зеркало из https://github.com/mozilla/gecko-dev.git
Bug 861727. Refactor CompositorParent a bit. r=BenWa
--HG-- rename : gfx/layers/ipc/CompositorParent.cpp => gfx/layers/composite/AsyncCompositionManager.cpp rename : gfx/layers/ipc/CompositorParent.h => gfx/layers/composite/AsyncCompositionManager.h
This commit is contained in:
Родитель
3b91a9b5ae
Коммит
5e9cff53e2
|
@ -97,6 +97,7 @@ endif
|
|||
endif
|
||||
|
||||
CPPSRCS += \
|
||||
AsyncCompositionManager.cpp \
|
||||
AsyncPanZoomController.cpp \
|
||||
Axis.cpp \
|
||||
CanvasClient.cpp \
|
||||
|
|
|
@ -0,0 +1,593 @@
|
|||
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||||
/* vim: set sw=2 ts=2 et tw=80 : */
|
||||
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#include "mozilla/layers/AsyncCompositionManager.h"
|
||||
#include "base/basictypes.h"
|
||||
|
||||
#if defined(MOZ_WIDGET_ANDROID)
|
||||
# include <android/log.h>
|
||||
# include "AndroidBridge.h"
|
||||
#endif
|
||||
|
||||
#include "CompositorParent.h"
|
||||
#include "LayerManagerComposite.h"
|
||||
|
||||
#include "nsStyleAnimation.h"
|
||||
#include "nsDisplayList.h"
|
||||
#include "AnimationCommon.h"
|
||||
#include "nsAnimationManager.h"
|
||||
#include "mozilla/layers/AsyncPanZoomController.h"
|
||||
|
||||
using namespace mozilla::dom;
|
||||
|
||||
namespace mozilla {
|
||||
namespace layers {
|
||||
|
||||
void
|
||||
AsyncCompositionManager::SetTransformation(float aScale,
|
||||
const nsIntPoint& aScrollOffset)
|
||||
{
|
||||
mXScale = aScale;
|
||||
mYScale = aScale;
|
||||
mScrollOffset = aScrollOffset;
|
||||
}
|
||||
|
||||
enum Op { Resolve, Detach };
|
||||
|
||||
static bool
|
||||
IsSameDimension(ScreenOrientation o1, ScreenOrientation o2)
|
||||
{
|
||||
bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary);
|
||||
bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary);
|
||||
return !(isO1portrait ^ isO2portrait);
|
||||
}
|
||||
|
||||
static bool
|
||||
ContentMightReflowOnOrientationChange(const nsIntRect& rect)
|
||||
{
|
||||
return rect.width != rect.height;
|
||||
}
|
||||
|
||||
template<Op OP>
|
||||
static void
|
||||
WalkTheTree(Layer* aLayer,
|
||||
Layer* aParent,
|
||||
bool& aReady,
|
||||
const TargetConfig& aTargetConfig)
|
||||
{
|
||||
if (RefLayer* ref = aLayer->AsRefLayer()) {
|
||||
if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
|
||||
if (Layer* referent = state->mRoot) {
|
||||
if (!ref->GetVisibleRegion().IsEmpty()) {
|
||||
ScreenOrientation chromeOrientation = aTargetConfig.orientation();
|
||||
ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
|
||||
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
|
||||
ContentMightReflowOnOrientationChange(aTargetConfig.clientBounds())) {
|
||||
aReady = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (OP == Resolve) {
|
||||
ref->ConnectReferentLayer(referent);
|
||||
if (AsyncPanZoomController* apzc = state->mController) {
|
||||
referent->SetAsyncPanZoomController(apzc);
|
||||
}
|
||||
} else {
|
||||
ref->DetachReferentLayer(referent);
|
||||
referent->SetAsyncPanZoomController(nullptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (Layer* child = aLayer->GetFirstChild();
|
||||
child; child = child->GetNextSibling()) {
|
||||
WalkTheTree<OP>(child, aLayer, aReady, aTargetConfig);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::ResolveRefLayers()
|
||||
{
|
||||
WalkTheTree<Resolve>(mLayerManager->GetRoot(),
|
||||
nullptr,
|
||||
mReadyForCompose,
|
||||
mTargetConfig);
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::DetachRefLayers()
|
||||
{
|
||||
WalkTheTree<Detach>(mLayerManager->GetRoot(),
|
||||
nullptr,
|
||||
mReadyForCompose,
|
||||
mTargetConfig);
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::ComputeRotation()
|
||||
{
|
||||
if (!mTargetConfig.naturalBounds().IsEmpty()) {
|
||||
mLayerManager->SetWorldTransform(
|
||||
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
|
||||
mTargetConfig.rotation()));
|
||||
}
|
||||
}
|
||||
|
||||
// Do a breadth-first search to find the first layer in the tree that is
|
||||
// scrollable.
|
||||
static void
|
||||
Translate2D(gfx3DMatrix& aTransform, const gfxPoint& aOffset)
|
||||
{
|
||||
aTransform._41 += aOffset.x;
|
||||
aTransform._42 += aOffset.y;
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::TransformFixedLayers(Layer* aLayer,
|
||||
const gfxPoint& aTranslation,
|
||||
const gfxSize& aScaleDiff,
|
||||
const gfx::Margin& aFixedLayerMargins)
|
||||
{
|
||||
if (aLayer->GetIsFixedPosition() &&
|
||||
!aLayer->GetParent()->GetIsFixedPosition()) {
|
||||
// When a scale has been applied to a layer, it focuses around (0,0).
|
||||
// The anchor position is used here as a scale focus point (assuming that
|
||||
// aScaleDiff has already been applied) to re-focus the scale.
|
||||
const gfxPoint& anchor = aLayer->GetFixedPositionAnchor();
|
||||
gfxPoint translation(aTranslation - (anchor - anchor / aScaleDiff));
|
||||
|
||||
// Offset this translation by the fixed layer margins, depending on what
|
||||
// side of the viewport the layer is anchored to, reconciling the
|
||||
// difference between the current fixed layer margins and the Gecko-side
|
||||
// fixed layer margins.
|
||||
// aFixedLayerMargins are the margins we expect to be at at the current
|
||||
// time, obtained via SyncViewportInfo, and fixedMargins are the margins
|
||||
// that were used during layout.
|
||||
// If top/left of fixedMargins are negative, that indicates that this layer
|
||||
// represents auto-positioned elements, and should not be affected by
|
||||
// fixed margins at all.
|
||||
const gfx::Margin& fixedMargins = aLayer->GetFixedPositionMargins();
|
||||
if (fixedMargins.left >= 0) {
|
||||
if (anchor.x > 0) {
|
||||
translation.x -= aFixedLayerMargins.right - fixedMargins.right;
|
||||
} else {
|
||||
translation.x += aFixedLayerMargins.left - fixedMargins.left;
|
||||
}
|
||||
}
|
||||
|
||||
if (fixedMargins.top >= 0) {
|
||||
if (anchor.y > 0) {
|
||||
translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
|
||||
} else {
|
||||
translation.y += aFixedLayerMargins.top - fixedMargins.top;
|
||||
}
|
||||
}
|
||||
|
||||
// The transform already takes the resolution scale into account. Since we
|
||||
// will apply the resolution scale again when computing the effective
|
||||
// transform, we must apply the inverse resolution scale here.
|
||||
gfx3DMatrix layerTransform = aLayer->GetTransform();
|
||||
Translate2D(layerTransform, translation);
|
||||
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
|
||||
layerTransform.Scale(1.0f/c->GetPreXScale(),
|
||||
1.0f/c->GetPreYScale(),
|
||||
1);
|
||||
}
|
||||
layerTransform.ScalePost(1.0f/aLayer->GetPostXScale(),
|
||||
1.0f/aLayer->GetPostYScale(),
|
||||
1);
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
layerComposite->SetShadowTransform(layerTransform);
|
||||
|
||||
const nsIntRect* clipRect = aLayer->GetClipRect();
|
||||
if (clipRect) {
|
||||
nsIntRect transformedClipRect(*clipRect);
|
||||
transformedClipRect.MoveBy(translation.x, translation.y);
|
||||
layerComposite->SetShadowClipRect(&transformedClipRect);
|
||||
}
|
||||
|
||||
// The transform has now been applied, so there's no need to iterate over
|
||||
// child layers.
|
||||
return;
|
||||
}
|
||||
|
||||
for (Layer* child = aLayer->GetFirstChild();
|
||||
child; child = child->GetNextSibling()) {
|
||||
TransformFixedLayers(child, aTranslation, aScaleDiff, aFixedLayerMargins);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
|
||||
nsStyleAnimation::Value& aEnd, Animatable* aValue)
|
||||
{
|
||||
nsStyleAnimation::Value interpolatedValue;
|
||||
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
|
||||
aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
|
||||
aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
|
||||
nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
|
||||
aPortion, interpolatedValue);
|
||||
if (aAnimation.property() == eCSSProperty_opacity) {
|
||||
*aValue = interpolatedValue.GetFloatValue();
|
||||
return;
|
||||
}
|
||||
|
||||
nsCSSValueList* interpolatedList = interpolatedValue.GetCSSValueListValue();
|
||||
|
||||
TransformData& data = aAnimation.data().get_TransformData();
|
||||
nsPoint origin = data.origin();
|
||||
// we expect all our transform data to arrive in css pixels, so here we must
|
||||
// adjust to dev pixels.
