diff --git a/third_party/python/PyECC/MANIFEST.in b/third_party/python/PyECC/MANIFEST.in deleted file mode 100644 index bb3ec5f0d4c7..000000000000 --- a/third_party/python/PyECC/MANIFEST.in +++ /dev/null @@ -1 +0,0 @@ -include README.md diff --git a/third_party/python/PyECC/README.md b/third_party/python/PyECC/README.md deleted file mode 100644 index be67fff04f3c..000000000000 --- a/third_party/python/PyECC/README.md +++ /dev/null @@ -1,29 +0,0 @@ -ecc -=== - -Pure Python implementation of an elliptic curve cryptosystem based on FIPS 186-3 - -License -======= - -The MIT License (MIT) - -Copyright (c) 2010-2015 Toni Mattis - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in -all copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN -THE SOFTWARE. diff --git a/third_party/python/PyECC/ecc/Key.py b/third_party/python/PyECC/ecc/Key.py deleted file mode 100644 index 8ba268576877..000000000000 --- a/third_party/python/PyECC/ecc/Key.py +++ /dev/null @@ -1,320 +0,0 @@ -# ==================================================================== -# -# ELLIPTIC CURVE KEY ENCAPSULATION -# Version 2011-01-26 -# -# Copyright (c) 2010 - 2011 | Toni Mattis -# -# ==================================================================== - -""" -== Elliptic Curve Key Encapsulation == - -Keypairs --------- -Keypairs are generated using: Key.generate(bits) - -The number of bits is tied to the NIST-proposed elliptic curves -and has to be 192, 224, 256, 384 or 521 (not 512!). -The result is a Key object containing public and private key. - -private() is a method for checking whether the Key object is a -pure public key or also includes the private part. - - -Exchange --------- -Public keys have to be exported using the export()-Method without -passing an argument. The result is a string which can be safely -transmitted. - -Using Key.decode() the receiver obtains a new -public Key object of the sender. - - -Storage -------- -For storing a key, export(True) exports both private and public -key as a string. Make sure this information is properly encrypted -when stored. - -Key.decode() obtains the full Key object from the -encoded keypair. - - -Public Keys ------------ -A public Key object can perform the following cryptographic -operations: - -* validate() Checks key integrity, i.e. after loading the - key from a file. Returns True if the key is - valid. Invalid keys should be discarded. - -* fingerprint() Returns the public key fingerprint used to - identify the key. Optional arguments: - 1. as_hex - True, if output should be formatted - as hexadecimal number (default: True). - 2. hashfunc - The official name of the hash - function being used (default: 'sha1') - For supported hash functions see below. - -* keyid() Returns a (mostly) unique Key ID, which is - shorter than the fingerprint. The result - is an integer of max. 64 bits. - -* verify() Verifies whether the given data (argument 1) - matches the signature (argument 2) issued - by the owner of this key. A falsification - can have multiple causes: - - - Data, public key or signature were altered - during transmission/storage. - - The siganture was not issued by the owner - of this key but may be valid with another - key. - - The signature was issued for different data. - - The signature was issued using a different - hash function. Another hash function may work. - - Optionally, the name of a hash algorithm - can be provided. For hash names see below. - -* encrypt() Encrypts a packet of data destined for the owner - of this key*. After encryption only the holder - of this Key's private part is able to decrypt - the message. - -Private Keys / Keypairs ------------------------ - -If the key object is private, then it is a keypair consisting of -a public and a private key. Therefore all Public key operations -are supported. - -Additional functions: - -* sign() Signs given data using this private key. The - result is a signature which can be passed as - argument to the verify() function in addition - to the data being verified. - - As additional argument the name of the hash - function can be provided (defaults to 'sha256'). - For hash names see below. - -* auth_encrypt() Performs authenticated encryption of data - (argument 1) for the holder of the key provided - as second argument. Only the receiver whose - public key is given is able to derypt and verify - the message. The message will be implicitly - signed using the own private key. * - -* decrypt() Decrypts a message which has been encrypted - using the public key of this keypair*. If - decryption yields random data, this can have - multiple causes: - - You were not the intended receiver, a different - private key may be able to decrypt it. - - The message was altered. - - Your private key is damaged. - -* auth_decrypt() Decrypts a message while verifying whether - it has been authentically issued by the holder - of the given key (argument 2). When - authentication failed, a - SecurityViolationException is thrown. Reasons - for this to happen are those mentioned with - decrypt() and verify(). * - -*) The encryption used here depends on the "eccrypt" module imported -by this module. Default implementation should use RABBIT as cipher -and do the asymmetric part using an optimized El-Gamal scheme. - - - -Hash functions --------------- -The following hash functions can be passed at the moment: - -name | hash size | security level - | (bits, bytes, hex digits) ----------+------------------------+---------------- -'sha1' 160 / 20 / 40 medium -'sha224' 224 / 28 / 56 medium-strong -'sha256' 256 / 32 / 64 strong -'sha384' 384 / 48 / 96 very strong -'sha512' 512 / 64 / 128 very strong - -'md5' 128 / 16 / 32 weak (not recommended!) - - -Curves ------- -According to FIPS 186-3, Appendix D.1.2 there are 5 elliptic -curves recommended. All of those are strong, but those with -a higher bit number even stronger. - -192 and 224 bits are sufficient for most purposes. -256 bits offer an additional magnitude of security. - (i.e. for classified / strongly confidential data) -384 and 521 bits provide exceptionally strong security. According - to current research they most probably keep this level for - decades in the future. - -FIPS also recommends curves over