloadStack;
data_.payloadStack.stackPushed = stackPushed;
data_.payloadStack.type = type;
}
void setValueStack(uint32_t stackPushed) {
kind_ = ValueStack;
data_.valueStackPushed = stackPushed;
}
bool aliasesReg(Register reg) {
if (kind_ == PayloadReg)
return payloadReg() == reg;
if (kind_ == ValueReg)
return valueReg().aliases(reg);
return false;
}
bool aliasesReg(ValueOperand reg) {
#if defined(JS_NUNBOX32)
return aliasesReg(reg.typeReg()) || aliasesReg(reg.payloadReg());
#else
return aliasesReg(reg.valueReg());
#endif
}
bool operator==(const OperandLocation& other) const;
bool operator!=(const OperandLocation& other) const { return !operator==(other); }
};
// Class to track and allocate registers while emitting IC code.
class MOZ_RAII CacheRegisterAllocator
{
// The original location of the inputs to the cache.
Vector<OperandLocation, 4, SystemAllocPolicy> origInputLocations_;
// The current location of each operand.
Vector<OperandLocation, 8, SystemAllocPolicy> operandLocations_;
// The registers allocated while emitting the current CacheIR op.
// This prevents us from allocating a register and then immediately
// clobbering it for something else, while we're still holding on to it.
LiveGeneralRegisterSet currentOpRegs_;
const AllocatableGeneralRegisterSet allocatableRegs_;
// Registers that are currently unused and available.
AllocatableGeneralRegisterSet availableRegs_;
// The number of bytes pushed on the native stack.
uint32_t stackPushed_;
// The index of the CacheIR instruction we're currently emitting.
uint32_t currentInstruction_;
const CacheIRWriter& writer_;
CacheRegisterAllocator(const CacheRegisterAllocator&) = delete;
CacheRegisterAllocator& operator=(const CacheRegisterAllocator&) = delete;
void freeDeadOperandRegisters();
public:
friend class AutoScratchRegister;
friend class AutoScratchRegisterExcluding;
explicit CacheRegisterAllocator(const CacheIRWriter& writer)
: allocatableRegs_(GeneralRegisterSet::All()),
stackPushed_(0),
currentInstruction_(0),
writer_(writer)
{}
MOZ_MUST_USE bool init(const AllocatableGeneralRegisterSet& available);
OperandLocation operandLocation(size_t i) const {
return operandLocations_[i];
}
OperandLocation origInputLocation(size_t i) const {
return origInputLocations_[i];
}
void initInputLocation(size_t i, ValueOperand reg) {
origInputLocations_[i].setValueReg(reg);
operandLocations_[i] = origInputLocations_[i];
}
void nextOp() {
currentOpRegs_.clear();
currentInstruction_++;
}
uint32_t stackPushed() const {
return stackPushed_;
}
bool isAllocatable(Register reg) const {
return allocatableRegs_.has(reg);
}
// Allocates a new register.
Register allocateRegister(MacroAssembler& masm);
ValueOperand allocateValueRegister(MacroAssembler& masm);
void allocateFixedRegister(MacroAssembler& masm, Register reg);
// Releases a register so it can be reused later.
void releaseRegister(Register reg) {
MOZ_ASSERT(currentOpRegs_.has(reg));
availableRegs_.add(reg);
}
// Removes spilled values from the native stack. This should only be
// called after all registers have been allocated.
void discardStack(MacroAssembler& masm);
// Returns the register for the given operand. If the operand is currently
// not in a register, it will load it into one.
ValueOperand useValueRegister(MacroAssembler& masm, ValOperandId val);
Register useRegister(MacroAssembler& masm, TypedOperandId typedId);
// Allocates an output register for the given operand.
Register defineRegister(MacroAssembler& masm, TypedOperandId typedId);
ValueOperand defineValueRegister(MacroAssembler& masm, ValOperandId val);
};
// RAII class to allocate a scratch register and release it when we're done
// with it.
class MOZ_RAII AutoScratchRegister
{
CacheRegisterAllocator& alloc_;
Register reg_;
public:
AutoScratchRegister(CacheRegisterAllocator& alloc, MacroAssembler& masm,
Register reg = InvalidReg)
: alloc_(alloc)
{
if (reg != InvalidReg) {
alloc.allocateFixedRegister(masm, reg);
reg_ = reg;
} else {
reg_ = alloc.allocateRegister(masm);
}
MOZ_ASSERT(alloc_.currentOpRegs_.has(reg_));
}
~AutoScratchRegister() {
alloc_.releaseRegister(reg_);
}
operator Register() const { return reg_; }
};
// Like AutoScratchRegister, but lets the caller specify a register that should
// not be allocated here.
class MOZ_RAII AutoScratchRegisterExcluding
{
CacheRegisterAllocator& alloc_;
Register reg_;
public:
AutoScratchRegisterExcluding(CacheRegisterAllocator& alloc, MacroAssembler& masm,
Register excluding)
: alloc_(alloc)
{
MOZ_ASSERT(excluding != InvalidReg);
reg_ = alloc.allocateRegister(masm);
if (reg_ == excluding) {
// We need a different register, so try again.
