Bug 1265408 - Import blink IIRFilterNode tests; r=padenot

Imported from git revision 57f70919a0a3da5ba002b896778b580986343e08.

MozReview-Commit-ID: 1HTS2AfgSEN

--HG--
extra : rebase_source : 53db59ffbeab76d19a983efd337394efc54b7737
This commit is contained in:
Dan Minor 2016-05-03 10:51:24 -04:00
Родитель 2b6abdb28d
Коммит 7c022ed83f
3 изменённых файлов: 1076 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,370 @@
// Taken from WebKit/LayoutTests/webaudio/resources/biquad-filters.js
// A biquad filter has a z-transform of
// H(z) = (b0 + b1 / z + b2 / z^2) / (1 + a1 / z + a2 / z^2)
//
// The formulas for the various filters were taken from
// http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt.
// Lowpass filter.
function createLowpassFilter(freq, q, gain) {
var b0;
var b1;
var b2;
var a1;
var a2;
if (freq == 1) {
// The formula below works, except for roundoff. When freq = 1,
// the filter is just a wire, so hardwire the coefficients.
b0 = 1;
b1 = 0;
b2 = 0;
a1 = 0;
a2 = 0;
} else {
var g = Math.pow(10, q / 20);
var d = Math.sqrt((4 - Math.sqrt(16 - 16 / (g * g))) / 2);
var theta = Math.PI * freq;
var sn = d * Math.sin(theta) / 2;
var beta = 0.5 * (1 - sn) / (1 + sn);
var gamma = (0.5 + beta) * Math.cos(theta);
var alpha = 0.25 * (0.5 + beta - gamma);
b0 = 2 * alpha;
b1 = 4 * alpha;
b2 = 2 * alpha;
a1 = 2 * (-gamma);
a2 = 2 * beta;
}
return {b0 : b0, b1 : b1, b2 : b2, a1 : a1, a2 : a2};
}
function createHighpassFilter(freq, q, gain) {
var b0;
var b1;
var b2;
var a1;
var a2;
if (freq == 1) {
// The filter is 0
b0 = 0;
b1 = 0;
b2 = 0;
a1 = 0;
a2 = 0;
} else if (freq == 0) {
// The filter is 1. Computation of coefficients below is ok, but
// there's a pole at 1 and a zero at 1, so round-off could make
// the filter unstable.
b0 = 1;
b1 = 0;
b2 = 0;
a1 = 0;
a2 = 0;
} else {
var g = Math.pow(10, q / 20);
var d = Math.sqrt((4 - Math.sqrt(16 - 16 / (g * g))) / 2);
var theta = Math.PI * freq;
var sn = d * Math.sin(theta) / 2;
var beta = 0.5 * (1 - sn) / (1 + sn);
var gamma = (0.5 + beta) * Math.cos(theta);
var alpha = 0.25 * (0.5 + beta + gamma);
b0 = 2 * alpha;
b1 = -4 * alpha;
b2 = 2 * alpha;
a1 = 2 * (-gamma);
a2 = 2 * beta;
}
return {b0 : b0, b1 : b1, b2 : b2, a1 : a1, a2 : a2};
}
function normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2) {
var scale = 1 / a0;
return {b0 : b0 * scale,
b1 : b1 * scale,
b2 : b2 * scale,
a1 : a1 * scale,
a2 : a2 * scale};
}
function createBandpassFilter(freq, q, gain) {
var b0;
var b1;
var b2;
var a0;
var a1;
var a2;
var coef;
if (freq > 0 && freq < 1) {
var w0 = Math.PI * freq;
if (q > 0) {
var alpha = Math.sin(w0) / (2 * q);
var k = Math.cos(w0);
b0 = alpha;
b1 = 0;
b2 = -alpha;
a0 = 1 + alpha;
a1 = -2 * k;
a2 = 1 - alpha;
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
} else {
// q = 0, and frequency is not 0 or 1. The above formula has a
// divide by zero problem. The limit of the z-transform as q
// approaches 0 is 1, so set the filter that way.