polynomial fields but actually -only prime fields are implemented here. (Because 2^521-1 is a mersenne -prime having great security characteristics, 521 bits are preferred -over a constructed 512 bit field.) -""" - -from encoding import * -from eccrypt import * -import ecdsa -import hashlib -from SecurityViolationException import * - -class Key: - - # --- KEY SETUP ------------------------------------------------------------ - - def __init__(self, public_key, private_key = None): - '''Create a Key(pair) from numeric keys.''' - self._pub = public_key - self._priv = private_key - self._fingerprint = {} - self._id = None - - @staticmethod - def generate(bits): - '''Generate a new ECDSA keypair''' - return Key(*ecdsa.keypair(bits)) - - # --- BINARY REPRESENTATION ------------------------------------------------ - - def encode(self, include_private = False): - '''Returns a strict binary representation of this Key''' - e = Encoder().int(self.keyid(), 8) - e.int(self._pub[0], 2).point(self._pub[1], 2) - if include_private and self._priv: - e.long(self._priv[1], 2) - else: - e.long(0, 2) - return e.out() - - def compress(self): - '''Returns a compact public key representation''' - - - @staticmethod - def decode(s): - '''Constructs a new Key object from its binary representation''' - kid, ksize, pub, priv = Decoder(s).int(8).int(2).point(2).long(2).out() - k = Key((ksize, pub), (ksize, priv) if priv else None) - if kid == k.keyid(): - return k - else: - raise ValueError, "Invalid Key ID" - - # --- IDENTIFICATION AND VALIDATION ---------------------------------------- - - def private(self): - '''Checks whether Key object contains private key''' - return bool(self._priv) - - def validate(self): - '''Checks key validity''' - if ecdsa.validate_public_key(self._pub): - if self._priv: # ? validate and match private key - return ecdsa.validate_private_key(self._priv) and \ - ecdsa.match_keys(self._pub, self._priv) - else: - return True # : everything valid - else: - return False - - def fingerprint(self, as_hex = True, hashfunc = 'sha1'): - '''Get the public key fingerprint''' - if hashfunc in self._fingerprint: - return self._fingerprint[hashfunc] if not as_hex else \ - self._fingerprint[hashfunc].encode("hex") - else: - h = hashlib.new(hashfunc, enc_point(self._pub[1])) - d = h.digest() - self._fingerprint[hashfunc] = d - return d.encode("hex") if as_hex else d - - def keyid(self): - '''Get a short, unique identifier''' - if not self._id: - self._id = dec_long(self.fingerprint(False, 'sha1')[:8]) - return self._id - - # --- DIGITAL SIGNATURES --------------------------------------------------- - - def sign(self, data, hashfunc = 'sha256'): - '''Sign data using the specified hash function''' - if self._priv: - h = dec_long(hashlib.new(hashfunc, data).digest()) - s = ecdsa.sign(h, self._priv) - return enc_point(s) - else: - raise AttributeError, "Private key needed for signing." - - def verify(self, data, sig, hashfunc = 'sha256'): - '''Verify the signature of data using the specified hash function''' - h = dec_long(hashlib.new(hashfunc, data).digest()) - s = dec_point(sig) - return ecdsa.verify(h, s, self._pub) - - # --- HYBRID ENCRYPTION ---------------------------------------------------- - - def encrypt(self, data): - '''Encrypt a message using this public key''' - ctext, mkey = encrypt(data, self._pub) - return Encoder().point(mkey).str(ctext, 4).out() - - def decrypt(self, data): - '''Decrypt an encrypted message using this private key''' - mkey, ctext = Decoder(data).point().str(4).out() - return decrypt(ctext, mkey, self._priv) - - # --- AUTHENTICATED ENCRYPTION --------------------------------------------- - - def auth_encrypt(self, data, receiver): - '''Sign and encrypt a message''' - sgn = self.sign(data) - ctext, mkey = encrypt(data, receiver._pub) - return Encoder().point(mkey).str(ctext, 4).str(sgn, 2).out() - - def auth_decrypt(self, data, source): - '''Decrypt and verify a message''' - mkey, ctext, sgn = Decoder(data).point().str(4).str(2).out() - text = decrypt(ctext, mkey, self._priv) - if source.verify(text, sgn): - return text - else: - raise SecurityViolationException, "Invalid Signature" - - -if __name__ == "__main__": - - import time - - def test_overhead(): - print "sender", "receiver", "+bytes", "+enctime", "+dectime" - for s in [192, 224, 256, 384, 521]: - sender = Key.generate(s) - for r in [192, 224, 256, 384, 521]: - receiver = Key.generate(r) - t = time.time() - e = sender.auth_encrypt("", receiver) - t1 = time.time() - t - t = time.time() - receiver.auth_decrypt(e, sender) - t2 = time.time() - t - print s, r, len(e), t1, t2 - - - - diff --git a/third_party/python/PyECC/ecc/Rabbit.py b/third_party/python/PyECC/ecc/Rabbit.py deleted file mode 100644 index 209f01e1ee95..000000000000 --- a/third_party/python/PyECC/ecc/Rabbit.py +++ /dev/null @@ -1,270 +0,0 @@ -# ------------------------------------------------------------------------------ -# -# R A B B I T Stream Cipher -# by M. Boesgaard, M. Vesterager, E. Zenner (specified in RFC 4503) -# -# -# Pure Python Implementation by Toni Mattis -# -# ------------------------------------------------------------------------------ - - -WORDSIZE = 0x100000000 - -rot08 = lambda x: ((x << 8) & 0xFFFFFFFF) | (x >> 24) -rot16 = lambda x: ((x << 16) & 0xFFFFFFFF) | (x >> 16) - -def _nsf(u, v): - '''Internal non-linear state transition''' - s = (u + v) % WORDSIZE - s = s * s - return (s ^ (s >> 32)) % WORDSIZE - -class Rabbit: - - def __init__(self, key, iv = None): - '''Initialize Rabbit cipher using a 128 bit integer/string''' - - if isinstance(key, str): - # interpret key string in big endian byte order - if len(key) < 16: - key = '\x00' * (16 - len(key)) + key - # if len(key) > 16 bytes only the first 16 will be considered - k = [ord(key[i + 1]) | (ord(key[i]) << 8) - for i in xrange(14, -1, -2)] - else: - # k[0] = least significant 16 bits - # k[7] = most significant 16 bits - k = [(key >> i) & 0xFFFF for i in xrange(0, 128, 16)] - - # State and counter initialization - x = [(k[(j + 5) % 8] << 16) | k[(j + 4) % 8] if j & 1 else - (k[(j + 1) % 8] << 16) | k[j] for j in xrange(8)] - c = [(k[j] << 16) | k[(j + 1) % 8] if j & 1 else - (k[(j + 4) % 8] << 16) | k[(j + 5) % 8] for