reg_ = alloc.allocateRegister(masm);
MOZ_ASSERT(reg_ != excluding);
alloc_.releaseRegister(excluding);
}
MOZ_ASSERT(alloc_.currentOpRegs_.has(reg_));
}
~AutoScratchRegisterExcluding() {
alloc_.releaseRegister(reg_);
}
operator Register() const { return reg_; }
};
// The FailurePath class stores everything we need to generate a failure path
// at the end of the IC code. The failure path restores the input registers, if
// needed, and jumps to the next stub.
class FailurePath
{
Vector<OperandLocation, 4, SystemAllocPolicy> inputs_;
NonAssertingLabel label_;
uint32_t stackPushed_;
public:
FailurePath() = default;
FailurePath(FailurePath&& other)
: inputs_(Move(other.inputs_)),
label_(other.label_),
stackPushed_(other.stackPushed_)
{}
Label* label() { return &label_; }
void setStackPushed(uint32_t i) { stackPushed_ = i; }
uint32_t stackPushed() const { return stackPushed_; }
bool appendInput(OperandLocation loc) {
return inputs_.append(loc);
}
OperandLocation input(size_t i) const {
return inputs_[i];
}
// If canShareFailurePath(other) returns true, the same machine code will
// be emitted for two failure paths, so we can share them.
bool canShareFailurePath(const FailurePath& other) const;
};
// Base class for BaselineCacheIRCompiler and IonCacheIRCompiler.
class MOZ_RAII CacheIRCompiler
{
protected:
JSContext* cx_;
CacheIRReader reader;
const CacheIRWriter& writer_;
MacroAssembler masm;
CacheRegisterAllocator allocator;
Vector<FailurePath, 4, SystemAllocPolicy> failurePaths;
CacheIRCompiler(JSContext* cx, const CacheIRWriter& writer)
: cx_(cx),
reader(writer),
writer_(writer),
allocator(writer_)
{}
MOZ_MUST_USE bool addFailurePath(FailurePath** failure);
void emitFailurePath(size_t i);
};
// See the 'Sharing Baseline stub code' comment in CacheIR.h for a description
// of this class.
class CacheIRStubInfo
{
// These fields don't require 8 bits, but GCC complains if these fields are
// smaller than the size of the enums.
CacheKind kind_ : 8;
ICStubEngine engine_ : 8;
bool makesGCCalls_ : 1;
uint8_t stubDataOffset_;
const uint8_t* code_;
uint32_t length_;
const uint8_t* fieldTypes_;
CacheIRStubInfo(CacheKind kind, ICStubEngine engine, bool makesGCCalls,
uint32_t stubDataOffset, const uint8_t* code, uint32_t codeLength,
const uint8_t* fieldTypes)
: kind_(kind),
engine_(engine),
makesGCCalls_(makesGCCalls),
stubDataOffset_(stubDataOffset),
code_(code),
length_(codeLength),
fieldTypes_(fieldTypes)
{
MOZ_ASSERT(kind_ == kind, "Kind must fit in bitfield");
MOZ_ASSERT(engine_ == engine, "Engine must fit in bitfield");
MOZ_ASSERT(stubDataOffset_ == stubDataOffset, "stubDataOffset must fit in uint8_t");
}
CacheIRStubInfo(const CacheIRStubInfo&) = delete;
CacheIRStubInfo& operator=(const CacheIRStubInfo&) = delete;
public:
CacheKind kind() const { return kind_; }
ICStubEngine engine() const { return engine_; }
bool makesGCCalls() const { return makesGCCalls_; }
const uint8_t* code() const { return code_; }
uint32_t codeLength() const { return length_; }
uint32_t stubDataOffset() const { return stubDataOffset_; }
size_t stubDataSize() const;
StubField::Type fieldType(uint32_t i) const { return (StubField::Type)fieldTypes_[i]; }
static CacheIRStubInfo* New(CacheKind kind, ICStubEngine engine, bool canMakeCalls,
uint32_t stubDataOffset, const CacheIRWriter& writer);
template <class T>
js::GCPtr<T>& getStubField(ICStub* stub, uint32_t field) const;
void copyStubData(ICStub* src, ICStub* dest) const;
};
} // namespace jit
} // namespace js
#endif /* jit_CacheIRCompiler_h */

Просмотреть файл

@ -222,6 +222,7 @@ UNIFIED_SOURCES += [
'jit/BytecodeAnalysis.cpp', 'jit/BytecodeAnalysis.cpp',
'jit/C1Spewer.cpp', 'jit/C1Spewer.cpp',
'jit/CacheIR.cpp', 'jit/CacheIR.cpp',
'jit/CacheIRCompiler.cpp',
'jit/CodeGenerator.cpp', 'jit/CodeGenerator.cpp',
'jit/CompileWrappers.cpp', 'jit/CompileWrappers.cpp',
'jit/Disassembler.cpp', 'jit/Disassembler.cpp',