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
} else {
// When freq = 0 or 1, the z-transform is identically 0,
// independent of q.
coef = {b0 : 0, b1 : 0, b2 : 0, a1 : 0, a2 : 0}
}
return coef;
}
function createLowShelfFilter(freq, q, gain) {
// q not used
var b0;
var b1;
var b2;
var a0;
var a1;
var a2;
var coef;
var S = 1;
var A = Math.pow(10, gain / 40);
if (freq == 1) {
// The filter is just a constant gain
coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
} else if (freq == 0) {
// The filter is 1
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
} else {
var w0 = Math.PI * freq;
var alpha = 1 / 2 * Math.sin(w0) * Math.sqrt((A + 1 / A) * (1 / S - 1) + 2);
var k = Math.cos(w0);
var k2 = 2 * Math.sqrt(A) * alpha;
var Ap1 = A + 1;
var Am1 = A - 1;
b0 = A * (Ap1 - Am1 * k + k2);
b1 = 2 * A * (Am1 - Ap1 * k);
b2 = A * (Ap1 - Am1 * k - k2);
a0 = Ap1 + Am1 * k + k2;
a1 = -2 * (Am1 + Ap1 * k);
a2 = Ap1 + Am1 * k - k2;
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
}
return coef;
}
function createHighShelfFilter(freq, q, gain) {
// q not used
var b0;
var b1;
var b2;
var a0;
var a1;
var a2;
var coef;
var A = Math.pow(10, gain / 40);
if (freq == 1) {
// When freq = 1, the z-transform is 1
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
} else if (freq > 0) {
var w0 = Math.PI * freq;
var S = 1;
var alpha = 0.5 * Math.sin(w0) * Math.sqrt((A + 1 / A) * (1 / S - 1) + 2);
var k = Math.cos(w0);
var k2 = 2 * Math.sqrt(A) * alpha;
var Ap1 = A + 1;
var Am1 = A - 1;
b0 = A * (Ap1 + Am1 * k + k2);
b1 = -2 * A * (Am1 + Ap1 * k);
b2 = A * (Ap1 + Am1 * k - k2);
a0 = Ap1 - Am1 * k + k2;
a1 = 2 * (Am1 - Ap1*k);
a2 = Ap1 - Am1 * k-k2;
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
} else {
// When freq = 0, the filter is just a gain
coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
return coef;
}
function createPeakingFilter(freq, q, gain) {
var b0;
var b1;
var b2;
var a0;
var a1;
var a2;
var coef;
var A = Math.pow(10, gain / 40);
if (freq > 0 && freq < 1) {
if (q > 0) {
var w0 = Math.PI * freq;
var alpha = Math.sin(w0) / (2 * q);
var k = Math.cos(w0);
b0 = 1 + alpha * A;
b1 = -2 * k;
b2 = 1 - alpha * A;
a0 = 1 + alpha / A;
a1 = -2 * k;
a2 = 1 - alpha / A;
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
} else {
// q = 0, we have a divide by zero problem in the formulas
// above. But if we look at the z-transform, we see that the
// limit as q approaches 0 is A^2.
coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
} else {
// freq = 0 or 1, the z-transform is 1
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
return coef;
}
function createNotchFilter(freq, q, gain) {
var b0;
var b1;
var b2;
var a0;
var a1;
var a2;
var coef;
if (freq > 0 && freq < 1) {
if (q > 0) {
var w0 = Math.PI * freq;
var alpha = Math.sin(w0) / (2 * q);
var k = Math.cos(w0);
b0 = 1;
b1 = -2 * k;
b2 = 1;
a0 = 1 + alpha;
a1 = -2 * k;
a2 = 1 - alpha;
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
} else {
// When q = 0, we get a divide by zero above. The limit of the
// z-transform as q approaches 0 is 0, so set the coefficients
// appropriately.
coef = {b0 : 0, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
} else {
// When freq = 0 or 1, the z-transform is 1
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
return coef;
}
function createAllpassFilter(freq, q, gain) {
var b0;
var b1;
var b2;
var a0;
var a1;
var a2;
var coef;
if (freq > 0 && freq < 1) {
if (q > 0) {
var w0 = Math.PI * freq;
var alpha = Math.sin(w0) / (2 * q);
var k = Math.cos(w0);
b0 = 1 - alpha;
b1 = -2 * k;
b2 = 1 + alpha;
a0 = 1 + alpha;
a1 = -2 * k;
a2 = 1 - alpha;
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
} else {
// q = 0
coef = {b0 : -1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
} else {
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
}
return coef;
}
function filterData(filterCoef, signal, len) {
var y = new Array(len);
var b0 = filterCoef.b0;
var b1 = filterCoef.b1;
var b2 = filterCoef.b2;
var a1 = filterCoef.a1;
var a2 = filterCoef.a2;
// Prime the pump. (Assumes the signal has length >= 2!)