j in xrange(8)] - - self.x = x - self.c = c - self.b = 0 - self._buf = 0 # output buffer - self._buf_bytes = 0 # fill level of buffer - - self.next() - self.next() - self.next() - self.next() - - for j in xrange(8): - c[j] ^= x[(j + 4) % 8] - - self.start_x = self.x[:] # backup initial key for IV/reset - self.start_c = self.c[:] - self.start_b = self.b - - if iv != None: - self.set_iv(iv) - - def reset(self, iv = None): - '''Reset the cipher and optionally set a new IV (int64 / string).''' - - self.c = self.start_c[:] - self.x = self.start_x[:] - self.b = self.start_b - self._buf = 0 - self._buf_bytes = 0 - if iv != None: - self.set_iv(iv) - - def set_iv(self, iv): - '''Set a new IV (64 bit integer / bytestring).''' - - if isinstance(iv, str): - i = 0 - for c in iv: - i = (i << 8) | ord(c) - iv = i - - c = self.c - i0 = iv & 0xFFFFFFFF - i2 = iv >> 32 - i1 = ((i0 >> 16) | (i2 & 0xFFFF0000)) % WORDSIZE - i3 = ((i2 << 16) | (i0 & 0x0000FFFF)) % WORDSIZE - - c[0] ^= i0 - c[1] ^= i1 - c[2] ^= i2 - c[3] ^= i3 - c[4] ^= i0 - c[5] ^= i1 - c[6] ^= i2 - c[7] ^= i3 - - self.next() - self.next() - self.next() - self.next() - - - def next(self): - '''Proceed to the next internal state''' - - c = self.c - x = self.x - b = self.b - - t = c[0] + 0x4D34D34D + b - c[0] = t % WORDSIZE - t = c[1] + 0xD34D34D3 + t // WORDSIZE - c[1] = t % WORDSIZE - t = c[2] + 0x34D34D34 + t // WORDSIZE - c[2] = t % WORDSIZE - t = c[3] + 0x4D34D34D + t // WORDSIZE - c[3] = t % WORDSIZE - t = c[4] + 0xD34D34D3 + t // WORDSIZE - c[4] = t % WORDSIZE - t = c[5] + 0x34D34D34 + t // WORDSIZE - c[5] = t % WORDSIZE - t = c[6] + 0x4D34D34D + t // WORDSIZE - c[6] = t % WORDSIZE - t = c[7] + 0xD34D34D3 + t // WORDSIZE - c[7] = t % WORDSIZE - b = t // WORDSIZE - - g = [_nsf(x[j], c[j]) for j in xrange(8)] - - x[0] = (g[0] + rot16(g[7]) + rot16(g[6])) % WORDSIZE - x[1] = (g[1] + rot08(g[0]) + g[7]) % WORDSIZE - x[2] = (g[2] + rot16(g[1]) + rot16(g[0])) % WORDSIZE - x[3] = (g[3] + rot08(g[2]) + g[1]) % WORDSIZE - x[4] = (g[4] + rot16(g[3]) + rot16(g[2])) % WORDSIZE - x[5] = (g[5] + rot08(g[4]) + g[3]) % WORDSIZE - x[6] = (g[6] + rot16(g[5]) + rot16(g[4])) % WORDSIZE - x[7] = (g[7] + rot08(g[6]) + g[5]) % WORDSIZE - - self.b = b - return self - - - def derive(self): - '''Derive a 128 bit integer from the internal state''' - - x = self.x - return ((x[0] & 0xFFFF) ^ (x[5] >> 16)) | \ - (((x[0] >> 16) ^ (x[3] & 0xFFFF)) << 16)| \ - (((x[2] & 0xFFFF) ^ (x[7] >> 16)) << 32)| \ - (((x[2] >> 16) ^ (x[5] & 0xFFFF)) << 48)| \ - (((x[4] & 0xFFFF) ^ (x[1] >> 16)) << 64)| \ - (((x[4] >> 16) ^ (x[7] & 0xFFFF)) << 80)| \ - (((x[6] & 0xFFFF) ^ (x[3] >> 16)) << 96)| \ - (((x[6] >> 16) ^ (x[1] & 0xFFFF)) << 112) - - - def keystream(self, n): - '''Generate a keystream of n bytes''' - - res = "" - b = self._buf - j = self._buf_bytes - next = self.next - derive = self.derive - - for i in xrange(n): - if not j: - j = 16 - next() - b = derive() - res += chr(b & 0xFF) - j -= 1 - b >>= 1 - - self._buf = b - self._buf_bytes = j - return res - - - def encrypt(self, data): - '''Encrypt/Decrypt data of arbitrary length.''' - - res = "" - b = self._buf - j = self._buf_bytes - next = self.next - derive = self.derive - - for c in data: - if not j: # empty buffer => fetch next 128 bits - j = 16 - next() - b = derive() - res += chr(ord(c) ^ (b & 0xFF)) - j -= 1 - b >>= 1 - self._buf = b - self._buf_bytes = j - return res - - decrypt = encrypt - - - -if __name__ == "__main__": - - import time - - # --- Official Test Vectors --- - - # RFC 4503 Appendix A.1 - Testing without IV Setup - - r = Rabbit(0) - assert r.next().derive() == 0xB15754F036A5D6ECF56B45261C4AF702 - assert r.next().derive() == 0x88E8D815C59C0C397B696C4789C68AA7 - assert r.next().derive() == 0xF416A1C3700CD451DA68D1881673D696 - - r = Rabbit(0x912813292E3D36FE3BFC62F1DC51C3AC) - assert r.next().derive() == 0x3D2DF3C83EF627A1E97FC38487E2519C - assert r.next().derive() == 0xF576CD61F4405B8896BF53AA8554FC19 - assert r.next().derive() == 0xE5547473FBDB43508AE53B20204D4C5E - - r = Rabbit(0x8395741587E0C733E9E9AB01C09B0043) - assert r.next().derive() == 0x0CB10DCDA041CDAC32EB5CFD02D0609B - assert r.next().derive() == 0x95FC9FCA0F17015A7B7092114CFF3EAD - assert r.next().derive() == 0x9649E5DE8BFC7F3F924147AD3A947428 - - # RFC 4503 Appendix A.2 - Testing with IV Setup - - r = Rabbit(0, 0) - assert r.next().derive() == 0xC6A7275EF85495D87CCD5D376705B7ED - assert r.next().derive() == 0x5F29A6AC04F5EFD47B8F293270DC4A8D - assert r.next().derive() == 0x2ADE822B29DE6C1EE52BDB8A47BF8F66 - - r = Rabbit(0, 0xC373F575C1267E59) - assert r.next().derive() == 0x1FCD4EB9580012E2E0DCCC9222017D6D - assert r.next().derive() == 0xA75F4E10D12125017B2499FFED936F2E - assert r.next().derive() == 0xEBC112C393E738392356BDD012029BA7 - - r = Rabbit(0, 0xA6EB561AD2F41727) - assert r.next().derive() == 0x445AD8C805858DBF70B6AF23A151104D - assert r.next().derive() == 0x96C8F27947F42C5BAEAE67C6ACC35B03 - assert r.next().derive() == 0x9FCBFC895FA71C17313DF034F01551CB - - - # --- Performance Tests --- - - def test_gen(n = 1048576): - '''Measure time for generating n bytes => (total, bytes per second)''' - - r = Rabbit(0) - t = time.time() - r.keystream(n) - t = time.time() - t - return t, n / t - - def test_enc(n = 1048576): - '''Measure time for encrypting n bytes => (total, bytes per second)''' - - r = Rabbit(0) - x = 'x' * n - t = time.time() - r.encrypt(x) - t = time.time() - t - return t, n / t diff --git a/third_party/python/PyECC/ecc/SecurityViolationException.py b/third_party/python/PyECC/ecc/SecurityViolationException.py deleted file mode 100644 index c4fc1368757f..000000000000 --- a/third_party/python/PyECC/ecc/SecurityViolationException.py +++ /dev/null @@ -1,2 +0,0 @@ -class SecurityViolationException(Exception): - pass diff --git a/third_party/python/PyECC/ecc/__init__.py b/third_party/python/PyECC/ecc/__init__.py deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/third_party/python/PyECC/ecc/curves.py b/third_party/python/PyECC/ecc/curves.py deleted file mode 100644 index ee5847fc50f6..000000000000 --- a/third_party/python/PyECC/ecc/curves.py +++ /dev/null @@ -1,81 +0,0 @@ -# -# Predefined Elliptic Curves -# for use in signing and key exchange -# -''' -Predefined