|
||||
double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
|
||||
/ double(data.appUnitsPerDevPixel());
|
||||
gfxPoint3D mozOrigin = data.mozOrigin();
|
||||
mozOrigin.x = mozOrigin.x * cssPerDev;
|
||||
mozOrigin.y = mozOrigin.y * cssPerDev;
|
||||
gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
|
||||
perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
|
||||
perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
|
||||
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
|
||||
mozOrigin,
|
||||
perspectiveOrigin,
|
||||
data.perspective());
|
||||
gfx3DMatrix transform =
|
||||
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
|
||||
data.appUnitsPerDevPixel(),
|
||||
&data.bounds());
|
||||
gfxPoint3D scaledOrigin =
|
||||
gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
|
||||
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
|
||||
0.0f);
|
||||
|
||||
transform.Translate(scaledOrigin);
|
||||
|
||||
InfallibleTArray<TransformFunction> functions;
|
||||
functions.AppendElement(TransformMatrix(transform));
|
||||
*aValue = functions;
|
||||
}
|
||||
|
||||
static bool
|
||||
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
|
||||
{
|
||||
AnimationArray& animations = aLayer->GetAnimations();
|
||||
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
|
||||
|
||||
bool activeAnimations = false;
|
||||
|
||||
for (uint32_t i = animations.Length(); i-- !=0; ) {
|
||||
Animation& animation = animations[i];
|
||||
AnimData& animData = animationData[i];
|
||||
|
||||
double numIterations = animation.numIterations() != -1 ?
|
||||
animation.numIterations() : NS_IEEEPositiveInfinity();
|
||||
double positionInIteration =
|
||||
ElementAnimations::GetPositionInIteration(aPoint - animation.startTime(),
|
||||
animation.duration(),
|
||||
numIterations,
|
||||
animation.direction());
|
||||
|
||||
NS_ABORT_IF_FALSE(0.0 <= positionInIteration &&
|
||||
positionInIteration <= 1.0,
|
||||
"position should be in [0-1]");
|
||||
|
||||
int segmentIndex = 0;
|
||||
AnimationSegment* segment = animation.segments().Elements();
|
||||
while (segment->endPortion() < positionInIteration) {
|
||||
++segment;
|
||||
++segmentIndex;
|
||||
}
|
||||
|
||||
double positionInSegment = (positionInIteration - segment->startPortion()) /
|
||||
(segment->endPortion() - segment->startPortion());
|
||||
|
||||
double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
|
||||
|
||||
activeAnimations = true;
|
||||
|
||||
// interpolate the property
|
||||
Animatable interpolatedValue;
|
||||
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
|
||||
animData.mEndValues[segmentIndex], &interpolatedValue);
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
switch (animation.property()) {
|
||||
case eCSSProperty_opacity:
|
||||
{
|
||||
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
|
||||
break;
|
||||
}
|
||||
case eCSSProperty_transform:
|
||||
{
|
||||
gfx3DMatrix matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
|
||||
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
|
||||
matrix.ScalePost(c->GetInheritedXScale(),
|
||||
c->GetInheritedYScale(),
|
||||
1);
|
||||
}
|
||||
NS_ASSERTION(!aLayer->GetIsFixedPosition(), "Can't animate transforms on fixed-position layers");
|
||||
layerComposite->SetShadowTransform(matrix);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
NS_WARNING("Unhandled animated property");
|
||||
}
|
||||
}
|
||||
|
||||
for (Layer* child = aLayer->GetFirstChild(); child;
|
||||
child = child->GetNextSibling()) {
|
||||
activeAnimations |= SampleAnimations(child, aPoint);
|
||||
}
|
||||
|
||||
return activeAnimations;
|
||||
}
|
||||
|
||||
bool
|
||||
AsyncCompositionManager::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
|
||||
Layer *aLayer,
|
||||
bool* aWantNextFrame)
|
||||
{
|
||||
bool appliedTransform = false;
|
||||
for (Layer* child = aLayer->GetFirstChild();
|
||||
child; child = child->GetNextSibling()) {
|
||||
appliedTransform |=
|
||||
ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
|
||||
}
|
||||
|
||||
ContainerLayer* container = aLayer->AsContainerLayer();
|
||||
if (!container) {
|
||||
return appliedTransform;
|
||||
}
|
||||
|
||||
if (AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController()) {
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
|
||||
ViewTransform treeTransform;
|
||||
gfxPoint scrollOffset;
|
||||
*aWantNextFrame |=
|
||||
controller->SampleContentTransformForFrame(aCurrentFrame,
|
||||
container,
|
||||
&treeTransform,
|
||||
&scrollOffset);
|
||||
|
||||
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
|
||||
float offsetX = 0, offsetY = 0;
|
||||
SyncFrameMetrics(aLayer, treeTransform, scrollOffset, fixedLayerMargins,
|
||||
offsetX, offsetY, mIsFirstPaint, mLayersUpdated);
|
||||
mIsFirstPaint = false;
|
||||
mLayersUpdated = false;
|
||||
|
||||
// Apply the render offset
|
||||
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
|
||||
|
||||
gfx3DMatrix transform(gfx3DMatrix(treeTransform) * aLayer->GetTransform());
|
||||
// The transform already takes the resolution scale into account. Since we
|
||||
// will apply the resolution scale again when computing the effective
|
||||
// transform, we must apply the inverse resolution scale here.
|
||||
transform.Scale(1.0f/container->GetPreXScale(),
|
||||
1.0f/container->GetPreYScale(),
|
||||
1);
|
||||
transform.ScalePost(1.0f/aLayer->GetPostXScale(),
|
||||
1.0f/aLayer->GetPostYScale(),
|
||||
1);
|
||||
layerComposite->SetShadowTransform(transform);
|
||||
|
||||
TransformFixedLayers(
|
||||
aLayer,
|
||||
-treeTransform.mTranslation / treeTransform.mScale,
|
||||
treeTransform.mScale,
|
||||
fixedLayerMargins);
|
||||
|
||||
appliedTransform = true;
|
||||
}
|
||||
|
||||
return appliedTransform;
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform)
|
||||
{
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
ContainerLayer* container = aLayer->AsContainerLayer();
|
||||
|
||||
const FrameMetrics& metrics = container->GetFrameMetrics();
|
||||
// We must apply the resolution scale before a pan/zoom transform, so we call
|
||||
// GetTransform here.
|
||||
const gfx3DMatrix& currentTransform = aLayer->GetTransform();
|
||||
|
||||
gfx3DMatrix treeTransform;
|
||||
|
||||
// Translate fixed position layers so that they stay in the correct position
|
||||
// when mScrollOffset and metricsScrollOffset differ.
|
||||
gfxPoint offset;
|
||||
gfxSize scaleDiff;
|
||||
|
||||
float rootScaleX = aRootTransform.GetXScale(),
|
||||
rootScaleY = aRootTransform.GetYScale();
|
||||
// The ratio of layers pixels to device pixels. The Java
|
||||
// compositor wants to see values in units of device pixels, so we
|
||||
// map our FrameMetrics values to that space. This is not exposed
|
||||
// as a FrameMetrics helper because it's a deprecated conversion.
|
||||
float devPixelRatioX = 1 / rootScaleX, devPixelRatioY = 1 / rootScaleY;
|
||||
|
||||
gfxPoint scrollOffsetLayersPixels(metrics.GetScrollOffsetInLayerPixels());
|
||||
nsIntPoint scrollOffsetDevPixels(
|
||||
NS_lround(scrollOffsetLayersPixels.x * devPixelRatioX),
|
||||
NS_lround(scrollOffsetLayersPixels.y * devPixelRatioY));
|
||||
|
||||
if (mIsFirstPaint) {
|
||||
mContentRect = metrics.mContentRect;
|
||||
SetFirstPaintViewport(scrollOffsetDevPixels,
|
||||
1/rootScaleX,
|
||||
mContentRect,
|
||||
metrics.mScrollableRect);
|
||||
mIsFirstPaint = false;
|
||||
} else if (!metrics.mContentRect.IsEqualEdges(mContentRect)) {
|
||||
mContentRect = metrics.mContentRect;
|
||||
SetPageRect(metrics.mScrollableRect);
|
||||
}
|
||||
|
||||
// We synchronise the viewport information with Java after sending the above
|
||||
// notifications, so that Java can take these into account in its response.
|
||||
// Calculate the absolute display port to send to Java
|
||||
gfx::Rect displayPortLayersPixels(metrics.mCriticalDisplayPort.IsEmpty() ?
|
||||
metrics.mDisplayPort : metrics.mCriticalDisplayPort);
|
||||
nsIntRect displayPortDevPixels(
|
||||
NS_lround(displayPortLayersPixels.x * devPixelRatioX),
|
||||
NS_lround(displayPortLayersPixels.y * devPixelRatioY),
|
||||
NS_lround(displayPortLayersPixels.width * devPixelRatioX),
|
||||
NS_lround(displayPortLayersPixels.height * devPixelRatioY));
|
||||
|
||||
displayPortDevPixels.x += scrollOffsetDevPixels.x;
|
||||
displayPortDevPixels.y += scrollOffsetDevPixels.y;
|
||||
|
||||
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
|
||||
float offsetX = 0, offsetY = 0;
|
||||
SyncViewportInfo(displayPortDevPixels, 1/rootScaleX, mLayersUpdated,
|
||||
mScrollOffset, mXScale, mYScale, fixedLayerMargins,
|
||||
offsetX, offsetY);
|
||||
mLayersUpdated = false;
|
||||
|
||||
// Apply the render offset
|
||||
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
|
||||
|
||||
// Handle transformations for asynchronous panning and zooming. We determine the
|
||||
// zoom used by Gecko from the transformation set on the root layer, and we
|
||||
// determine the scroll offset used by Gecko from the frame metrics of the
|
||||
// primary scrollable layer. We compare this to the desired zoom and scroll
|
||||
// offset in the view transform we obtained from Java in order to compute the
|
||||
// transformation we need to apply.
|
||||
float tempScaleDiffX = rootScaleX * mXScale;
|
||||
float tempScaleDiffY = rootScaleY * mYScale;
|
||||
|
||||
nsIntPoint metricsScrollOffset(0, 0);
|
||||
if (metrics.IsScrollable()) {
|
||||
metricsScrollOffset = scrollOffsetDevPixels;
|
||||
}
|
||||
|
||||
nsIntPoint scrollCompensation(
|
||||
(mScrollOffset.x / tempScaleDiffX - metricsScrollOffset.x) * mXScale,
|
||||
(mScrollOffset.y / tempScaleDiffY - metricsScrollOffset.y) * mYScale);
|
||||
treeTransform = gfx3DMatrix(ViewTransform(-scrollCompensation,
|
||||
gfxSize(mXScale, mYScale)));
|
||||
|
||||
// If the contents can fit entirely within the widget area on a particular
|
||||
// dimenson, we need to translate and scale so that the fixed layers remain
|
||||
// within the page boundaries.