y[0] = b0 * signal[0];
y[1] = b0 * signal[1] + b1 * signal[0] - a1 * y[0];
// Filter all of the signal that we have.
for (var k = 2; k < Math.min(signal.length, len); ++k) {
y[k] = b0 * signal[k] + b1 * signal[k-1] + b2 * signal[k-2] - a1 * y[k-1] - a2 * y[k-2];
}
// If we need to filter more, but don't have any signal left,
// assume the signal is zero.
for (var k = signal.length; k < len; ++k) {
y[k] = - a1 * y[k-1] - a2 * y[k-2];
}
return y;
}
// Map the filter type name to a function that computes the filter coefficents for the given filter
// type.
var filterCreatorFunction = {"lowpass": createLowpassFilter,
"highpass": createHighpassFilter,
"bandpass": createBandpassFilter,
"lowshelf": createLowShelfFilter,
"highshelf": createHighShelfFilter,
"peaking": createPeakingFilter,
"notch": createNotchFilter,
"allpass": createAllpassFilter};
var filterTypeName = {"lowpass": "Lowpass filter",
"highpass": "Highpass filter",
"bandpass": "Bandpass filter",
"lowshelf": "Lowshelf filter",
"highshelf": "Highshelf filter",
"peaking": "Peaking filter",
"notch": "Notch filter",
"allpass": "Allpass filter"};
function createFilter(filterType, freq, q, gain) {
return filterCreatorFunction[filterType](freq, q, gain);
}

Просмотреть файл

@ -0,0 +1,132 @@
<!doctype html>
<html>
<head>
<title>Test IIRFilter getFrequencyResponse() functionality</title>
<script src="../resources/js-test.js"></script>
<script src="resources/compatibility.js"></script>
<script src="resources/audio-testing.js"></script>
<script src="resources/biquad-filters.js"></script>
</head>
<body>
<script>
description("Test IIRFilter getFrequencyResponse() functionality");
window.jsTestIsAsync = true;
var sampleRate = 48000;
// Some short duration; we're not actually looking at the rendered output.
var testDurationSec = 0.01;
// Number of frequency samples to take.
var numberOfFrequencies = 1000;
var audit = Audit.createTaskRunner();
// Compute a set of linearly spaced frequencies.
function createFrequencies(nFrequencies, sampleRate)
{
var frequencies = new Float32Array(nFrequencies);
var nyquist = sampleRate / 2;
var freqDelta = nyquist / nFrequencies;
for (var k = 0; k < nFrequencies; ++k) {
frequencies[k] = k * freqDelta;
}
return frequencies;
}
audit.defineTask("1-pole IIR", function (done) {
var context = new OfflineAudioContext(1, testDurationSec * sampleRate, sampleRate);
var iir = context.createIIRFilter([1], [1, -0.9]);
var frequencies = createFrequencies(numberOfFrequencies, context.sampleRate);
var iirMag = new Float32Array(numberOfFrequencies);
var iirPhase = new Float32Array(numberOfFrequencies);
var trueMag = new Float32Array(numberOfFrequencies);
var truePhase = new Float32Array(numberOfFrequencies);
// The IIR filter is
// H(z) = 1/(1 - 0.9*z^(-1)).
//
// The frequency response is
// H(exp(j*w)) = 1/(1 - 0.9*exp(-j*w)).
//
// Thus, the magnitude is
// |H(exp(j*w))| = 1/sqrt(1.81-1.8*cos(w)).