elliptic curves for use in signing and key exchange. -This Module implements FIPS approved standard curves P-192, P-224, P-256, -P-384 and P-521 along with two weak non-standard curves of field size 128 -and 160 bits. - -The weak curves cannot be used for signing but provide a faster way to -obfuscate non-critical transmissions. -''' - -# FIPS approved elliptic curves over prime fields -# (see FIPS 186-3, Appendix D.1.2) -DOMAINS = { - # Bits : (p, order of E(GF(P)), parameter b, base point x, base point y) - 192 : (0xfffffffffffffffffffffffffffffffeffffffffffffffffL, - 0xffffffffffffffffffffffff99def836146bc9b1b4d22831L, - 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1L, - 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012L, - 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811L), - - 224 : (0xffffffffffffffffffffffffffffffff000000000000000000000001L, - 0xffffffffffffffffffffffffffff16a2e0b8f03e13dd29455c5c2a3dL, - 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4L, - 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21L, - 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34L), - - 256 : (0xffffffff00000001000000000000000000000000ffffffffffffffffffffffffL, - 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551L, - 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604bL, - 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296L, - 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5L), - - 384 : (0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffffL, - 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973L, - 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aefL, - 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7L, - 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5fL), - - 521 : (0x1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffL, - 0x1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409L, - 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00L, - 0x0c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66L, - 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650L) - } - - -# Additional non-standard curves for low security but high performance -# (not intended for use in signing, hence the missing group order) - -DOMAINS.update({ - 128 : (0xffffffffffffffffffffffffffffff61L, - None, - 0xd83d3eb8266a89927d73d5fe263d5f23L, - 0xa94d2d8531f7af8bde367def12b98eadL, - 0x9f44e1d671beb68fd2df7f877ab13fa6L), - - 160 : (0xffffffffffffffffffffffffffffffffffffffd1L, - None, - 0x94bfe70deef7b94742c089ca4db3ca27fbe1f754L, - 0xcc6562c2969ac57524b8d0f300d1f598c908c121L, - 0x952ddde80a252683dd7ba90fb5919899b5af69f5L) - }) - -CURVE_P = 3 # global parameter of all curves (for efficiency reasons) - - -def get_curve(bits): - '''Get a known curve of the given size => (bits, prime, order, p, q, point). - Order may be None if unknown.''' - if bits in DOMAINS: - p, n, b, x, y = DOMAINS[bits] - return bits, p, n, CURVE_P, p - b, (x, y) - else: - raise KeyError, "Key size not implemented: %s" % bits - -def implemented_keys(must_sign = False): - return [k for k in DOMAINS if not must_sign or DOMAINS[k][1]] diff --git a/third_party/python/PyECC/ecc/eccrypt.py b/third_party/python/PyECC/ecc/eccrypt.py deleted file mode 100644 index c38876d07156..000000000000 --- a/third_party/python/PyECC/ecc/eccrypt.py +++ /dev/null @@ -1,65 +0,0 @@ -# Elliptic Curve Hybrid Encryption Scheme -# -# COPYRIGHT (c) 2010 by Toni Mattis -# - -from curves import get_curve -from elliptic import mulp -from encoding import enc_long -from random import SystemRandom -from Rabbit import Rabbit - -# important for cryptographically secure random numbers: -random = SystemRandom() - -# Encryption Algorithm: -# --------------------- -# Input: Message M, public key Q -# -# 0. retrieve the group from which Q was generated. -# 1. generate random number k between 1 and the group order. -# 2. compute KG = k * G (where G is the base point of the group). -# 3. compute SG = k * Q (where Q is the public key of the receiver). -# 4. symmetrically encrypt M to M' using SG's x-coordinate as key. -# -# Return: Ciphertext M', temporary key KG - - -def encrypt(message, qk, encrypter = Rabbit): - '''Encrypt a message using public key qk => (ciphertext, temp. pubkey)''' - bits, q = qk - try: - bits, cn, n, cp, cq, g = get_curve(bits) - if not n: - raise ValueError, "Key size %s not suitable for encryption" % bits - except KeyError: - raise ValueError, "Key size %s not implemented" % bits - - k = random.randint(1, n - 1) # temporary private key k - kg = mulp(cp, cq, cn, g, k) # temporary public key k*G - sg = mulp(cp, cq, cn, q, k) # shared secret k*Q = k*d*G - - return encrypter(enc_long(sg[0])).encrypt(message), kg - -# Decryption Algorithm: -# --------------------- -# Input: Ciphertext M', temporary key KG, private key d -# -# 0. retrieve the group from which d and KG were generated. -# 1. compute SG = q * KG. -# 2. symmetrically decrypt M' to M using SG's x-coordinate as key. -# -# Return: M - -def decrypt(message, kg, dk, decrypter = Rabbit): - '''Decrypt a message using temp. public key kg and private key dk''' - bits, d = dk - try: - bits, cn, n, cp, cq, g = get_curve(bits) - except KeyError: - raise ValueError, "Key size %s not implemented" % bits - - sg = mulp(cp, cq, cn, kg, d) # shared secret d*(k*G) = k*d*G - return decrypter(enc_long(sg[0])).decrypt(message) - - diff --git a/third_party/python/PyECC/ecc/ecdsa.py b/third_party/python/PyECC/ecc/ecdsa.py deleted file mode 100644 index 6b52aeaa5de6..000000000000 --- a/third_party/python/PyECC/ecc/ecdsa.py +++ /dev/null @@ -1,153 +0,0 @@ -# -# Elliptic Curve Digital Signature Algorithm (ECDSA) -# -# COPYRIGHT (c) 2010 by Toni Mattis -# - -from elliptic import inv, mulf, mulp, muladdp, element -from curves import get_curve, implemented_keys -from os import urandom - -import hashlib - -def randkey(bits, n): - '''Generate a random number (mod n) having the specified bit length''' - rb = urandom(bits / 8 + 8) # + 64 bits as recommended in FIPS 186-3 - c = 0 - for r in rb: - c = (c << 8) | ord(r) - return (c % (n - 1)) + 1 - -def keypair(bits): - '''Generate a new keypair (qk, dk) with dk = private and qk = public key''' - try: - bits, cn, n, cp, cq, g = get_curve(bits) - except KeyError: - raise ValueError, "Key size %s not implemented" % bits - if n > 0: - d = randkey(bits, n) - q = mulp(cp, cq, cn, g, d) - return (bits, q), (bits, d) - else: - raise ValueError, "Key size %s not suitable for signing" % bits - -def supported_keys(): - '''Return a list of all key sizes implemented for signing''' - return implemented_keys(True) - -def validate_public_key(qk): - '''Check whether public key qk is valid''' - bits, q = qk - x, y = q - bits, cn, n, cp, cq, g = get_curve(bits) - return q and 0 < x < cn and 0 < y < cn and \ - element(q, cp, cq, cn) and (mulp(cp, cq, cn, q, n) == None) - -def validate_private_key(dk): - '''Check whether private key dk is valid''' - bits, d = dk - bits, cn, n, cp, cq, g = get_curve(bits) - return 0 < d < cn - -def match_keys(qk, dk): - '''Check whether dk is the private key belonging to qk''' - bits, d = dk - bitz, q = qk - if bits == bitz: - bits, cn, n, cp, cq, g = get_curve(bits) - return mulp(cp, cq, cn, g, d) == q - else: - return False - -def truncate(h, hmax): - '''Truncate a hash to the bit size of hmax''' - while h > hmax: - h >>= 1 - return h - -def sign(h, dk): - '''Sign the numeric value h using private key dk''' - bits, d = dk - bits, cn, n, cp, cq, g = get_curve(bits) - h = truncate(h, cn) - r = s = 0 - while r == 0 or s == 0: - k = randkey(bits, cn) - kinv = inv(k, n) - kg = mulp(cp, cq, cn, g, k) - r = kg[0] % n - if r == 0: - continue - s = (kinv * (h + r * d)) % n - return r, s - -def verify(h, sig, qk): - '''Verify that 'sig' is a valid signature of h using public key qk''' - bits, q = qk - try: - bits, cn, n, cp, cq, g = get_curve(bits) - except KeyError: - return False - h = truncate(h, cn) - r, s = sig - if 0 < r < n and 0 < s < n: - w = inv(s, n) - u1 = (h * w) % n - u2 = (r * w) % n - x, y = muladdp(cp, cq, cn, g, u1, q, u2) - return r % n == x % n - return False - -def hash_sign(s, dk, hashfunc = 'sha256'): - h = int(hashlib.new(hashfunc, s).hexdigest(), 16) - return (hashfunc,) + sign(h, dk) - -def hash_verify(s, sig, qk): - h = int(hashlib.new(sig[0], s).hexdigest(), 16) - return verify(h, sig[1:], qk) - - -if __name__ == "__main__": - - import time - - testh1 = 0x0123456789ABCDEF - testh2 = 0x0123456789ABCDEE - - for k in supported_keys(): - qk, dk = keypair(k) - s1 = sign(testh1, dk) - s2 = sign(testh1, (dk[0], dk[1] ^ 1)) - s3 = (s1[0], s1[1] ^ 1) - qk2 = (qk[0], (qk[1][0] ^ 1, qk[1][1])) - - assert verify(testh1, s1, qk) # everything ok -> must succeed - assert not verify(testh2, s1, qk) # modified hash -> must fail - assert not verify(testh1, s2, qk) # different priv. key -> must fail - assert not verify(testh1, s3, qk) # modified signature -> must fail - assert not verify(testh1, s1, qk2) # different publ. key -> must fail - - - def test_perf(bits, rounds = 50): - '''-> (key generations, signatures, verifications) / second''' - h = 0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF - d = get_curve(bits) - - t = time.time() - for i in xrange(rounds): - qk, dk = keypair(bits) - tgen = time.time() - t - - t = time.time() - for i in xrange(rounds): - s = sign(0, dk) - tsign = time.time() - t - - t = time.time() - for i in xrange(rounds): - verify(0, s, qk) - tver = time.time() - t - - return rounds / tgen, rounds / tsign, rounds / tver - - diff --git a/third_party/python/PyECC/ecc/elliptic.py b/third_party/python/PyECC/ecc/elliptic.py deleted file mode 100644 index 9191a884883f..000000000000 --- a/third_party/python/PyECC/ecc/elliptic.py +++ /dev/null @@ -1,381 +0,0 @@ - -# --- ELLIPTIC CURVE MATH ------------------------------------------------------ -# -# curve definition: y^2 = x^3 - p*x - q -# over finite field: Z/nZ* (prime residue classes modulo a prime number n) -# -# -# COPYRIGHT (c) 2010 by Toni Mattis -# ------------------------------------------------------------------------------ - -''' -Module for elliptic curve arithmetic over a prime field GF(n). -E(GF(n)) takes the form y**2 == x**3 - p*x - q (mod n) for a prime n. - -0. Structures used by this module - - PARAMETERS and SCALARS are non-negative (long) integers. - - A POINT (x, y), usually denoted p1, p2, ... - is a pair of (long) integers where 0 <= x < n and 0 <= y < n - - A POINT in PROJECTIVE COORDINATES, usually denoted jp1, jp2, ... - takes the form (X, Y, Z, Z**2, Z**3) where x = X / Z**2 - and y = Y / z**3. This form is called Jacobian coordinates. - - The NEUTRAL element "0" or "O" is represented by None - in both coordinate systems. - -1. Basic Functions - - euclid() Is the Extended Euclidean Algorithm. - inv() Computes the multiplicative inversion modulo n. - curve_q() Finds the curve parameter q (mod n) - when p and a point are given. - element() Tests whether a point (x, y) is on the curve. - -2. Point transformations - - to_projective() Converts a point (x, y) to projective coordinates. - from_projective() Converts a point from projective coordinates - to (x, y) using the transformation described above. - neg() Computes the inverse point -P in both coordinate - systems. - -3. Slow point arithmetic - - These algorithms make use of basic geometry and modular arithmetic - thus being suitable for small numbers and academic study. - - add() Computes the sum of two (x, y)-points - mul() Perform scalar multiplication using "double & add" - -4. Fast point arithmetic - - These algorithms make use of projective coordinates, signed binary - expansion and a JSP-like approach (joint sparse form). - - The following functions consume and return projective coordinates: - - addf() Optimized point addition. - doublef() Optimized point doubling. - mulf() Highly optimized scalar multiplication. - muladdf() Highly optimized addition of two products. - - The following functions use the optimized ones above but consume - and output (x, y)-coordinates for a more convenient usage: - - mulp() Encapsulates mulf() - muladdp() Encapsulates muladdf() - - For single additions add() is generally faster than an encapsulation of - addf() which would involve expensive coordinate transformations. - Hence there is no addp() and doublep(). -''' - -# BASIC MATH ------------------------------------------------------------------- - -def euclid(a, b): - '''Solve x*a + y*b = ggt(a, b) and