|
||||
if (mContentRect.width * tempScaleDiffX < metrics.mCompositionBounds.width) {
|
||||
offset.x = -metricsScrollOffset.x;
|
||||
scaleDiff.width = std::min(1.0f, metrics.mCompositionBounds.width / (float)mContentRect.width);
|
||||
} else {
|
||||
offset.x = clamped(mScrollOffset.x / tempScaleDiffX, (float)mContentRect.x,
|
||||
mContentRect.XMost() - metrics.mCompositionBounds.width / tempScaleDiffX) -
|
||||
metricsScrollOffset.x;
|
||||
scaleDiff.width = tempScaleDiffX;
|
||||
}
|
||||
|
||||
if (mContentRect.height * tempScaleDiffY < metrics.mCompositionBounds.height) {
|
||||
offset.y = -metricsScrollOffset.y;
|
||||
scaleDiff.height = std::min(1.0f, metrics.mCompositionBounds.height / (float)mContentRect.height);
|
||||
} else {
|
||||
offset.y = clamped(mScrollOffset.y / tempScaleDiffY, (float)mContentRect.y,
|
||||
mContentRect.YMost() - metrics.mCompositionBounds.height / tempScaleDiffY) -
|
||||
metricsScrollOffset.y;
|
||||
scaleDiff.height = tempScaleDiffY;
|
||||
}
|
||||
|
||||
// The transform already takes the resolution scale into account. Since we
|
||||
// will apply the resolution scale again when computing the effective
|
||||
// transform, we must apply the inverse resolution scale here.
|
||||
gfx3DMatrix computedTransform = treeTransform * currentTransform;
|
||||
computedTransform.Scale(1.0f/container->GetPreXScale(),
|
||||
1.0f/container->GetPreYScale(),
|
||||
1);
|
||||
computedTransform.ScalePost(1.0f/container->GetPostXScale(),
|
||||
1.0f/container->GetPostYScale(),
|
||||
1);
|
||||
layerComposite->SetShadowTransform(computedTransform);
|
||||
TransformFixedLayers(aLayer, offset, scaleDiff, fixedLayerMargins);
|
||||
}
|
||||
|
||||
bool
|
||||
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame)
|
||||
{
|
||||
bool wantNextFrame = false;
|
||||
Layer* root = mLayerManager->GetRoot();
|
||||
|
||||
// NB: we must sample animations *before* sampling pan/zoom
|
||||
// transforms.
|
||||
wantNextFrame |= SampleAnimations(root, aCurrentFrame);
|
||||
|
||||
const gfx3DMatrix& rootTransform = root->GetTransform();
|
||||
|
||||
// FIXME/bug 775437: unify this interface with the ~native-fennec
|
||||
// derived code
|
||||
//
|
||||
// Attempt to apply an async content transform to any layer that has
|
||||
// an async pan zoom controller (which means that it is rendered
|
||||
// async using Gecko). If this fails, fall back to transforming the
|
||||
// primary scrollable layer. "Failing" here means that we don't
|
||||
// find a frame that is async scrollable. Note that the fallback
|
||||
// code also includes Fennec which is rendered async. Fennec uses
|
||||
// its own platform-specific async rendering that is done partially
|
||||
// in Gecko and partially in Java.
|
||||
if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
|
||||
nsAutoTArray<Layer*,1> scrollableLayers;
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
|
||||
#else
|
||||
mLayerManager->GetScrollableLayers(scrollableLayers);
|
||||
#endif
|
||||
|
||||
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
|
||||
if (scrollableLayers[i]) {
|
||||
TransformScrollableLayer(scrollableLayers[i], rootTransform);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return wantNextFrame;
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::SetFirstPaintViewport(const nsIntPoint& aOffset,
|
||||
float aZoom,
|
||||
const nsIntRect& aPageRect,
|
||||
const gfx::Rect& aCssPageRect)
|
||||
{
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aPageRect, aCssPageRect);
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::SetPageRect(const gfx::Rect& aCssPageRect)
|
||||
{
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
AsyncCompositionManager::SyncViewportInfo(const nsIntRect& aDisplayPort,
|
||||
float aDisplayResolution,
|
||||
bool aLayersUpdated,
|
||||
nsIntPoint& aScrollOffset,
|
||||
float& aScaleX, float& aScaleY,
|
||||
gfx::Margin& aFixedLayerMargins,
|
||||
float& aOffsetX, float& aOffsetY)
|
||||
{
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
|
||||
aDisplayResolution,
|
||||
aLayersUpdated,
|
||||
aScrollOffset,
|
||||
aScaleX, aScaleY,
|
||||
aFixedLayerMargins,
|
||||
aOffsetX, aOffsetY);
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace layers
|
||||
} // namespace mozilla
|
|
@ -0,0 +1,203 @@
|
|||
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
||||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#ifndef GFX_ASYNCCOMPOSITIONMANAGER_H
|
||||
#define GFX_ASYNCCOMPOSITIONMANAGER_H
|
||||
|
||||
#include "gfxPoint.h"
|
||||
#include "gfx3DMatrix.h"
|
||||
#include "nsAutoPtr.h"
|
||||
#include "nsRect.h"
|
||||
#include "mozilla/dom/ScreenOrientation.h"
|
||||
#include "mozilla/gfx/Rect.h"
|
||||
#include "mozilla/RefPtr.h"
|
||||
#include "mozilla/TimeStamp.h"
|
||||
#include "mozilla/layers/LayerTransaction.h" // for TargetConfig
|
||||
|
||||
namespace mozilla {
|
||||
namespace layers {
|
||||
|
||||
class AsyncPanZoomController;
|
||||
class Layer;
|
||||
class LayerManagerComposite;
|
||||
class AutoResolveRefLayers;
|
||||
|
||||
// Represents (affine) transforms that are calculated from a content view.
|
||||
struct ViewTransform {
|
||||
ViewTransform(gfxPoint aTranslation = gfxPoint(),
|
||||
gfxSize aScale = gfxSize(1, 1))
|
||||
: mTranslation(aTranslation)
|
||||
, mScale(aScale)
|
||||
{}
|
||||
|
||||
operator gfx3DMatrix() const
|
||||
{
|
||||
return
|
||||
gfx3DMatrix::ScalingMatrix(mScale.width, mScale.height, 1) *
|
||||
gfx3DMatrix::Translation(mTranslation.x, mTranslation.y, 0);
|
||||
}
|
||||
|
||||
gfxPoint mTranslation;
|
||||
gfxSize mScale;
|
||||
};
|
||||
|
||||
/**
|
||||
* Manage async composition effects. This class is only used with OMTC and only
|
||||
* lives on the compositor thread. It is a layer on top of the layer manager
|
||||
* (LayerManagerComposite) which deals with elements of composition which are
|
||||
* usually dealt with by dom or layout when main thread rendering, but which can
|
||||
* short circuit that stuff to directly affect layers as they are composited,
|
||||
* for example, off-main thread animation, async video, async pan/zoom.
|
||||
*/
|
||||
class AsyncCompositionManager : public RefCounted<AsyncCompositionManager>
|
||||
{
|
||||
friend class AutoResolveRefLayers;
|
||||
public:
|
||||
AsyncCompositionManager(LayerManagerComposite* aManager)
|
||||
: mXScale(1.0)
|
||||
, mYScale(1.0)
|
||||
, mLayerManager(aManager)
|
||||
, mIsFirstPaint(false)
|
||||
, mLayersUpdated(false)
|
||||
, mReadyForCompose(true)
|
||||
{
|
||||
MOZ_COUNT_CTOR(AsyncCompositionManager);
|
||||
}
|
||||
~AsyncCompositionManager()
|
||||
{
|
||||
MOZ_COUNT_DTOR(AsyncCompositionManager);
|
||||
}
|
||||
|
||||
/**
|
||||
* This forces the is-first-paint flag to true. This is intended to
|
||||
* be called by the widget code when it loses its viewport information
|
||||
* (or for whatever reason wants to refresh the viewport information).
|
||||
* The information refresh happens because the compositor will call
|
||||
* SetFirstPaintViewport on the next frame of composition.
|
||||
*/
|
||||
void ForceIsFirstPaint() { mIsFirstPaint = true; }
|
||||
|
||||
// Sample transforms for layer trees. Return true to request
|
||||
// another animation frame.
|
||||
bool TransformShadowTree(TimeStamp aCurrentFrame);
|
||||
|
||||
// Calculates the correct rotation and applies the transform to
|
||||
// our layer manager
|
||||
void ComputeRotation();
|
||||
|
||||
// Call after updating our layer tree.
|
||||
void Updated(bool isFirstPaint, const TargetConfig& aTargetConfig)
|
||||
{
|
||||
mIsFirstPaint |= isFirstPaint;
|
||||
mLayersUpdated = true;
|
||||
mTargetConfig = aTargetConfig;
|
||||
}
|
||||
|
||||
bool RequiresReorientation(mozilla::dom::ScreenOrientation aOrientation)
|
||||
{
|
||||
return mTargetConfig.orientation() != aOrientation;
|
||||
}
|
||||
|
||||
// True if the underlying layer tree is ready to be composited.
|
||||
bool ReadyForCompose() { return mReadyForCompose; }
|
||||
|
||||
// Returns true if the next composition will be the first for a
|
||||
// particular document.
|
||||
bool IsFirstPaint() { return mIsFirstPaint; }
|
||||
|
||||
void SetTransformation(float aScale, const nsIntPoint& aScrollOffset);
|
||||
|
||||
private:
|
||||
void TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform);
|
||||
// Return true if an AsyncPanZoomController content transform was
|
||||
// applied for |aLayer|. *aWantNextFrame is set to true if the
|
||||
// controller wants another animation frame.