//
// The phase is
// arg(H(exp(j*w)) = atan(0.9*sin(w)/(.9*cos(w)-1))
var frequencyScale = Math.PI / (sampleRate / 2);
for (var k = 0; k < frequencies.length; ++k) {
var omega = frequencyScale * frequencies[k];
trueMag[k] = 1/Math.sqrt(1.81-1.8*Math.cos(omega));
truePhase[k] = Math.atan(0.9 * Math.sin(omega) / (0.9 * Math.cos(omega) - 1));
}
iir.getFrequencyResponse(frequencies, iirMag, iirPhase);
var success = true;
// Thresholds were experimentally determined.
success = Should("1-pole IIR Magnitude Response", iirMag).beCloseToArray(trueMag, 2.8611e-6);
success = Should("1-pole IIR Phase Response", iirPhase).beCloseToArray(truePhase, 1.7882e-7)
&& success;
if (success)
testPassed("1-pole IIR response matched expected response.\n");
else
testFailed("1-pole IIR response did not match expected response.\n");
done();
});
audit.defineTask("compare IIR and biquad", function(done) {
// Create an IIR filter equivalent to the biquad filter. Compute the frequency response for
// both and verify that they are the same.
var context = new OfflineAudioContext(1, testDurationSec * sampleRate, sampleRate);
var biquad = context.createBiquadFilter();
var coef = createFilter(biquad.type,
biquad.frequency.value / (context.sampleRate / 2),
biquad.Q.value,
biquad.gain.value);
var iir = context.createIIRFilter([coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]);
var frequencies = createFrequencies(numberOfFrequencies, context.sampleRate);
var biquadMag = new Float32Array(numberOfFrequencies);
var biquadPhase = new Float32Array(numberOfFrequencies);
var iirMag = new Float32Array(numberOfFrequencies);
var iirPhase = new Float32Array(numberOfFrequencies);
biquad.getFrequencyResponse(frequencies, biquadMag, biquadPhase);
iir.getFrequencyResponse(frequencies, iirMag, iirPhase);
var success = true;
// Thresholds were experimentally determined.
success = Should("IIR Magnitude Response", iirMag).beCloseToArray(biquadMag, 2.7419e-5);
success = Should("IIR Phase Response", iirPhase).beCloseToArray(biquadPhase, 2.7657e-5) && success;
if (success)
testPassed("IIR response matched equivalent " + biquad.type + " Biquad response.\n");
else
testFailed("IIR response did not equivalent " + biquad.type + " Biquad response.\n");
done();
});
audit.defineTask("finish", function (done) {
finishJSTest();
done();
});
audit.runTasks();
successfullyParsed = true;
</script>
</body>
</html>

Просмотреть файл

@ -0,0 +1,574 @@
<!doctype html>
<html>
<head>
<title>Test Basic IIRFilterNode Operation</title>
<script src="../resources/js-test.js"></script>
<script src="resources/compatibility.js"></script>
<script src="resources/audio-testing.js"></script>
<script src="resources/biquad-filters.js"></script>
</head>
<body>
<script>
description("Test Basic IIRFilterNode Operation");
window.jsTestIsAsync = true;
var sampleRate = 48000;
var testDurationSec = 1;
var testFrames = testDurationSec * sampleRate;
var audit = Audit.createTaskRunner();
audit.defineTask("coefficient-normalization", function (done) {
// Test that the feedback coefficients are normalized. Do this be creating two
// IIRFilterNodes. One has normalized coefficients, and one doesn't. Compute the
// difference and make sure they're the same.
var success = true;
var context = new OfflineAudioContext(2, testFrames, sampleRate);
// Use a simple impulse as the source.
var buffer = context.createBuffer(1, 1, sampleRate);
buffer.getChannelData(0)[0] = 1;
var source = context.createBufferSource();
source.buffer = buffer;
// Gain node for computing the difference between the filters.
var gain = context.createGain();
gain.gain.value = -1;
// The IIR filters. Use a common feedforward array.
var ff = [1];
var fb1 = [1, .9];
var fb2 = new Float64Array(2);
// Scale the feedback coefficients by an arbitrary factor.
var coefScaleFactor = 2;
for (var k = 0; k < fb2.length; ++k) {
fb2[k] = coefScaleFactor * fb1[k];
}
var iir1;
var iir2;
success = Should("createIIRFilter with normalized coefficients", function () {
iir1 = context.createIIRFilter(ff, fb1);
}).notThrow() && success;
success = Should("createIIRFilter with unnormalized coefficients", function () {
iir2 = context.createIIRFilter(ff, fb2);
}).notThrow() && success;
// Create the graph. The output of iir1 (normalized coefficients) is channel 0, and the
// output of iir2 (unnormalized coefficients), with appropriate scaling, is channel 1.