return (x, y, ggt(a, b))''' - # Non-recursive approach hence suitable for large numbers - x = yy = 0 - y = xx = 1 - while b: - q = a // b - a, b = b, a % b - x, xx = xx - q * x, x - y, yy = yy - q * y, y - return xx, yy, a - -def inv(a, n): - '''Perform inversion 1/a modulo n. a and n should be COPRIME.''' - # coprimality is not checked here in favour of performance - i = euclid(a, n)[0] - while i < 0: - i += n - return i - -def curve_q(x, y, p, n): - '''Find curve parameter q mod n having point (x, y) and parameter p''' - return ((x * x - p) * x - y * y) % n - -def element(point, p, q, n): - '''Test, whether the given point is on the curve (p, q, n)''' - if point: - x, y = point - return (x * x * x - p * x - q) % n == (y * y) % n - else: - return True - -def to_projective(p): - '''Transform point p given as (x, y) to projective coordinates''' - if p: - return (p[0], p[1], 1, 1, 1) - else: - return None # Identity point (0) - -def from_projective(jp, n): - '''Transform a point from projective coordinates to (x, y) mod n''' - if jp: - return (jp[0] * inv(jp[3], n)) % n, (jp[1] * inv(jp[4], n)) % n - else: - return None # Identity point (0) - -def neg(p, n): - '''Compute the inverse point to p in any coordinate system''' - return (p[0], (n - p[1]) % n) + p[2:] if p else None - - -# POINT ADDITION --------------------------------------------------------------- - -# addition of points in y**2 = x**3 - p*x - q over -def add(p, q, n, p1, p2): - '''Add points p1 and p2 over curve (p, q, n)''' - if p1 and p2: - x1, y1 = p1 - x2, y2 = p2 - if (x1 - x2) % n: - s = ((y1 - y2) * inv(x1 - x2, n)) % n # slope - x = (s * s - x1 - x2) % n # intersection with curve - return (x, n - (y1 + s * (x - x1)) % n) - else: - if (y1 + y2) % n: # slope s calculated by derivation - s = ((3 * x1 * x1 - p) * inv(2 * y1, n)) % n - x = (s * s - 2 * x1) % n # intersection with curve - return (x, n - (y1 + s * (x - x1)) % n) - else: - return None - else: # either p1 is not none -> ret. p1, otherwiese p2, which may be - return p1 if p1 else p2 # none too. - - -# faster addition: redundancy in projective coordinates eliminates -# expensive inversions mod n. -def addf(p, q, n, jp1, jp2): - '''Add jp1 and jp2 in projective (jacobian) coordinates.''' - if jp1 and jp2: - - x1, y1, z1, z1s, z1c = jp1 - x2, y2, z2, z2s, z2c = jp2 - - s1 = (y1 * z2c) % n - s2 = (y2 * z1c) % n - - u1 = (x1 * z2s) % n - u2 = (x2 * z1s) % n - - if (u1 - u2) % n: - - h = (u2 - u1) % n - r = (s2 - s1) % n - - hs = (h * h) % n - hc = (hs * h) % n - - x3 = (-hc - 2 * u1 * hs + r * r) % n - y3 = (-s1 * hc + r * (u1 * hs - x3)) % n - z3 = (z1 * z2 * h) % n - - z3s = (z3 * z3) % n - z3c = (z3s * z3) % n - - return (x3, y3, z3, z3s, z3c) - - else: - if (s1 + s2) % n: - return doublef(p, q, n, jp1) - else: - return None - else: - return jp1 if jp1 else jp2 - -# explicit point doubling using redundant coordinates -def doublef(p, q, n, jp): - '''Double jp in projective (jacobian) coordinates''' - if not jp: - return None - x1, y1, z1, z1p2, z1p3 = jp - - y1p2 = (y1 * y1) % n - a = (4 * x1 * y1p2) % n - b = (3 * x1 * x1 - p * z1p3 * z1) % n - x3 = (b * b - 2 * a) % n - y3 = (b * (a - x3) - 8 * y1p2 * y1p2) % n - z3 = (2 * y1 * z1) % n - z3p2 = (z3 * z3) % n - - return x3, y3, z3, z3p2, (z3p2 * z3) % n - - -# SCALAR MULTIPLICATION -------------------------------------------------------- - -# scalar multiplication p1 * c = p1 + p1 + ... + p1 (c times) in O(log(n)) -def mul(p, q, n, p1, c): - '''multiply point p1 by scalar c over curve (p, q, n)''' - res = None - while c > 0: - if c & 1: - res = add(p, q, n, res, p1) - c >>= 1 # c = c / 2 - p1 = add(p, q, n, p1, p1) # p1 = p1 * 2 - return res - - -# this method allows _signed_bin() to choose between 1 and -1. It will select -# the sign which leaves the higher number of zeroes in the binary -# representation (the higher GDB). -def _gbd(n): - '''Compute second greatest base-2 divisor''' - i = 1 - if n <= 0: return 0 - while not n % i: - i <<= 1 - return i >> 2 - - -# This method transforms n into a binary representation having signed bits. -# A signed binary expansion contains more zero-bits hence reducing the number -# of additions required by a multiplication algorithm. -# -# Example: 15 ( 0b1111 ) can be written as 16 - 1, resulting in (1,0,0,0,-1) -# and saving 2 additions. Subtraction can be performed as -# efficiently as addition. -def _signed_bin(n): - '''Transform n into an optimized signed binary representation''' - r = [] - while n > 1: - if n & 1: - cp = _gbd(n + 1) - cn = _gbd(n - 1) - if cp > cn: # -1 leaves more zeroes -> subtract -1 (= +1) - r.append(-1) - n += 1 - else: # +1 leaves more zeroes -> subtract +1 (= -1) - r.append(+1) - n -= 1 - else: - r.append(0) # be glad about one more zero - n >>= 1 - r.append(n) - return r[::-1] - - -# This multiplication algorithm combines signed binary expansion and -# fast addition using projective coordinates resulting in 5 to 10 times -# faster multiplication. -def mulf(p, q, n, jp1, c): - '''Multiply point jp1 by c in projective coordinates''' - sb = _signed_bin(c) - res = None - jp0 = neg(jp1, n) # additive inverse of jp1 to be used fot bit -1 - for s in sb: - res = doublef(p, q, n, res) - if s: - res = addf(p, q, n, res, jp1) if s > 0 else \ - addf(p, q, n, res, jp0) - return res - -# Encapsulates mulf() in order to enable flat coordinates (x, y) -def mulp(p, q, n, p1, c): - '''Multiply point p by c using fast multiplication''' - return from_projective(mulf(p, q, n, to_projective(p1), c), n) - - -# Sum of two products using Shamir's trick and signed binary expansion -def muladdf(p, q, n, jp1, c1, jp2, c2): - '''Efficiently compute c1 * jp1 + c2 * jp2 in projective coordinates''' - s1 = _signed_bin(c1) - s2 = _signed_bin(c2) - diff = len(s2) - len(s1) - if diff > 0: - s1 = [0] * diff + s1 - elif diff < 0: - s2 = [0] * -diff + s2 - - jp1p2 = addf(p, q, n, jp1, jp2) - jp1n2 = addf(p, q, n, jp1, neg(jp2, n)) - - precomp = ((None, jp2, neg(jp2, n)), - (jp1, jp1p2, jp1n2), - (neg(jp1, n), neg(jp1n2, n), neg(jp1p2, n))) - res = None - - for i, j in zip(s1, s2): - res = doublef(p, q, n, res) - if i or j: - res = addf(p, q, n, res, precomp[i][j]) - return res - -# Encapsulate muladdf() -def