|
||||
bool ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame, Layer* aLayer,
|
||||
bool* aWantNextFrame);
|
||||
|
||||
void SetFirstPaintViewport(const nsIntPoint& aOffset,
|
||||
float aZoom,
|
||||
const nsIntRect& aPageRect,
|
||||
const gfx::Rect& aCssPageRect);
|
||||
void SetPageRect(const gfx::Rect& aCssPageRect);
|
||||
void SyncViewportInfo(const nsIntRect& aDisplayPort,
|
||||
float aDisplayResolution,
|
||||
bool aLayersUpdated,
|
||||
nsIntPoint& aScrollOffset,
|
||||
float& aScaleX, float& aScaleY,
|
||||
gfx::Margin& aFixedLayerMargins,
|
||||
float& aOffsetX, float& aOffsetY);
|
||||
virtual void SyncFrameMetrics(Layer* aLayer, const ViewTransform& aTreeTransform,
|
||||
const gfxPoint& aScrollOffset, gfx::Margin& aFixedLayerMargins,
|
||||
float& aOffsetX, float& aOffsetY,
|
||||
bool aIsFirstPaint, bool aLayersUpdated)
|
||||
{}
|
||||
|
||||
/**
|
||||
* Recursively applies the given translation to all top-level fixed position
|
||||
* layers that are descendants of the given layer.
|
||||
* aScaleDiff is considered to be the scale transformation applied when
|
||||
* displaying the layers, and is used to make sure the anchor points of
|
||||
* fixed position layers remain in the same position.
|
||||
*/
|
||||
void TransformFixedLayers(Layer* aLayer,
|
||||
const gfxPoint& aTranslation,
|
||||
const gfxSize& aScaleDiff,
|
||||
const gfx::Margin& aFixedLayerMargins);
|
||||
|
||||
/**
|
||||
* DRAWING PHASE ONLY
|
||||
*
|
||||
* For reach RefLayer in our layer tree, look up its referent and connect it
|
||||
* to the layer tree, if found.
|
||||
*/
|
||||
void ResolveRefLayers();
|
||||
/**
|
||||
* Detaches all referents resolved by ResolveRefLayers.
|
||||
* Assumes that mLayerManager->GetRoot() and mTargetConfig have not changed
|
||||
* since ResolveRefLayers was called.
|
||||
*/
|
||||
void DetachRefLayers();
|
||||
|
||||
TargetConfig mTargetConfig;
|
||||
float mXScale;
|
||||
float mYScale;
|
||||
nsIntPoint mScrollOffset;
|
||||
nsIntRect mContentRect;
|
||||
|
||||
nsRefPtr<LayerManagerComposite> mLayerManager;
|
||||
// When this flag is set, the next composition will be the first for a
|
||||
// particular document (i.e. the document displayed on the screen will change).
|
||||
// This happens when loading a new page or switching tabs. We notify the
|
||||
// front-end (e.g. Java on Android) about this so that it take the new page
|
||||
// size and zoom into account when providing us with the next view transform.
|
||||
bool mIsFirstPaint;
|
||||
|
||||
// This flag is set during a layers update, so that the first composition
|
||||
// after a layers update has it set. It is cleared after that first composition.
|
||||
bool mLayersUpdated;
|
||||
|
||||
bool mReadyForCompose;
|
||||
};
|
||||
|
||||
class MOZ_STACK_CLASS AutoResolveRefLayers {
|
||||
public:
|
||||
AutoResolveRefLayers(AsyncCompositionManager* aManager) : mManager(aManager)
|
||||
{ mManager->ResolveRefLayers(); }
|
||||
|
||||
~AutoResolveRefLayers()
|
||||
{ mManager->DetachRefLayers(); }
|
||||
|
||||
private:
|
||||
AsyncCompositionManager* mManager;
|
||||
|
||||
AutoResolveRefLayers(const AutoResolveRefLayers&) MOZ_DELETE;
|
||||
AutoResolveRefLayers& operator=(const AutoResolveRefLayers&) MOZ_DELETE;
|
||||
};
|
||||
|
||||
} // layers
|
||||
} // mozilla
|
||||
|
||||
#endif
|
|
@ -4,6 +4,7 @@
|
|||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#include "mozilla/layers/AsyncCompositionManager.h" // for ViewTransform
|
||||
#include "CompositorParent.h"
|
||||
#include "mozilla/gfx/2D.h"
|
||||
#include "mozilla/ClearOnShutdown.h"
|
||||
|
@ -19,6 +20,7 @@
|
|||
#include "Layers.h"
|
||||
#include "AnimationCommon.h"
|
||||
#include <algorithm>
|
||||
#include "mozilla/layers/LayerManagerComposite.h"
|
||||
|
||||
using namespace mozilla::css;
|
||||
|
||||
|
|
|
@ -8,39 +8,22 @@
|
|||
|
||||
#include "mozilla/DebugOnly.h"
|
||||
|
||||
#include "base/basictypes.h"
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(MOZ_WIDGET_ANDROID)
|
||||
# include <android/log.h>
|
||||
# include "AndroidBridge.h"
|
||||
#endif
|
||||
|
||||
#include "AsyncPanZoomController.h"
|
||||
#include "AutoOpenSurface.h"
|
||||
#include "BasicLayers.h"
|
||||
#include "CompositorParent.h"
|
||||
#include "mozilla/layers/CompositorOGL.h"
|
||||
#include "nsGkAtoms.h"
|
||||
#include "nsIWidget.h"
|
||||
#include "RenderTrace.h"
|
||||
#include "LayerTransactionParent.h"
|
||||
#include "BasicLayers.h"
|
||||
#include "nsIWidget.h"
|
||||
#include "nsGkAtoms.h"
|
||||
#include "RenderTrace.h"
|
||||
#include "nsStyleAnimation.h"
|
||||
#include "nsDisplayList.h"
|
||||
#include "AnimationCommon.h"
|
||||
#include "nsAnimationManager.h"
|
||||
#include "gfxPlatform.h"
|
||||
#include "mozilla/dom/ScreenOrientation.h"
|
||||
#include "mozilla/AutoRestore.h"
|
||||
#include "mozilla/layers/AsyncCompositionManager.h"
|
||||
#include "mozilla/layers/LayerManagerComposite.h"
|
||||
|
||||
using namespace base;
|
||||
using namespace mozilla;
|
||||
using namespace mozilla::ipc;
|
||||
using namespace mozilla::dom;
|
||||
using namespace std;
|
||||
|
||||
namespace mozilla {
|
||||
|
@ -61,19 +44,6 @@ static MessageLoop* sMainLoop = nullptr;
|
|||
static PlatformThreadId sCompositorThreadID = 0;
|
||||
static MessageLoop* sCompositorLoop = nullptr;
|
||||
|
||||
struct LayerTreeState {
|
||||
nsRefPtr<Layer> mRoot;
|
||||
nsRefPtr<AsyncPanZoomController> mController;
|
||||
TargetConfig mTargetConfig;
|
||||
};
|
||||
|
||||
/**
|
||||
* Lookup the indirect shadow tree for |aId| and return it if it
|
||||
* exists. Otherwise null is returned. This must only be called on
|
||||
* the compositor thread.
|
||||
*/
|
||||
static const LayerTreeState* GetIndirectShadowTree(uint64_t aId);
|
||||
|
||||
static void DeferredDeleteCompositorParent(CompositorParent* aNowReadyToDie)
|
||||
{
|
||||
aNowReadyToDie->Release();
|
||||
|
@ -161,10 +131,6 @@ CompositorParent::CompositorParent(nsIWidget* aWidget,
|
|||
: mWidget(aWidget)
|
||||
, mCurrentCompositeTask(NULL)
|
||||
, mPaused(false)
|
||||
, mXScale(1.0)
|
||||
, mYScale(1.0)
|
||||
, mIsFirstPaint(false)
|
||||
, mLayersUpdated(false)
|
||||
, mRenderToEGLSurface(aRenderToEGLSurface)
|
||||
, mEGLSurfaceSize(aSurfaceWidth, aSurfaceHeight)
|
||||
, mPauseCompositionMonitor("PauseCompositionMonitor")
|
||||
|
@ -211,7 +177,14 @@ CompositorParent::Destroy()
|
|||
"CompositorParent destroyed before managed PLayerTransactionParent");
|
||||
|
||||
// Ensure that the layer manager is destructed on the compositor thread.
|
||||
mLayerManager = NULL;
|
||||
mLayerManager = nullptr;
|
||||
mCompositionManager = nullptr;
|
||||
}
|
||||
|
||||
void
|
||||
CompositorParent::ForceIsFirstPaint()
|
||||
{
|
||||
mCompositionManager->ForceIsFirstPaint();
|
||||
}
|
||||
|
||||
bool
|
||||
|
@ -223,6 +196,8 @@ CompositorParent::RecvWillStop()
|
|||
// Ensure that the layer manager is destroyed before CompositorChild.
|
||||
if (mLayerManager) {
|
||||
mLayerManager->Destroy();
|
||||
mLayerManager = nullptr;
|
||||
mCompositionManager = nullptr;
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -277,6 +252,8 @@ CompositorParent::ActorDestroy(ActorDestroyReason why)
|
|||
|
||||
if (mLayerManager) {
|
||||
mLayerManager->Destroy();
|
||||
mLayerManager = nullptr;
|
||||
mCompositionManager = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -444,87 +421,9 @@ CompositorParent::ScheduleComposition()
|
|||
void
|
||||
CompositorParent::SetTransformation(float aScale, nsIntPoint aScrollOffset)
|
||||
{
|
||||
mXScale = aScale;
|
||||
mYScale = aScale;
|
||||
mScrollOffset = aScrollOffset;
|
||||
mCompositionManager->SetTransformation(aScale, aScrollOffset);
|
||||
}
|
||||
|
||||
/**
|
||||
* DRAWING PHASE ONLY
|
||||
*
|
||||
* For reach RefLayer in |aRoot|, look up its referent and connect it
|
||||
* to the layer tree, if found. On exiting scope, detaches all
|
||||
* resolved referents.