var merger = context.createChannelMerger(2);
source.connect(iir1);
source.connect(iir2);
iir1.connect(merger, 0, 0);
iir2.connect(gain);
// The gain for the gain node should be set to compensate for the scaling of the
// coefficients. Since iir2 has scaled the coefficients by coefScaleFactor, the output is
// reduced by the same factor, so adjust the gain to scale the output of iir2 back up.
gain.gain.value = coefScaleFactor;
gain.connect(merger, 0, 1);
merger.connect(context.destination);
source.start();
// Rock and roll!
context.startRendering().then(function (result) {
// Find the max amplitude of the result, which should be near zero.
var iir1Data = result.getChannelData(0);
var iir2Data = result.getChannelData(1);
// Threshold isn't exactly zero because the arithmetic is done differently between the
// IIRFilterNode and the BiquadFilterNode.
success = Should("Output of IIR filter with unnormalized coefficients", iir2Data)
.beCloseToArray(iir1Data, 2.1958e-38) && success;
if (success)
testPassed("IIRFilter coefficients correctly normalized.\n");
else
testFailed("IIRFilter coefficients not correctly normalized.\n");
}).then(done);
});
audit.defineTask("one-zero", function (done) {
// Create a simple 1-zero filter and compare with the expected output.
var context = new OfflineAudioContext(1, testFrames, sampleRate);
// Use a simple impulse as the source
var buffer = context.createBuffer(1, 1, sampleRate);
buffer.getChannelData(0)[0] = 1;
var source = context.createBufferSource();
source.buffer = buffer;
// The filter is y(n) = 0.5*(x(n) + x(n-1)), a simple 2-point moving average. This is
// rather arbitrary; keep it simple.
var iir = context.createIIRFilter([0.5, 0.5], [1]);
// Create the graph
source.connect(iir);
iir.connect(context.destination);
// Rock and roll!
source.start();
context.startRendering().then(function (result) {
var actual = result.getChannelData(0);
var expected = new Float64Array(testFrames);
// The filter is a simple 2-point moving average of an impulse, so the first two values
// are non-zero and the rest are zero.
expected[0] = 0.5;
expected[1] = 0.5;
Should('IIR 1-zero output', actual).beCloseToArray(expected, 0);
}).then(done);
});
audit.defineTask("one-pole", function (done) {
// Create a simple 1-pole filter and compare with the expected output.
// The filter is y(n) + c*y(n-1)= x(n). The analytical response is (-c)^n, so choose a
// suitable number of frames to run the test for where the output isn't flushed to zero.
var c = 0.9;
var eps = 1e-20;
var duration = Math.floor(Math.log(eps) / Math.log(Math.abs(c)));
var context = new OfflineAudioContext(1, duration, sampleRate);
// Use a simple impulse as the source
var buffer = context.createBuffer(1, 1, sampleRate);
buffer.getChannelData(0)[0] = 1;
var source = context.createBufferSource();
source.buffer = buffer;
var iir = context.createIIRFilter([1], [1, c]);
// Create the graph
source.connect(iir);
iir.connect(context.destination);
// Rock and roll!
source.start();
context.startRendering().then(function (result) {
var actual = result.getChannelData(0);
var expected = new Float64Array(actual.length);
// The filter is a simple 1-pole filter: y(n) = -c*y(n-k)+x(n), with an impulse as the
// input.
expected[0] = 1;
for (k = 1; k < testFrames; ++k) {
expected[k] = -c * expected[k-1];
}
// Threshold isn't exactly zero due to round-off in the single-precision IIRFilterNode
// computations versus the double-precision Javascript computations.
Should('IIR 1-pole output', actual, {verbose: true})
.beCloseToArray(expected, {relativeThreshold: 5.723e-8});
}).then(done);
});
// Return a function suitable for use as a defineTask function. This function creates an
// IIRFilterNode equivalent to the specified BiquadFilterNode and compares the outputs. The
// outputs from the two filters should be virtually identical.
function testWithBiquadFilter (filterType, errorThreshold, snrThreshold) {
return function (done) {
var context = new OfflineAudioContext(2, testFrames, sampleRate);
// Use a constant (step function) as the source
var buffer = createConstantBuffer(context, testFrames, 1);
var source = context.createBufferSource();
source.buffer = buffer;
// Create the biquad. Choose some rather arbitrary values for Q and gain for the biquad
// so that the shelf filters aren't identical.