muladdp(p, q, n, p1, c1, p2, c2): - '''Efficiently compute c1 * p1 + c2 * p2 in (x, y)-coordinates''' - return from_projective(muladdf(p, q, n, - to_projective(p1), c1, - to_projective(p2), c2), n) - -# POINT COMPRESSION ------------------------------------------------------------ - -# Compute the square root modulo n - - -# Determine the sign-bit of a point allowing to reconstruct y-coordinates -# when x and the sign-bit are given: -def sign_bit(p1): - '''Return the signedness of a point p1''' - return p1[1] % 2 if p1 else 0 - -# Reconstruct the y-coordinate when curve parameters, x and the sign-bit of -# the y coordinate are given: -def y_from_x(x, p, q, n, sign): - '''Return the y coordinate over curve (p, q, n) for given (x, sign)''' - - # optimized form of (x**3 - p*x - q) % n - a = (((x * x) % n - p) * x - q) % n - - - -if __name__ == "__main__": - import rsa - import time - - t = time.time() - n = rsa.get_prime(256/8, 20) - tp = time.time() - t - p = rsa.random.randint(1, n) - p1 = (rsa.random.randint(1, n), rsa.random.randint(1, n)) - q = curve_q(p1[0], p1[1], p, n) - r1 = rsa.random.randint(1,n) - r2 = rsa.random.randint(1,n) - q1 = mulp(p, q, n, p1, r1) - q2 = mulp(p, q, n, p1, r2) - s1 = mulp(p, q, n, q1, r2) - s2 = mulp(p, q, n, q2, r1) - s1 == s2 - tt = time.time() - t - - def test(tcount, bits = 256): - n = rsa.get_prime(bits/8, 20) - p = rsa.random.randint(1, n) - p1 = (rsa.random.randint(1, n), rsa.random.randint(1, n)) - q = curve_q(p1[0], p1[1], p, n) - p2 = mulp(p, q, n, p1, rsa.random.randint(1, n)) - - c1 = [rsa.random.randint(1, n) for i in xrange(tcount)] - c2 = [rsa.random.randint(1, n) for i in xrange(tcount)] - c = zip(c1, c2) - - t = time.time() - for i, j in c: - from_projective(addf(p, q, n, - mulf(p, q, n, to_projective(p1), i), - mulf(p, q, n, to_projective(p2), j)), n) - t1 = time.time() - t - t = time.time() - for i, j in c: - muladdp(p, q, n, p1, i, p2, j) - t2 = time.time() - t - - return tcount, t1, t2 - - - diff --git a/third_party/python/PyECC/ecc/encoding.py b/third_party/python/PyECC/ecc/encoding.py deleted file mode 100644 index 24d3eb5a89ad..000000000000 --- a/third_party/python/PyECC/ecc/encoding.py +++ /dev/null @@ -1,178 +0,0 @@ -# -# Encodings and Formats for Elliptic Curve Cryptography -# - -import StringIO - -# Big-Endian Encoding - -def enc_long(n): - '''Encodes arbitrarily large number n to a sequence of bytes. - Big endian byte order is used.''' - s = "" - while n > 0: - s = chr(n & 0xFF) + s - n >>= 8 - return s - -def enc_int(n): - '''Encodes an integer n to a 4-byte string. - Big endian byte order is used.''' - return chr((n >> 24) & 0xFF) + chr((n >> 16) & 0xFF) + \ - chr((n >> 8) & 0xFF) + chr( n & 0xFF) - -def enc_fixed_long(n, length): - return enc_long(n)[:length].rjust(length, '\x00') - -def dec_long(s): - '''Decodes s to its numeric representation. - Big endian byte order is used.''' - n = 0 - for c in s: - n = (n << 8) | ord(c) - return n - -# dec_int not necessary, -# dec_long does the same when provided with 4 bytes input. - -# Chunks - -def enc_chunks(*args): - '''Chain given string args or sub-chunks to a single chunk''' - return ''.join([enc_int(len(a)) + a for a in args]) - -def dec_chunks(s): - '''Split a chunk into strings or sub-chunks''' - i = 0 - result = [] - while i < len(s): - size = dec_long(s[i : i + 4]) - i += 4 - result.append(s[i : i + size]) - i += size - return result - -# Point and signature data - -def enc_point(p): - '''Encode a point p = (x, y)''' - x, y = p - sx = enc_long(x) - sy = enc_long(y) - diff = len(sx) - len(sy) - if diff > 0: - sy = '\x00' * diff + sy - elif diff < 0: - sx = '\x00' * -diff + sx - return sx + sy - -def dec_point(s): - '''Decode an even length string s to a point(x, y)''' - d = len(s) / 2 - return (dec_long(s[:d]), dec_long(s[d:])) - - -class Encoder: - - def __init__(self): - self._io = StringIO.StringIO() - - def int(self, n, size = 4): - self._io.write(enc_fixed_long(n, size)) - return self - - def long(self, n, pre = 2): - lstr = enc_long(n) - self._io.write(enc_fixed_long(len(lstr), pre) + lstr) - return self - - def str(self, s, pre = 2): - self._io.write(enc_fixed_long(len(s), pre) + s) - return self - - def point(self, p, pre = 2): - lstr = enc_point(p) - self._io.write(enc_fixed_long(len(lstr), pre) + lstr) - return self - - def chunk(self, enc, pre = 2): - lstr = enc.out() - self._io.write(enc_fixed_long(len(lstr), pre) + lstr) - return self - - def out(self): - return self._io.getvalue() - -class Decoder: - - def __init__(self, data, offset = 0): - self._io = StringIO.StringIO(data) - self._io.seek(offset) - self._res = [] - self._limit = None - self._parent = None - - def _ret(self): -## if self._parent and self._io.tell() >= self._limit: -## return self.exit() -## else: -## return self - return self - - def int(self, size = 4): - self._res.append(dec_long(self._io.read(size))) - return self._ret() - - - def long(self, pre = 2): - llen = dec_long(self._io.read(pre)) - self._res.append(dec_long(self._io.read(llen))) - return self._ret() - - def str(self, pre = 2): - llen = dec_long(self._io.read(pre)) - self._res.append(self._io.read(llen)) - return self._ret() - - def point(self, pre = 2): - llen = dec_long(self._io.read(pre)) - self._res.append(dec_point(self._io.read(llen))) - return self._ret() - - def enter(self, pre = 2): - llen = dec_long(self._io.read(pre)) - subcoder = Decoder("") - subcoder._io = self._io - subcoder._parent = self - subcoder._limit = self._io.tell() + llen - return subcoder - - def chunk(self, pre = 2): - llen = dec_long(self._io.read(pre)) - self._res.append(Decoder(self._io.read(llen))) - return self._ret() - - def exit(self): - if self._parent: - self._parent._io.seek(self._limit) - self._parent._res.append(self._res) - return self._parent - else: - raise RuntimeError, "Cannont exit top level Decoder" - - def continues(self): - return (not self._limit) or (self._io.tell() < self._limit) - - def out(self, exit_all = False): - if exit_all and self._parent: - return self.exit().out() - else: - r = self._res - self._res = [] - return r - - def only(self): - if self._res: - return self._res.pop(0) - else: - return RuntimeError, "Only what? (Empty decoder stack)" diff --git