|
||||
*/
|
||||
class MOZ_STACK_CLASS AutoResolveRefLayers {
|
||||
public:
|
||||
/**
|
||||
* |aRoot| must remain valid in the scope of this, which should be
|
||||
* guaranteed by this helper only being used during the drawing
|
||||
* phase.
|
||||
*/
|
||||
AutoResolveRefLayers(Layer* aRoot, const TargetConfig& aConfig) : mRoot(aRoot), mTargetConfig(aConfig), mReadyForCompose(true)
|
||||
{ WalkTheTree<Resolve>(mRoot, nullptr); }
|
||||
|
||||
~AutoResolveRefLayers()
|
||||
{ WalkTheTree<Detach>(mRoot, nullptr); }
|
||||
|
||||
bool IsReadyForCompose()
|
||||
{ return mReadyForCompose; }
|
||||
|
||||
private:
|
||||
enum Op { Resolve, Detach };
|
||||
template<Op OP>
|
||||
void WalkTheTree(Layer* aLayer, Layer* aParent)
|
||||
{
|
||||
if (RefLayer* ref = aLayer->AsRefLayer()) {
|
||||
if (const LayerTreeState* state = GetIndirectShadowTree(ref->GetReferentId())) {
|
||||
if (Layer* referent = state->mRoot) {
|
||||
if (!ref->GetVisibleRegion().IsEmpty()) {
|
||||
ScreenOrientation chromeOrientation = mTargetConfig.orientation();
|
||||
ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
|
||||
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
|
||||
ContentMightReflowOnOrientationChange(mTargetConfig.clientBounds())) {
|
||||
mReadyForCompose = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (OP == Resolve) {
|
||||
ref->ConnectReferentLayer(referent);
|
||||
if (AsyncPanZoomController* apzc = state->mController) {
|
||||
referent->SetAsyncPanZoomController(apzc);
|
||||
}
|
||||
} else {
|
||||
ref->DetachReferentLayer(referent);
|
||||
referent->SetAsyncPanZoomController(nullptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (Layer* child = aLayer->GetFirstChild();
|
||||
child; child = child->GetNextSibling()) {
|
||||
WalkTheTree<OP>(child, aLayer);
|
||||
}
|
||||
}
|
||||
|
||||
bool IsSameDimension(ScreenOrientation o1, ScreenOrientation o2) {
|
||||
bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary);
|
||||
bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary);
|
||||
return !(isO1portrait ^ isO2portrait);
|
||||
}
|
||||
|
||||
bool ContentMightReflowOnOrientationChange(nsIntRect& rect) {
|
||||
return rect.width != rect.height;
|
||||
}
|
||||
|
||||
Layer* mRoot;
|
||||
TargetConfig mTargetConfig;
|
||||
bool mReadyForCompose;
|
||||
|
||||
AutoResolveRefLayers(const AutoResolveRefLayers&) MOZ_DELETE;
|
||||
AutoResolveRefLayers& operator=(const AutoResolveRefLayers&) MOZ_DELETE;
|
||||
};
|
||||
|
||||
void
|
||||
CompositorParent::Composite()
|
||||
{
|
||||
|
@ -538,29 +437,25 @@ CompositorParent::Composite()
|
|||
return;
|
||||
}
|
||||
|
||||
Layer* layer = mLayerManager->GetRoot();
|
||||
AutoResolveRefLayers resolve(layer, mTargetConfig);
|
||||
AutoResolveRefLayers resolve(mCompositionManager);
|
||||
if (mForceCompositionTask && !mOverrideComposeReadiness) {
|
||||
if (!resolve.IsReadyForCompose()) {
|
||||
return;
|
||||
} else {
|
||||
if (mCompositionManager->ReadyForCompose()) {
|
||||
mForceCompositionTask->Cancel();
|
||||
mForceCompositionTask = nullptr;
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
bool requestNextFrame = TransformShadowTree(mLastCompose);
|
||||
bool requestNextFrame = mCompositionManager->TransformShadowTree(mLastCompose);
|
||||
if (requestNextFrame) {
|
||||
ScheduleComposition();
|
||||
}
|
||||
|
||||
RenderTraceLayers(layer, "0000");
|
||||
RenderTraceLayers(mLayerManager->GetRoot(), "0000");
|
||||
|
||||
mCompositionManager->ComputeRotation();
|
||||
|
||||
if (!mTargetConfig.naturalBounds().IsEmpty()) {
|
||||
mLayerManager->SetWorldTransform(
|
||||
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
|
||||
mTargetConfig.rotation()));
|
||||
}
|
||||
#ifdef MOZ_DUMP_PAINTING
|
||||
static bool gDumpCompositorTree = false;
|
||||
if (gDumpCompositorTree) {
|
||||
|
@ -599,90 +494,6 @@ CompositorParent::CanComposite()
|
|||
return !(mPaused || !mLayerManager || !mLayerManager->GetRoot());
|
||||
}
|
||||
|
||||
// Do a breadth-first search to find the first layer in the tree that is
|
||||
// scrollable.
|
||||
static void
|
||||
Translate2D(gfx3DMatrix& aTransform, const gfxPoint& aOffset)
|
||||
{
|
||||
aTransform._41 += aOffset.x;
|
||||
aTransform._42 += aOffset.y;
|
||||
}
|
||||
|
||||
void
|
||||
CompositorParent::TransformFixedLayers(Layer* aLayer,
|
||||
const gfxPoint& aTranslation,
|
||||
const gfxSize& aScaleDiff,
|
||||
const gfx::Margin& aFixedLayerMargins)
|
||||
{
|
||||
if (aLayer->GetIsFixedPosition() &&
|
||||
!aLayer->GetParent()->GetIsFixedPosition()) {
|
||||
// When a scale has been applied to a layer, it focuses around (0,0).
|
||||
// The anchor position is used here as a scale focus point (assuming that
|
||||
// aScaleDiff has already been applied) to re-focus the scale.
|
||||
const gfxPoint& anchor = aLayer->GetFixedPositionAnchor();
|
||||
gfxPoint translation(aTranslation - (anchor - anchor / aScaleDiff));
|
||||
|
||||
// Offset this translation by the fixed layer margins, depending on what
|
||||
// side of the viewport the layer is anchored to, reconciling the
|
||||
// difference between the current fixed layer margins and the Gecko-side
|
||||
// fixed layer margins.
|
||||
// aFixedLayerMargins are the margins we expect to be at at the current
|
||||
// time, obtained via SyncViewportInfo, and fixedMargins are the margins
|
||||
// that were used during layout.
|
||||
// If top/left of fixedMargins are negative, that indicates that this layer
|
||||
// represents auto-positioned elements, and should not be affected by
|
||||
// fixed margins at all.
|
||||
const gfx::Margin& fixedMargins = aLayer->GetFixedPositionMargins();
|
||||
if (fixedMargins.left >= 0) {
|
||||
if (anchor.x > 0) {
|
||||
translation.x -= aFixedLayerMargins.right - fixedMargins.right;
|
||||
} else {
|
||||
translation.x += aFixedLayerMargins.left - fixedMargins.left;
|
||||
}
|
||||
}
|
||||
|
||||
if (fixedMargins.top >= 0) {
|
||||
if (anchor.y > 0) {
|
||||
translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
|
||||
} else {
|
||||
translation.y += aFixedLayerMargins.top - fixedMargins.top;
|
||||
}
|
||||
}
|
||||
|
||||
// The transform already takes the resolution scale into account. Since we
|
||||
// will apply the resolution scale again when computing the effective
|
||||
// transform, we must apply the inverse resolution scale here.
|
||||
gfx3DMatrix layerTransform = aLayer->GetTransform();
|
||||
Translate2D(layerTransform, translation);
|
||||
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
|
||||
layerTransform.Scale(1.0f/c->GetPreXScale(),
|
||||
1.0f/c->GetPreYScale(),
|
||||
1);
|
||||
}
|
||||
layerTransform.ScalePost(1.0f/aLayer->GetPostXScale(),
|
||||
1.0f/aLayer->GetPostYScale(),
|
||||
1);
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
layerComposite->SetShadowTransform(layerTransform);
|
||||
|
||||
const nsIntRect* clipRect = aLayer->GetClipRect();
|
||||
if (clipRect) {
|
||||
nsIntRect transformedClipRect(*clipRect);
|
||||
transformedClipRect.MoveBy(translation.x, translation.y);
|
||||
layerComposite->SetShadowClipRect(&transformedClipRect);
|
||||
}
|
||||
|
||||
// The transform has now been applied, so there's no need to iterate over
|
||||
// child layers.
|
||||
return;
|
||||
}
|
||||
|
||||
for (Layer* child = aLayer->GetFirstChild();
|
||||
child; child = child->GetNextSibling()) {
|
||||
TransformFixedLayers(child, aTranslation, aScaleDiff, aFixedLayerMargins);
|
||||
}
|
||||
}
|
||||
|
||||
// Go down the composite layer tree, setting properties to match their
|
||||
// content-side counterparts.
|
||||
static void
|
||||
|
@ -702,362 +513,14 @@ SetShadowProperties(Layer* aLayer)
|
|||
}
|
||||
}
|
||||
|
||||
static void
|
||||
SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
|
||||
nsStyleAnimation::Value& aEnd, Animatable* aValue)
|
||||
{
|
||||
nsStyleAnimation::Value interpolatedValue;
|
||||
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
|
||||
aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
|
||||
aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
|
||||
nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
|
||||
aPortion, interpolatedValue);
|
||||
if (aAnimation.property() == eCSSProperty_opacity) {
|
||||
*aValue = interpolatedValue.GetFloatValue();
|
||||
return;
|
||||
}
|
||||
|
||||
nsCSSValueList* interpolatedList = interpolatedValue.GetCSSValueListValue();
|
||||
|
||||
TransformData& data = aAnimation.data().get_TransformData();
|
||||
nsPoint origin = data.origin();
|
||||
// we expect all our transform data to arrive in css pixels, so here we must
|
||||
// adjust to dev pixels.