var biquad = context.createBiquadFilter();
biquad.type = filterType;
biquad.Q.value = 10;
biquad.gain.value = 10;
// Create the equivalent IIR Filter node by computing the coefficients of the given biquad
// filter type.
var nyquist = sampleRate / 2;
var coef = createFilter(filterType,
biquad.frequency.value / nyquist,
biquad.Q.value,
biquad.gain.value);
var iir = context.createIIRFilter([coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]);
var merger = context.createChannelMerger(2);
// Create the graph
source.connect(biquad);
source.connect(iir);
biquad.connect(merger, 0, 0);
iir.connect(merger, 0, 1);
merger.connect(context.destination);
// Rock and roll!
source.start();
context.startRendering().then(function (result) {
// Find the max amplitude of the result, which should be near zero.
var expected = result.getChannelData(0);
var actual = result.getChannelData(1);
// On MacOSX, WebAudio uses an optimized Biquad implementation that is different from
// the implementation used for Linux and Windows. This will cause the output to differ,
// even if the threshold passes. Thus, only print out a very small number of elements
// of the array where we have tested that they are consistent.
Should("IIRFilter for Biquad " + filterType, actual, {
precision: 5,
verbose: true
})
.beCloseToArray(expected, errorThreshold);
var snr = 10*Math.log10(computeSNR(actual, expected));
Should("SNR for IIRFIlter for Biquad " + filterType, snr).beGreaterThanOrEqualTo(snrThreshold);
}).then(done);
};
}
// Thresholds here are experimentally determined.
var biquadTestConfigs = [{
filterType: "lowpass",
snrThreshold: 91.222,
errorThreshold: {
relativeThreshold: 4.15e-5
}
}, {
filterType: "highpass",
snrThreshold: 107.246,
errorThreshold: {
absoluteThreshold: 2.9e-6,
relativeThreshold: 3e-5
}
}, {
filterType: "bandpass",
snrThreshold: 104.060,
errorThreshold: {
absoluteThreshold: 2e-7,
relativeThreshold: 8.7e-4
}
}, {
filterType: "notch",
snrThreshold: 91.312,
errorThreshold: {
absoluteThreshold: 0,
relativeThreshold: 4.22e-5
}
}, {
filterType: "allpass",
snrThreshold: 91.319,
errorThreshold: {
absoluteThreshold: 0,
relativeThreshold: 4.31e-5
}
}, {
filterType: "lowshelf",
snrThreshold: 90.609,
errorThreshold: {
absoluteThreshold: 0,
relativeThreshold: 2.98e-5
}
}, {
filterType: "highshelf",
snrThreshold: 103.159,
errorThreshold: {
absoluteThreshold: 0,
relativeThreshold: 1.24e-5
}
}, {
filterType: "peaking",
snrThreshold: 91.504,
errorThreshold: {
absoluteThreshold: 0,
relativeThreshold: 5.05e-5
}
}];
// Create a set of tasks based on biquadTestConfigs.
for (k = 0; k < biquadTestConfigs.length; ++k) {
var config = biquadTestConfigs[k];
var name = k + ": " + config.filterType;
audit.defineTask(name, testWithBiquadFilter(config.filterType, config.errorThreshold, config.snrThreshold));
}
audit.defineTask("multi-channel", function (done) {
// Multi-channel test. Create a biquad filter and the equivalent IIR filter. Filter the
// same multichannel signal and compare the results.
var nChannels = 3;
var context = new OfflineAudioContext(nChannels, testFrames, sampleRate);
// Create a set of oscillators as the multi-channel source.
var source = [];
for (k = 0; k < nChannels; ++k) {
source[k] = context.createOscillator();
source[k].type = "sawtooth";
// The frequency of the oscillator is pretty arbitrary, but each oscillator should have a
// different frequency.
source[k].frequency.value = 100 + k * 100;
}
var merger = context.createChannelMerger(3);
var biquad = context.createBiquadFilter();
// Create the equivalent IIR Filter node.
var nyquist = sampleRate / 2;
var coef = createFilter(biquad.type,
biquad.frequency.value / nyquist,
biquad.Q.value,
biquad.gain.value);
var fb = [1, coef.a1, coef.a2];
var ff = [coef.b0, coef.b1, coef.b2];
var iir = context.createIIRFilter(ff, fb);
// Gain node to compute the difference between the IIR and biquad filter.