a/third_party/python/PyECC/ecc/performance.py b/third_party/python/PyECC/ecc/performance.py deleted file mode 100644 index 724176aef89e..000000000000 --- a/third_party/python/PyECC/ecc/performance.py +++ /dev/null @@ -1,50 +0,0 @@ -from Key import Key -import time -from collections import OrderedDict - -def test_generation_perf(n = 100): - results = OrderedDict() - for bits in (192, 224, 256, 384, 521): - t = time.time() - for i in xrange(n): - k = Key.generate(bits) - t = time.time() - t - results[bits] = t - return results - -def test_signing_perf(n = 100): - results = OrderedDict() - for bits in (192, 224, 256, 384, 521): - k = Key.generate(bits) - t = time.time() - for i in xrange(n): - k.sign("random string") - t = time.time() - t - results[bits] = t - return results - -def test_verification_perf(n = 100): - results = OrderedDict() - for bits in (192, 224, 256, 384, 521): - k = Key.generate(bits) - s = k.sign("random string") - t = time.time() - for i in xrange(n): - k.verify("random string", s) - t = time.time() - t - results[bits] = t - return results - -def print_dict(title, d): - print title - print '-' * len(title) - for k, v in d.items(): - print k, '\t', v - print - -n = 100 -print_dict("Key generation", test_generation_perf(n)) -print_dict("Signing", test_signing_perf(n)) -print_dict("Verifying", test_verification_perf(n)) - - diff --git a/third_party/python/PyECC/ecc/primes.py b/third_party/python/PyECC/ecc/primes.py deleted file mode 100644 index a8bc1424bfd0..000000000000 --- a/third_party/python/PyECC/ecc/primes.py +++ /dev/null @@ -1,82 +0,0 @@ -''' -This module implements simple prime generation and primality testing. -''' - -from random import SystemRandom -random = SystemRandom() -from os import urandom - -def exp(x, n, m): - '''Efficiently compute x ** n mod m''' - y = 1 - z = x - while n > 0: - if n & 1: - y = (y * z) % m - z = (z * z) % m - n //= 2 - return y - - -# Miller-Rabin-Test - -def prime(n, k): - '''Checks whether n is probably prime (with probability 1 - 4**(-k)''' - - if n % 2 == 0: - return False - - d = n - 1 - s = 0 - - while d % 2 == 0: - s += 1 - d /= 2 - - for i in xrange(k): - - a = long(2 + random.randint(0, n - 4)) - x = exp(a, d, n) - if (x == 1) or (x == n - 1): - continue - - for r in xrange(1, s): - x = (x * x) % n - - if x == 1: - return False - - if x == n - 1: - break - - else: - return False - return True - - -# Generate and Test Algorithms - -def get_prime(size, accuracy): - '''Generate a pseudorandom prime number with the specified size (bytes).''' - - while 1: - - # read some random data from the operating system - rstr = urandom(size - 1) - r = 128 | ord(urandom(1)) # MSB = 1 (not less than size) - for c in rstr: - r = (r << 8) | ord(c) - r |= 1 # LSB = 1 (odd) - - # test whether this results in a prime number - if prime(r, accuracy): - return r - - -def get_prime_upto(n, accuracy): - '''Find largest prime less than n''' - n |= 1 - while n > 0: - n -= 2 - if prime(n, accuracy): - return n diff --git a/third_party/python/PyECC/ecc/shacrypt.py b/third_party/python/PyECC/ecc/shacrypt.py deleted file mode 100644 index 69ee7b94337f..000000000000 --- a/third_party/python/PyECC/ecc/shacrypt.py +++ /dev/null @@ -1,38 +0,0 @@ -# ------------------------------------------------------------------------------ -# -# SHA-512-BASED FEISTEL CIPHER -# by Toni Mattis -# -# Feistel Function: SHA-512(Block || Key) -# Key Size: Fully Dynamic -# Block Size: 1024 Bits -# Rounds: User-Specified -# -# ------------------------------------------------------------------------------ - -from hashlib import sha512 - -BPOS = tuple(range(64)) - -def enc_block(block, key, rounds = 16): - x = block[:64] - y = block[64:] - for i in xrange(rounds): - h = sha512(x + key).digest() - y = ''.join([chr(ord(y[k]) ^ ord(h[k])) for k in BPOS]) - h = sha512(y + key).digest() - x = ''.join([chr(ord(x[k]) ^ ord(h[k])) for k in BPOS]) - return x + y - -def dec_block(block, key, rounds = 16): - x = block[:64] - y = block[64:] - for i in xrange(rounds): - h = sha512(y + key).digest() - x = ''.join([chr(ord(x[k]) ^ ord(h[k])) for k in BPOS]) - h = sha512(x + key).digest() - y = ''.join([chr(ord(y[k]) ^ ord(h[k])) for k in BPOS]) - return x + y - - - diff --git a/third_party/python/PyECC/setup.py b/third_party/python/PyECC/setup.py deleted file mode 100644 index b9e507c187cb..000000000000 --- a/third_party/python/PyECC/setup.py +++ /dev/null @@ -1,77 +0,0 @@ -#!/usr/bin/python2.4 -# -# Copyright 2007 The Python-Twitter Developers -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# copied from https://github.com/bear/python-twitter/blob/master/setup.py -# - -'''The setup and build script for the python-twitter library.''' - -__author__ = 'niccokunzmann@aol.com' -__version__ = '0.0.1' - - -# The base package metadata to be used by both distutils and setuptools -METADATA = dict( - name = "ecc", - version = __version__, - packages = ['ecc'], - author='Toni Mattis', - author_email='solaris@live.de', - description='Pure Python implementation of an elliptic curve cryptosystem based on FIPS 186-3', - license='MIT', - url='https://github.com/niccokunzmann/ecc', - keywords='elliptic curve cryptosystem rabbit cipher', -) - -# Extra package metadata to be used only if setuptools is installed -SETUPTOOLS_METADATA = dict( - install_requires = [], - include_package_data = True, - classifiers = [ - 'Development Status :: 4 - Beta', - 'Intended Audience :: Developers', - 'License :: OSI Approved :: MIT License', - 'Topic :: Software Development :: Libraries :: Python Modules', - 'Topic :: Communications', - 'Topic :: Security :: Cryptography', - 'Topic :: Internet', - ], -## test_suite = 'distacc_test', -) - - -def Read(file): - return open(file).read() - -def BuildLongDescription(): - return '\n'.join([Read('README.md'), ]) - -def Main(): - # Build the long_description from the README and CHANGES - METADATA['long_description'] = BuildLongDescription() - - # Use setuptools if available, otherwise fallback and use distutils - try: - import setuptools - METADATA.update(SETUPTOOLS_METADATA) - setuptools.setup(**METADATA) - except ImportError: - import distutils.core - distutils.core.setup(**METADATA) - - -if __name__ == '__main__': - Main()