|
||||
double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
|
||||
/ double(data.appUnitsPerDevPixel());
|
||||
gfxPoint3D mozOrigin = data.mozOrigin();
|
||||
mozOrigin.x = mozOrigin.x * cssPerDev;
|
||||
mozOrigin.y = mozOrigin.y * cssPerDev;
|
||||
gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
|
||||
perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
|
||||
perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
|
||||
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
|
||||
mozOrigin,
|
||||
perspectiveOrigin,
|
||||
data.perspective());
|
||||
gfx3DMatrix transform =
|
||||
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
|
||||
data.appUnitsPerDevPixel(),
|
||||
&data.bounds());
|
||||
gfxPoint3D scaledOrigin =
|
||||
gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
|
||||
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
|
||||
0.0f);
|
||||
|
||||
transform.Translate(scaledOrigin);
|
||||
|
||||
InfallibleTArray<TransformFunction> functions;
|
||||
functions.AppendElement(TransformMatrix(transform));
|
||||
*aValue = functions;
|
||||
}
|
||||
|
||||
static bool
|
||||
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
|
||||
{
|
||||
AnimationArray& animations = aLayer->GetAnimations();
|
||||
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
|
||||
|
||||
bool activeAnimations = false;
|
||||
|
||||
for (uint32_t i = animations.Length(); i-- !=0; ) {
|
||||
Animation& animation = animations[i];
|
||||
AnimData& animData = animationData[i];
|
||||
|
||||
double numIterations = animation.numIterations() != -1 ?
|
||||
animation.numIterations() : NS_IEEEPositiveInfinity();
|
||||
double positionInIteration =
|
||||
ElementAnimations::GetPositionInIteration(aPoint - animation.startTime(),
|
||||
animation.duration(),
|
||||
numIterations,
|
||||
animation.direction());
|
||||
|
||||
NS_ABORT_IF_FALSE(0.0 <= positionInIteration &&
|
||||
positionInIteration <= 1.0,
|
||||
"position should be in [0-1]");
|
||||
|
||||
int segmentIndex = 0;
|
||||
AnimationSegment* segment = animation.segments().Elements();
|
||||
while (segment->endPortion() < positionInIteration) {
|
||||
++segment;
|
||||
++segmentIndex;
|
||||
}
|
||||
|
||||
double positionInSegment = (positionInIteration - segment->startPortion()) /
|
||||
(segment->endPortion() - segment->startPortion());
|
||||
|
||||
double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
|
||||
|
||||
activeAnimations = true;
|
||||
|
||||
// interpolate the property
|
||||
Animatable interpolatedValue;
|
||||
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
|
||||
animData.mEndValues[segmentIndex], &interpolatedValue);
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
switch (animation.property()) {
|
||||
case eCSSProperty_opacity:
|
||||
{
|
||||
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
|
||||
break;
|
||||
}
|
||||
case eCSSProperty_transform:
|
||||
{
|
||||
gfx3DMatrix matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
|
||||
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
|
||||
matrix.ScalePost(c->GetInheritedXScale(),
|
||||
c->GetInheritedYScale(),
|
||||
1);
|
||||
}
|
||||
NS_ASSERTION(!aLayer->GetIsFixedPosition(), "Can't animate transforms on fixed-position layers");
|
||||
layerComposite->SetShadowTransform(matrix);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
NS_WARNING("Unhandled animated property");
|
||||
}
|
||||
}
|
||||
|
||||
for (Layer* child = aLayer->GetFirstChild(); child;
|
||||
child = child->GetNextSibling()) {
|
||||
activeAnimations |= SampleAnimations(child, aPoint);
|
||||
}
|
||||
|
||||
return activeAnimations;
|
||||
}
|
||||
|
||||
bool
|
||||
CompositorParent::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
|
||||
Layer *aLayer,
|
||||
bool* aWantNextFrame)
|
||||
{
|
||||
bool appliedTransform = false;
|
||||
for (Layer* child = aLayer->GetFirstChild();
|
||||
child; child = child->GetNextSibling()) {
|
||||
appliedTransform |=
|
||||
ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
|
||||
}
|
||||
|
||||
ContainerLayer* container = aLayer->AsContainerLayer();
|
||||
if (!container) {
|
||||
return appliedTransform;
|
||||
}
|
||||
|
||||
if (AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController()) {
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
|
||||
ViewTransform treeTransform;
|
||||
gfxPoint scrollOffset;
|
||||
*aWantNextFrame |=
|
||||
controller->SampleContentTransformForFrame(aCurrentFrame,
|
||||
container,
|
||||
&treeTransform,
|
||||
&scrollOffset);
|
||||
|
||||
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
|
||||
float offsetX = 0, offsetY = 0;
|
||||
SyncFrameMetrics(aLayer, treeTransform, scrollOffset, fixedLayerMargins,
|
||||
offsetX, offsetY, mIsFirstPaint, mLayersUpdated);
|
||||
mIsFirstPaint = false;
|
||||
mLayersUpdated = false;
|
||||
|
||||
// Apply the render offset
|
||||
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
|
||||
|
||||
gfx3DMatrix transform(gfx3DMatrix(treeTransform) * aLayer->GetTransform());
|
||||
// The transform already takes the resolution scale into account. Since we
|
||||
// will apply the resolution scale again when computing the effective
|
||||
// transform, we must apply the inverse resolution scale here.
|
||||
transform.Scale(1.0f/container->GetPreXScale(),
|
||||
1.0f/container->GetPreYScale(),
|
||||
1);
|
||||
transform.ScalePost(1.0f/aLayer->GetPostXScale(),
|
||||
1.0f/aLayer->GetPostYScale(),
|
||||
1);
|
||||
layerComposite->SetShadowTransform(transform);
|
||||
|
||||
TransformFixedLayers(
|
||||
aLayer,
|
||||
-treeTransform.mTranslation / treeTransform.mScale,
|
||||
treeTransform.mScale,
|
||||
fixedLayerMargins);
|
||||
|
||||
appliedTransform = true;
|
||||
}
|
||||
|
||||
return appliedTransform;
|
||||
}
|
||||
|
||||
void
|
||||
CompositorParent::TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform)
|
||||
{
|
||||
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
||||
ContainerLayer* container = aLayer->AsContainerLayer();
|
||||
|
||||
const FrameMetrics& metrics = container->GetFrameMetrics();
|
||||
// We must apply the resolution scale before a pan/zoom transform, so we call
|
||||
// GetTransform here.
|
||||
const gfx3DMatrix& currentTransform = aLayer->GetTransform();
|
||||
|
||||
gfx3DMatrix treeTransform;
|
||||
|
||||
// Translate fixed position layers so that they stay in the correct position
|
||||
// when mScrollOffset and metricsScrollOffset differ.
|
||||
gfxPoint offset;
|
||||
gfxSize scaleDiff;
|
||||
|
||||
float rootScaleX = aRootTransform.GetXScale(),
|
||||
rootScaleY = aRootTransform.GetYScale();
|
||||
// The ratio of layers pixels to device pixels. The Java
|
||||
// compositor wants to see values in units of device pixels, so we
|
||||
// map our FrameMetrics values to that space. This is not exposed
|
||||
// as a FrameMetrics helper because it's a deprecated conversion.
|
||||
float devPixelRatioX = 1 / rootScaleX, devPixelRatioY = 1 / rootScaleY;
|
||||
|
||||
gfxPoint scrollOffsetLayersPixels(metrics.GetScrollOffsetInLayerPixels());
|
||||
nsIntPoint scrollOffsetDevPixels(
|
||||
NS_lround(scrollOffsetLayersPixels.x * devPixelRatioX),
|
||||
NS_lround(scrollOffsetLayersPixels.y * devPixelRatioY));
|
||||
|
||||
if (mIsFirstPaint) {
|
||||
mContentRect = metrics.mContentRect;
|
||||
SetFirstPaintViewport(scrollOffsetDevPixels,
|
||||
1/rootScaleX,
|
||||
mContentRect,
|
||||
metrics.mScrollableRect);
|
||||
mIsFirstPaint = false;
|
||||
} else if (!metrics.mContentRect.IsEqualEdges(mContentRect)) {
|
||||
mContentRect = metrics.mContentRect;
|
||||
SetPageRect(metrics.mScrollableRect);
|
||||
}
|
||||
|
||||
// We synchronise the viewport information with Java after sending the above
|
||||
// notifications, so that Java can take these into account in its response.
|
||||
// Calculate the absolute display port to send to Java
|
||||
gfx::Rect displayPortLayersPixels(metrics.mCriticalDisplayPort.IsEmpty() ?
|
||||
metrics.mDisplayPort : metrics.mCriticalDisplayPort);
|
||||
nsIntRect displayPortDevPixels(
|
||||
NS_lround(displayPortLayersPixels.x * devPixelRatioX),
|
||||
NS_lround(displayPortLayersPixels.y * devPixelRatioY),
|
||||
NS_lround(displayPortLayersPixels.width * devPixelRatioX),
|
||||
NS_lround(displayPortLayersPixels.height * devPixelRatioY));
|
||||
|
||||
displayPortDevPixels.x += scrollOffsetDevPixels.x;
|
||||
displayPortDevPixels.y += scrollOffsetDevPixels.y;
|
||||
|
||||
gfx::Margin fixedLayerMargins(0, 0, 0, 0);
|
||||
float offsetX = 0, offsetY = 0;
|
||||
SyncViewportInfo(displayPortDevPixels, 1/rootScaleX, mLayersUpdated,
|
||||
mScrollOffset, mXScale, mYScale, fixedLayerMargins,
|
||||
offsetX, offsetY);
|
||||
mLayersUpdated = false;
|
||||
|
||||
// Apply the render offset
|
||||
mLayerManager->GetCompositor()->SetScreenRenderOffset(gfx::Point(offsetX, offsetY));
|
||||
|
||||
// Handle transformations for asynchronous panning and zooming. We determine the
|
||||
// zoom used by Gecko from the transformation set on the root layer, and we
|
||||
// determine the scroll offset used by Gecko from the frame metrics of the
|
||||
// primary scrollable layer. We compare this to the desired zoom and scroll
|
||||
// offset in the view transform we obtained from Java in order to compute the
|
||||
// transformation we need to apply.