var gain = context.createGain();
gain.gain.value = -1;
// Create the graph.
for (k = 0; k < nChannels; ++k)
source[k].connect(merger, 0, k);
merger.connect(biquad);
merger.connect(iir);
iir.connect(gain);
biquad.connect(context.destination);
gain.connect(context.destination);
for (k = 0; k < nChannels; ++k)
source[k].start();
context.startRendering().then(function (result) {
var success = true;
var errorThresholds = [3.7671e-5, 3.0071e-5, 2.6241e-5];
// Check the difference signal on each channel
for (channel = 0; channel < result.numberOfChannels; ++channel) {
// Find the max amplitude of the result, which should be near zero.
var data = result.getChannelData(channel);
var maxError = data.reduce(function(reducedValue, currentValue) {
return Math.max(reducedValue, Math.abs(currentValue));
});
success = Should("Max difference between IIR and Biquad on channel " + channel,
maxError).beLessThanOrEqualTo(errorThresholds[channel]);
}
if (success) {
testPassed("IIRFilter correctly processed " + result.numberOfChannels +
"-channel input.");
} else {
testFailed("IIRFilter failed to correctly process " + result.numberOfChannels +
"-channel input.");
}
}).then(done);
});
// Apply an IIRFilter to the given input signal.
//
// IIR filter in the time domain is
//
// y[n] = sum(ff[k]*x[n-k], k, 0, M) - sum(fb[k]*y[n-k], k, 1, N)
//
function iirFilter(input, feedforward, feedback) {
// For simplicity, create an x buffer that contains the input, and a y buffer that contains
// the output. Both of these buffers have an initial work space to implement the initial
// memory of the filter.
var workSize = Math.max(feedforward.length, feedback.length);
var x = new Float32Array(input.length + workSize);
// Float64 because we want to match the implementation that uses doubles to minimize
// roundoff.
var y = new Float64Array(input.length + workSize);
// Copy the input over.
for (var k = 0; k < input.length; ++k)
x[k + feedforward.length] = input[k];
// Run the filter
for (var n = 0; n < input.length; ++n) {
var index = n + workSize;
var yn = 0;
for (var k = 0; k < feedforward.length; ++k)
yn += feedforward[k] * x[index - k];
for (var k = 0; k < feedback.length; ++k)
yn -= feedback[k] * y[index - k];
y[index] = yn;
}
return y.slice(workSize).map(Math.fround);
}
// Cascade the two given biquad filters to create one IIR filter.
function cascadeBiquads(f1Coef, f2Coef) {
// The biquad filters are:
//
// f1 = (b10 + b11/z + b12/z^2)/(1 + a11/z + a12/z^2);
// f2 = (b20 + b21/z + b22/z^2)/(1 + a21/z + a22/z^2);
//
// To cascade them, multiply the two transforms together to get a fourth order IIR filter.
var numProduct = [f1Coef.b0 * f2Coef.b0,
f1Coef.b0 * f2Coef.b1 + f1Coef.b1 * f2Coef.b0,
f1Coef.b0 * f2Coef.b2 + f1Coef.b1 * f2Coef.b1 + f1Coef.b2 * f2Coef.b0,
f1Coef.b1 * f2Coef.b2 + f1Coef.b2 * f2Coef.b1,
f1Coef.b2 * f2Coef.b2
];
var denProduct = [1,
f2Coef.a1 + f1Coef.a1,
f2Coef.a2 + f1Coef.a1 * f2Coef.a1 + f1Coef.a2,
f1Coef.a1 * f2Coef.a2 + f1Coef.a2 * f2Coef.a1,
f1Coef.a2 * f2Coef.a2
];
return {
ff: numProduct,
fb: denProduct
}
}
// Find the magnitude of the root of the quadratic that has the maximum magnitude.
//
// The quadratic is z^2 + a1 * z + a2 and we want the root z that has the largest magnitude.
function largestRootMagnitude(a1, a2) {
var discriminant = a1 * a1 - 4 * a2;
if (discriminant < 0) {
// Complex roots: -a1/2 +/- i*sqrt(-d)/2. Thus the magnitude of each root is the same
// and is sqrt(a1^2/4 + |d|/4)
var d = Math.sqrt(-discriminant);
return Math.hypot(a1 / 2, d / 2);
} else {
// Real roots
var d = Math.sqrt(discriminant);
return Math.max(Math.abs((-a1 + d) / 2), Math.abs((-a1 - d) / 2));
}
}
audit.defineTask("4th-order-iir", function(done) {
// Cascade 2 lowpass biquad filters and compare that with the equivalent 4th order IIR
// filter.
var nyquist = sampleRate / 2;
// Compute the coefficients of a lowpass filter.
// First some preliminary stuff. Compute the coefficients of the biquad. This is used to
// figure out how frames to use in the test.
var biquadType = "lowpass";
var biquadCutoff = 350;
var biquadQ = 5;
var biquadGain = 1;
var coef = createFilter(biquadType,
biquadCutoff / nyquist,
biquadQ,
biquadGain);
// Cascade the biquads together to create an equivalent IIR filter.
var cascade = cascadeBiquads(coef, coef);
// Since we're cascading two identical biquads, the root of denominator of the IIR filter is
// repeated, so the root of the denominator with the largest magnitude occurs twice. The
// impulse response of the IIR filter will be roughly c*(r*r)^n at time n, where r is the
// root of largest magnitude. This approximation gets better as n increases. We can use
// this to get a rough idea of when the response has died down to a small value.
// This is the value we will use to determine how many frames to render. Rendering too many
// is a waste of time and also makes it hard to compare the actual result to the expected
// because the magnitudes are so small that they could be mostly round-off noise.
//
// Find magnitude of the root with largest magnitude
var rootMagnitude = largestRootMagnitude(coef.a1, coef.a2);
// Find n such that |r|^(2*n) <= eps. That is, n = log(eps)/(2*log(r)). Somewhat
// arbitrarily choose eps = 1e-20;
var eps = 1e-20;
var framesForTest = Math.floor(Math.log(eps) / (2 * Math.log(rootMagnitude)));
// We're ready to create the graph for the test. The offline context has two channels:
// channel 0 is the expected (cascaded biquad) result and channel 1 is the actual IIR filter
// result.
var context = new OfflineAudioContext(2, framesForTest, sampleRate);
// Use a simple impulse with a large (arbitrary) amplitude as the source
var amplitude = 1;
var buffer = context.createBuffer(1, testFrames, sampleRate);
buffer.getChannelData(0)[0] = amplitude;
var source = context.createBufferSource();
source.buffer = buffer;
// Create the two biquad filters. Doesn't really matter what, but for simplicity we choose
// identical lowpass filters with the same parameters.
var biquad1 = context.createBiquadFilter();
biquad1.type = biquadType;
biquad1.frequency.value = biquadCutoff;
biquad1.Q.value = biquadQ;
var biquad2 = context.createBiquadFilter();
biquad2.type = biquadType;
biquad2.frequency.value = biquadCutoff;
biquad2.Q.value = biquadQ;
var iir = context.createIIRFilter(cascade.ff, cascade.fb);
// Create the merger to get the signals into multiple channels
var merger = context.createChannelMerger(2);
// Create the graph, filtering the source through two biquads.
source.connect(biquad1);
biquad1.connect(biquad2);
biquad2.connect(merger, 0, 0);
source.connect(iir);
iir.connect(merger, 0, 1);
merger.connect(context.destination);
// Now filter the source through the IIR filter.
var y = iirFilter(buffer.getChannelData(0), cascade.ff, cascade.fb);
// Rock and roll!
source.start();
context.startRendering().then(function(result) {
var expected = result.getChannelData(0);
var actual = result.getChannelData(1);
Should("4-th order IIRFilter (biquad ref)",
actual, {
verbose: true,
precision: 5
})
.beCloseToArray(expected, {
// Thresholds experimentally determined.
absoluteThreshold: 8.4e-8,
relativeThreshold: 5e-7,
});
var snr = 10*Math.log10(computeSNR(actual, expected));
Should("SNR of 4-th order IIRFilter (biquad ref)", snr)
.beGreaterThanOrEqualTo(110.684);
}).then(done);
});
audit.defineTask("finish", function (done) {
finishJSTest();
done();
});
audit.runTasks();
successfullyParsed = true;
</script>
</body>
</html>