|
||||
float tempScaleDiffX = rootScaleX * mXScale;
|
||||
float tempScaleDiffY = rootScaleY * mYScale;
|
||||
|
||||
nsIntPoint metricsScrollOffset(0, 0);
|
||||
if (metrics.IsScrollable()) {
|
||||
metricsScrollOffset = scrollOffsetDevPixels;
|
||||
}
|
||||
|
||||
nsIntPoint scrollCompensation(
|
||||
(mScrollOffset.x / tempScaleDiffX - metricsScrollOffset.x) * mXScale,
|
||||
(mScrollOffset.y / tempScaleDiffY - metricsScrollOffset.y) * mYScale);
|
||||
treeTransform = gfx3DMatrix(ViewTransform(-scrollCompensation,
|
||||
gfxSize(mXScale, mYScale)));
|
||||
|
||||
// If the contents can fit entirely within the widget area on a particular
|
||||
// dimenson, we need to translate and scale so that the fixed layers remain
|
||||
// within the page boundaries.
|
||||
if (mContentRect.width * tempScaleDiffX < metrics.mCompositionBounds.width) {
|
||||
offset.x = -metricsScrollOffset.x;
|
||||
scaleDiff.width = std::min(1.0f, metrics.mCompositionBounds.width / (float)mContentRect.width);
|
||||
} else {
|
||||
offset.x = clamped(mScrollOffset.x / tempScaleDiffX, (float)mContentRect.x,
|
||||
mContentRect.XMost() - metrics.mCompositionBounds.width / tempScaleDiffX) -
|
||||
metricsScrollOffset.x;
|
||||
scaleDiff.width = tempScaleDiffX;
|
||||
}
|
||||
|
||||
if (mContentRect.height * tempScaleDiffY < metrics.mCompositionBounds.height) {
|
||||
offset.y = -metricsScrollOffset.y;
|
||||
scaleDiff.height = std::min(1.0f, metrics.mCompositionBounds.height / (float)mContentRect.height);
|
||||
} else {
|
||||
offset.y = clamped(mScrollOffset.y / tempScaleDiffY, (float)mContentRect.y,
|
||||
mContentRect.YMost() - metrics.mCompositionBounds.height / tempScaleDiffY) -
|
||||
metricsScrollOffset.y;
|
||||
scaleDiff.height = tempScaleDiffY;
|
||||
}
|
||||
|
||||
// The transform already takes the resolution scale into account. Since we
|
||||
// will apply the resolution scale again when computing the effective
|
||||
// transform, we must apply the inverse resolution scale here.
|
||||
gfx3DMatrix computedTransform = treeTransform * currentTransform;
|
||||
computedTransform.Scale(1.0f/container->GetPreXScale(),
|
||||
1.0f/container->GetPreYScale(),
|
||||
1);
|
||||
computedTransform.ScalePost(1.0f/container->GetPostXScale(),
|
||||
1.0f/container->GetPostYScale(),
|
||||
1);
|
||||
layerComposite->SetShadowTransform(computedTransform);
|
||||
TransformFixedLayers(aLayer, offset, scaleDiff, fixedLayerMargins);
|
||||
}
|
||||
|
||||
bool
|
||||
CompositorParent::TransformShadowTree(TimeStamp aCurrentFrame)
|
||||
{
|
||||
bool wantNextFrame = false;
|
||||
Layer* root = mLayerManager->GetRoot();
|
||||
|
||||
// NB: we must sample animations *before* sampling pan/zoom
|
||||
// transforms.
|
||||
wantNextFrame |= SampleAnimations(root, aCurrentFrame);
|
||||
|
||||
const gfx3DMatrix& rootTransform = root->GetTransform();
|
||||
|
||||
// FIXME/bug 775437: unify this interface with the ~native-fennec
|
||||
// derived code
|
||||
//
|
||||
// Attempt to apply an async content transform to any layer that has
|
||||
// an async pan zoom controller (which means that it is rendered
|
||||
// async using Gecko). If this fails, fall back to transforming the
|
||||
// primary scrollable layer. "Failing" here means that we don't
|
||||
// find a frame that is async scrollable. Note that the fallback
|
||||
// code also includes Fennec which is rendered async. Fennec uses
|
||||
// its own platform-specific async rendering that is done partially
|
||||
// in Gecko and partially in Java.
|
||||
if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
|
||||
nsAutoTArray<Layer*,1> scrollableLayers;
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
|
||||
#else
|
||||
mLayerManager->GetScrollableLayers(scrollableLayers);
|
||||
#endif
|
||||
|
||||
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
|
||||
if (scrollableLayers[i]) {
|
||||
TransformScrollableLayer(scrollableLayers[i], rootTransform);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return wantNextFrame;
|
||||
}
|
||||
|
||||
void
|
||||
CompositorParent::ShadowLayersUpdated(LayerTransactionParent* aLayerTree,
|
||||
const TargetConfig& aTargetConfig,
|
||||
bool isFirstPaint)
|
||||
{
|
||||
if (!isFirstPaint && !mIsFirstPaint && mTargetConfig.orientation() != aTargetConfig.orientation()) {
|
||||
if (!isFirstPaint &&
|
||||
!mCompositionManager->IsFirstPaint() &&
|
||||
mCompositionManager->RequiresReorientation(aTargetConfig.orientation())) {
|
||||
if (mForceCompositionTask != NULL) {
|
||||
mForceCompositionTask->Cancel();
|
||||
}
|
||||
|
@ -1070,9 +533,7 @@ CompositorParent::ShadowLayersUpdated(LayerTransactionParent* aLayerTree,
|
|||
// race condition.
|
||||
mLayerManager->UpdateRenderBounds(aTargetConfig.clientBounds());
|
||||
|
||||
mTargetConfig = aTargetConfig;
|
||||
mIsFirstPaint = mIsFirstPaint || isFirstPaint;
|
||||
mLayersUpdated = true;
|
||||
mCompositionManager->Updated(isFirstPaint, aTargetConfig);
|
||||
Layer* root = aLayerTree->GetRoot();
|
||||
mLayerManager->SetRoot(root);
|
||||
if (root) {
|
||||
|
@ -1085,38 +546,6 @@ CompositorParent::ShadowLayersUpdated(LayerTransactionParent* aLayerTree,
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
CompositorParent::SetFirstPaintViewport(const nsIntPoint& aOffset, float aZoom,
|
||||
const nsIntRect& aPageRect, const gfx::Rect& aCssPageRect)
|
||||
{
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aPageRect, aCssPageRect);
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
CompositorParent::SetPageRect(const gfx::Rect& aCssPageRect)
|
||||
{
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
CompositorParent::SyncViewportInfo(const nsIntRect& aDisplayPort,
|
||||
float aDisplayResolution, bool aLayersUpdated,
|
||||
nsIntPoint& aScrollOffset, float& aScaleX, float& aScaleY,
|
||||
gfx::Margin& aFixedLayerMargins, float& aOffsetX,
|
||||
float& aOffsetY)
|
||||
{
|
||||
#ifdef MOZ_WIDGET_ANDROID
|
||||
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort, aDisplayResolution, aLayersUpdated,
|
||||
aScrollOffset, aScaleX, aScaleY, aFixedLayerMargins,
|
||||
aOffsetX, aOffsetY);
|
||||
#endif
|
||||
}
|
||||
|
||||
PLayerTransactionParent*
|
||||
CompositorParent::AllocPLayerTransaction(const LayersBackend& aBackendHint,
|
||||
const uint64_t& aId,
|
||||
|
@ -1125,7 +554,7 @@ CompositorParent::AllocPLayerTransaction(const LayersBackend& aBackendHint,
|
|||
MOZ_ASSERT(aId == 0);
|
||||
|
||||
// mWidget doesn't belong to the compositor thread, so it should be set to
|
||||
// NULL before returning from this method, to avoid accessing it elsewhere.
|
||||
// nullptr before returning from this method, to avoid accessing it elsewhere.
|
||||
nsIntRect rect;
|
||||
mWidget->GetClientBounds(rect);
|
||||
|
||||
|
@ -1140,25 +569,16 @@ CompositorParent::AllocPLayerTransaction(const LayersBackend& aBackendHint,
|
|||
|
||||
if (!mLayerManager->Initialize()) {
|
||||
NS_ERROR("Failed to init Compositor");
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
mCompositionManager = new AsyncCompositionManager(mLayerManager);
|
||||
|
||||
*aTextureFactoryIdentifier = mLayerManager->GetTextureFactoryIdentifier();
|
||||
return new LayerTransactionParent(mLayerManager, this, 0);
|
||||
// Basic layers compositor not yet implemented
|
||||
/*} else if (aBackendHint == mozilla::layers::LAYERS_BASIC) {
|
||||
nsRefPtr<LayerManager> layerManager = new BasicShadowLayerManager(mWidget);
|
||||
mWidget = NULL;
|
||||
mLayerManager = layerManager;
|
||||
LayerManagerComposite* slm = layerManager->AsLayerManagerComposite();
|
||||
if (!slm) {
|
||||
return NULL;
|
||||
}
|
||||
*aTextureFactoryIdentifier = layerManager->GetTextureFactoryIdentifier();
|
||||
return new LayerTransactionParent(slm, this, 0); */
|
||||
} else {
|
||||
NS_ERROR("Unsupported backend selected for Async Compositor");
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1216,7 +636,7 @@ CompositorParent* CompositorParent::RemoveCompositor(uint64_t id)
|
|||
return retval;
|
||||
}
|
||||
|
||||
typedef map<uint64_t, LayerTreeState> LayerTreeMap;
|
||||
typedef map<uint64_t, CompositorParent::LayerTreeState> LayerTreeMap;
|
||||
static LayerTreeMap sIndirectLayerTrees;
|
||||
|
||||
/*static*/ uint64_t
|
||||
|
@ -1360,8 +780,8 @@ UpdateIndirectTree(uint64_t aId, Layer* aRoot, const TargetConfig& aTargetConfig
|
|||
}
|
||||
}
|
||||
|
||||
static const LayerTreeState*
|
||||
GetIndirectShadowTree(uint64_t aId)
|
||||
/* static */ const CompositorParent::LayerTreeState*
|
||||
CompositorParent::GetIndirectShadowTree(uint64_t aId)
|
||||
{
|
||||
LayerTreeMap::const_iterator cit = sIndirectLayerTrees.find(aId);
|
||||
if (sIndirectLayerTrees.end() == cit) {
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#include "mozilla/Monitor.h"
|
||||
#include "mozilla/TimeStamp.h"
|
||||
#include "ShadowLayersManager.h"
|
||||
#include "mozilla/layers/LayerManagerComposite.h"
|
||||
|
||||
class nsIWidget;
|
||||
|
||||
namespace base {
|
||||
|
@ -33,28 +33,10 @@ namespace layers {
|
|||
|
||||
class AsyncPanZoomController;
|
||||
class Layer;
|
||||
class LayerManager;
|
||||
class LayerManagerComposite;
|
||||
class AsyncCompositionManager;
|
||||
struct TextureFactoryIdentifier;
|
||||
|
||||
// Represents (affine) transforms that are calculated from a content view.
|
||||
struct ViewTransform {
|
||||
ViewTransform(gfxPoint aTranslation = gfxPoint(),
|
||||
gfxSize aScale = gfxSize(1, 1))
|
||||
: mTranslation(aTranslation)
|
||||
, mScale(aScale)
|
||||
{}
|
||||
|
||||
operator gfx3DMatrix() const
|
||||
{
|
||||
return
|
||||
gfx3DMatrix::ScalingMatrix(mScale.width, mScale.height, 1) *
|
||||
gfx3DMatrix::Translation(mTranslation.x, mTranslation.y, 0);
|
||||
}
|
||||
|
||||
gfxPoint mTranslation;
|
||||
gfxSize mScale;
|
||||
};
|
||||
|
||||
class CompositorParent : public PCompositorParent,
|
||||
public ShadowLayersManager
|
||||
{
|
||||
|
@ -86,12 +68,13 @@ public:
|
|||
* The information refresh happens because the compositor will call
|
||||
* SetFirstPaintViewport on the next frame of composition.
|
||||
*/
|
||||
void ForceIsFirstPaint() { mIsFirstPaint = true; }
|
||||
void ForceIsFirstPaint();
|
||||
void Destroy();
|
||||
|
||||
LayerManagerComposite* GetLayerManager() { return mLayerManager; }
|
||||
|
||||
void SetTransformation(float aScale, nsIntPoint aScrollOffset);
|
||||
|
||||
void AsyncRender();
|
||||
|
||||
// Can be called from any thread
|
||||
|
@ -167,6 +150,19 @@ public:
|
|||
static void StartUpWithExistingThread(MessageLoop* aMsgLoop,
|
||||
PlatformThreadId aThreadID);
|
||||
|
||||
struct LayerTreeState {
|
||||
nsRefPtr<Layer> mRoot;
|
||||
nsRefPtr<AsyncPanZoomController> mController;
|
||||
TargetConfig mTargetConfig;
|
||||
};
|
||||
|
||||
/**
|
||||
* Lookup the indirect shadow tree for |aId| and return it if it
|
||||
* exists. Otherwise null is returned. This must only be called on
|
||||
* the compositor thread.
|
||||
*/
|
||||
static const LayerTreeState* GetIndirectShadowTree(uint64_t aId);
|
||||
|
||||
protected:
|
||||
virtual PLayerTransactionParent*
|
||||
AllocPLayerTransaction(const LayersBackend& aBackendHint,
|
||||
|
@ -176,16 +172,6 @@ protected:
|
|||
virtual void ScheduleTask(CancelableTask*, int);
|
||||
virtual void Composite();
|
||||
virtual void ComposeToTarget(gfxContext* aTarget);
|
||||
virtual void SetFirstPaintViewport(const nsIntPoint& aOffset, float aZoom, const nsIntRect& aPageRect, const gfx::Rect& aCssPageRect);
|
||||
virtual void SetPageRect(const gfx::Rect& aCssPageRect);
|
||||
virtual void SyncViewportInfo(const nsIntRect& aDisplayPort, float aDisplayResolution, bool aLayersUpdated,
|
||||
nsIntPoint& aScrollOffset, float& aScaleX, float& aScaleY,
|
||||
gfx::Margin& aFixedLayerMargins, float& aOffsetX, float& aOffsetY);
|
||||
virtual void SyncFrameMetrics(Layer* aLayer, const ViewTransform& aTreeTransform,
|
||||
const gfxPoint& aScrollOffset, gfx::Margin& aFixedLayerMargins,
|
||||
float& aOffsetX, float& aOffsetY,
|
||||
bool aIsFirstPaint, bool aLayersUpdated) {
|
||||
}
|
||||
|
||||
void SetEGLSurfaceSize(int width, int height);
|
||||
|
||||
|
@ -195,16 +181,6 @@ private:
|
|||
void ResumeCompositionAndResize(int width, int height);
|
||||
void ForceComposition();
|
||||
|
||||
// Sample transforms for layer trees. Return true to request
|
||||
// another animation frame.
|
||||
bool TransformShadowTree(TimeStamp aCurrentFrame);
|
||||
void TransformScrollableLayer(Layer* aLayer, const gfx3DMatrix& aRootTransform);
|
||||
// Return true if an AsyncPanZoomController content transform was
|
||||
// applied for |aLayer|. *aWantNextFrame is set to true if the
|
||||
// controller wants another animation frame.
|
||||
bool ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame, Layer* aLayer,
|
||||
bool* aWantNextFrame);
|
||||
|
||||
inline PlatformThreadId CompositorThreadID();
|
||||
|
||||
/**
|
||||
|
@ -252,22 +228,9 @@ private:
|
|||
*/
|
||||
bool CanComposite();
|
||||
|
||||
// Platform specific functions
|
||||
/**
|
||||
* Recursively applies the given translation to all top-level fixed position
|
||||
* layers that are descendants of the given layer.
|
||||
* aScaleDiff is considered to be the scale transformation applied when
|
||||
* displaying the layers, and is used to make sure the anchor points of
|
||||
* fixed position layers remain in the same position.
|
||||
*/
|
||||
void TransformFixedLayers(Layer* aLayer,
|
||||
const gfxPoint& aTranslation,
|
||||
const gfxSize& aScaleDiff,
|
||||
const gfx::Margin& aFixedLayerMargins);
|
||||
|
||||
nsRefPtr<LayerManagerComposite> mLayerManager;
|
||||
RefPtr<AsyncCompositionManager> mCompositionManager;
|
||||
nsIWidget* mWidget;
|
||||
TargetConfig mTargetConfig;
|
||||
CancelableTask *mCurrentCompositeTask;
|
||||
TimeStamp mLastCompose;
|
||||
#ifdef COMPOSITOR_PERFORMANCE_WARNING
|
||||
|
@ -275,21 +238,6 @@ private:
|
|||
#endif
|
||||
|
||||
bool mPaused;
|
||||
float mXScale;
|
||||
float mYScale;
|
||||
nsIntPoint mScrollOffset;
|
||||
nsIntRect mContentRect;
|
||||
|
||||
// When this flag is set, the next composition will be the first for a
|
||||
// particular document (i.e. the document displayed on the screen will change).
|
||||
// This happens when loading a new page or switching tabs. We notify the
|
||||
// front-end (e.g. Java on Android) about this so that it take the new page
|
||||
// size and zoom into account when providing us with the next view transform.
|
||||
bool mIsFirstPaint;
|
||||
|
||||
// This flag is set during a layers update, so that the first composition
|
||||
// after a layers update has it set. It is cleared after that first composition.
|
||||
bool mLayersUpdated;
|
||||
|
||||
bool mRenderToEGLSurface;
|
||||
nsIntSize mEGLSurfaceSize;
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#include "mozilla/layers/ImageClient.h"
|
||||
#include "mozilla/layers/LayersTypes.h"
|
||||
#include "ShadowLayers.h"
|
||||
|
||||
|
||||
using namespace base;
|
||||
using namespace mozilla::ipc;
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@
|
|||
#include "CompositableHost.h"
|
||||
#include "nsTArray.h"
|
||||
#include "nsXULAppAPI.h"
|
||||
#include "mozilla/layers/LayerManagerComposite.h"
|
||||
|
||||
using namespace base;
|
||||
using namespace mozilla::ipc;
|
||||
|
|
|
@ -58,6 +58,7 @@ EXPORTS.gfxipc += [
|
|||
]
|
||||
|
||||
EXPORTS.mozilla.layers += [
|
||||
'AsyncCompositionManager.h',
|
||||
'AsyncPanZoomController.h',
|
||||
'Axis.h',
|
||||
'CanvasClient.h',
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include "nsSubDocumentFrame.h"
|
||||
#include "nsViewportFrame.h"
|
||||
#include "RenderFrameParent.h"
|
||||
#include "mozilla/layers/LayerManagerComposite.h"
|
||||
|
||||
typedef nsContentView::ViewConfig ViewConfig;
|
||||
using namespace mozilla::dom;
|
||||
|
|
|
@ -40,6 +40,7 @@ using mozilla::unused;
|
|||
#include "BasicLayers.h"
|
||||
#include "LayerManagerOGL.h"
|
||||
#include "mozilla/layers/LayerManagerComposite.h"
|
||||
#include "mozilla/layers/AsyncCompositionManager.h"
|
||||
#include "GLContext.h"
|
||||
#include "GLContextProvider.h"
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче