зеркало из https://github.com/mozilla/gecko-dev.git
Bug 1265408 - Import blink IIRFilterNode tests; r=padenot
Imported from git revision 57f70919a0a3da5ba002b896778b580986343e08. MozReview-Commit-ID: 1HTS2AfgSEN --HG-- extra : rebase_source : 53db59ffbeab76d19a983efd337394efc54b7737
This commit is contained in:
Родитель
2b6abdb28d
Коммит
7c022ed83f
|
@ -0,0 +1,370 @@
|
|||
// Taken from WebKit/LayoutTests/webaudio/resources/biquad-filters.js
|
||||
|
||||
// A biquad filter has a z-transform of
|
||||
// H(z) = (b0 + b1 / z + b2 / z^2) / (1 + a1 / z + a2 / z^2)
|
||||
//
|
||||
// The formulas for the various filters were taken from
|
||||
// http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt.
|
||||
|
||||
|
||||
// Lowpass filter.
|
||||
function createLowpassFilter(freq, q, gain) {
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a1;
|
||||
var a2;
|
||||
|
||||
if (freq == 1) {
|
||||
// The formula below works, except for roundoff. When freq = 1,
|
||||
// the filter is just a wire, so hardwire the coefficients.
|
||||
b0 = 1;
|
||||
b1 = 0;
|
||||
b2 = 0;
|
||||
a1 = 0;
|
||||
a2 = 0;
|
||||
} else {
|
||||
var g = Math.pow(10, q / 20);
|
||||
var d = Math.sqrt((4 - Math.sqrt(16 - 16 / (g * g))) / 2);
|
||||
var theta = Math.PI * freq;
|
||||
var sn = d * Math.sin(theta) / 2;
|
||||
var beta = 0.5 * (1 - sn) / (1 + sn);
|
||||
var gamma = (0.5 + beta) * Math.cos(theta);
|
||||
var alpha = 0.25 * (0.5 + beta - gamma);
|
||||
|
||||
b0 = 2 * alpha;
|
||||
b1 = 4 * alpha;
|
||||
b2 = 2 * alpha;
|
||||
a1 = 2 * (-gamma);
|
||||
a2 = 2 * beta;
|
||||
}
|
||||
|
||||
return {b0 : b0, b1 : b1, b2 : b2, a1 : a1, a2 : a2};
|
||||
}
|
||||
|
||||
function createHighpassFilter(freq, q, gain) {
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a1;
|
||||
var a2;
|
||||
|
||||
if (freq == 1) {
|
||||
// The filter is 0
|
||||
b0 = 0;
|
||||
b1 = 0;
|
||||
b2 = 0;
|
||||
a1 = 0;
|
||||
a2 = 0;
|
||||
} else if (freq == 0) {
|
||||
// The filter is 1. Computation of coefficients below is ok, but
|
||||
// there's a pole at 1 and a zero at 1, so round-off could make
|
||||
// the filter unstable.
|
||||
b0 = 1;
|
||||
b1 = 0;
|
||||
b2 = 0;
|
||||
a1 = 0;
|
||||
a2 = 0;
|
||||
} else {
|
||||
var g = Math.pow(10, q / 20);
|
||||
var d = Math.sqrt((4 - Math.sqrt(16 - 16 / (g * g))) / 2);
|
||||
var theta = Math.PI * freq;
|
||||
var sn = d * Math.sin(theta) / 2;
|
||||
var beta = 0.5 * (1 - sn) / (1 + sn);
|
||||
var gamma = (0.5 + beta) * Math.cos(theta);
|
||||
var alpha = 0.25 * (0.5 + beta + gamma);
|
||||
|
||||
b0 = 2 * alpha;
|
||||
b1 = -4 * alpha;
|
||||
b2 = 2 * alpha;
|
||||
a1 = 2 * (-gamma);
|
||||
a2 = 2 * beta;
|
||||
}
|
||||
|
||||
return {b0 : b0, b1 : b1, b2 : b2, a1 : a1, a2 : a2};
|
||||
}
|
||||
|
||||
function normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2) {
|
||||
var scale = 1 / a0;
|
||||
|
||||
return {b0 : b0 * scale,
|
||||
b1 : b1 * scale,
|
||||
b2 : b2 * scale,
|
||||
a1 : a1 * scale,
|
||||
a2 : a2 * scale};
|
||||
}
|
||||
|
||||
function createBandpassFilter(freq, q, gain) {
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a0;
|
||||
var a1;
|
||||
var a2;
|
||||
var coef;
|
||||
|
||||
if (freq > 0 && freq < 1) {
|
||||
var w0 = Math.PI * freq;
|
||||
if (q > 0) {
|
||||
var alpha = Math.sin(w0) / (2 * q);
|
||||
var k = Math.cos(w0);
|
||||
|
||||
b0 = alpha;
|
||||
b1 = 0;
|
||||
b2 = -alpha;
|
||||
a0 = 1 + alpha;
|
||||
a1 = -2 * k;
|
||||
a2 = 1 - alpha;
|
||||
|
||||
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
|
||||
} else {
|
||||
// q = 0, and frequency is not 0 or 1. The above formula has a
|
||||
// divide by zero problem. The limit of the z-transform as q
|
||||
// approaches 0 is 1, so set the filter that way.
|
||||
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
} else {
|
||||
// When freq = 0 or 1, the z-transform is identically 0,
|
||||
// independent of q.
|
||||
coef = {b0 : 0, b1 : 0, b2 : 0, a1 : 0, a2 : 0}
|
||||
}
|
||||
|
||||
return coef;
|
||||
}
|
||||
|
||||
function createLowShelfFilter(freq, q, gain) {
|
||||
// q not used
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a0;
|
||||
var a1;
|
||||
var a2;
|
||||
var coef;
|
||||
|
||||
var S = 1;
|
||||
var A = Math.pow(10, gain / 40);
|
||||
|
||||
if (freq == 1) {
|
||||
// The filter is just a constant gain
|
||||
coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
} else if (freq == 0) {
|
||||
// The filter is 1
|
||||
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
} else {
|
||||
var w0 = Math.PI * freq;
|
||||
var alpha = 1 / 2 * Math.sin(w0) * Math.sqrt((A + 1 / A) * (1 / S - 1) + 2);
|
||||
var k = Math.cos(w0);
|
||||
var k2 = 2 * Math.sqrt(A) * alpha;
|
||||
var Ap1 = A + 1;
|
||||
var Am1 = A - 1;
|
||||
|
||||
b0 = A * (Ap1 - Am1 * k + k2);
|
||||
b1 = 2 * A * (Am1 - Ap1 * k);
|
||||
b2 = A * (Ap1 - Am1 * k - k2);
|
||||
a0 = Ap1 + Am1 * k + k2;
|
||||
a1 = -2 * (Am1 + Ap1 * k);
|
||||
a2 = Ap1 + Am1 * k - k2;
|
||||
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
|
||||
}
|
||||
|
||||
return coef;
|
||||
}
|
||||
|
||||
function createHighShelfFilter(freq, q, gain) {
|
||||
// q not used
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a0;
|
||||
var a1;
|
||||
var a2;
|
||||
var coef;
|
||||
|
||||
var A = Math.pow(10, gain / 40);
|
||||
|
||||
if (freq == 1) {
|
||||
// When freq = 1, the z-transform is 1
|
||||
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
} else if (freq > 0) {
|
||||
var w0 = Math.PI * freq;
|
||||
var S = 1;
|
||||
var alpha = 0.5 * Math.sin(w0) * Math.sqrt((A + 1 / A) * (1 / S - 1) + 2);
|
||||
var k = Math.cos(w0);
|
||||
var k2 = 2 * Math.sqrt(A) * alpha;
|
||||
var Ap1 = A + 1;
|
||||
var Am1 = A - 1;
|
||||
|
||||
b0 = A * (Ap1 + Am1 * k + k2);
|
||||
b1 = -2 * A * (Am1 + Ap1 * k);
|
||||
b2 = A * (Ap1 + Am1 * k - k2);
|
||||
a0 = Ap1 - Am1 * k + k2;
|
||||
a1 = 2 * (Am1 - Ap1*k);
|
||||
a2 = Ap1 - Am1 * k-k2;
|
||||
|
||||
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
|
||||
} else {
|
||||
// When freq = 0, the filter is just a gain
|
||||
coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
|
||||
return coef;
|
||||
}
|
||||
|
||||
function createPeakingFilter(freq, q, gain) {
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a0;
|
||||
var a1;
|
||||
var a2;
|
||||
var coef;
|
||||
|
||||
var A = Math.pow(10, gain / 40);
|
||||
|
||||
if (freq > 0 && freq < 1) {
|
||||
if (q > 0) {
|
||||
var w0 = Math.PI * freq;
|
||||
var alpha = Math.sin(w0) / (2 * q);
|
||||
var k = Math.cos(w0);
|
||||
|
||||
b0 = 1 + alpha * A;
|
||||
b1 = -2 * k;
|
||||
b2 = 1 - alpha * A;
|
||||
a0 = 1 + alpha / A;
|
||||
a1 = -2 * k;
|
||||
a2 = 1 - alpha / A;
|
||||
|
||||
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
|
||||
} else {
|
||||
// q = 0, we have a divide by zero problem in the formulas
|
||||
// above. But if we look at the z-transform, we see that the
|
||||
// limit as q approaches 0 is A^2.
|
||||
coef = {b0 : A * A, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
} else {
|
||||
// freq = 0 or 1, the z-transform is 1
|
||||
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
|
||||
return coef;
|
||||
}
|
||||
|
||||
function createNotchFilter(freq, q, gain) {
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a0;
|
||||
var a1;
|
||||
var a2;
|
||||
var coef;
|
||||
|
||||
if (freq > 0 && freq < 1) {
|
||||
if (q > 0) {
|
||||
var w0 = Math.PI * freq;
|
||||
var alpha = Math.sin(w0) / (2 * q);
|
||||
var k = Math.cos(w0);
|
||||
|
||||
b0 = 1;
|
||||
b1 = -2 * k;
|
||||
b2 = 1;
|
||||
a0 = 1 + alpha;
|
||||
a1 = -2 * k;
|
||||
a2 = 1 - alpha;
|
||||
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
|
||||
} else {
|
||||
// When q = 0, we get a divide by zero above. The limit of the
|
||||
// z-transform as q approaches 0 is 0, so set the coefficients
|
||||
// appropriately.
|
||||
coef = {b0 : 0, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
} else {
|
||||
// When freq = 0 or 1, the z-transform is 1
|
||||
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
|
||||
return coef;
|
||||
}
|
||||
|
||||
function createAllpassFilter(freq, q, gain) {
|
||||
var b0;
|
||||
var b1;
|
||||
var b2;
|
||||
var a0;
|
||||
var a1;
|
||||
var a2;
|
||||
var coef;
|
||||
|
||||
if (freq > 0 && freq < 1) {
|
||||
if (q > 0) {
|
||||
var w0 = Math.PI * freq;
|
||||
var alpha = Math.sin(w0) / (2 * q);
|
||||
var k = Math.cos(w0);
|
||||
|
||||
b0 = 1 - alpha;
|
||||
b1 = -2 * k;
|
||||
b2 = 1 + alpha;
|
||||
a0 = 1 + alpha;
|
||||
a1 = -2 * k;
|
||||
a2 = 1 - alpha;
|
||||
coef = normalizeFilterCoefficients(b0, b1, b2, a0, a1, a2);
|
||||
} else {
|
||||
// q = 0
|
||||
coef = {b0 : -1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
} else {
|
||||
coef = {b0 : 1, b1 : 0, b2 : 0, a1 : 0, a2 : 0};
|
||||
}
|
||||
|
||||
return coef;
|
||||
}
|
||||
|
||||
function filterData(filterCoef, signal, len) {
|
||||
var y = new Array(len);
|
||||
var b0 = filterCoef.b0;
|
||||
var b1 = filterCoef.b1;
|
||||
var b2 = filterCoef.b2;
|
||||
var a1 = filterCoef.a1;
|
||||
var a2 = filterCoef.a2;
|
||||
|
||||
// Prime the pump. (Assumes the signal has length >= 2!)
|
||||
y[0] = b0 * signal[0];
|
||||
y[1] = b0 * signal[1] + b1 * signal[0] - a1 * y[0];
|
||||
|
||||
// Filter all of the signal that we have.
|
||||
for (var k = 2; k < Math.min(signal.length, len); ++k) {
|
||||
y[k] = b0 * signal[k] + b1 * signal[k-1] + b2 * signal[k-2] - a1 * y[k-1] - a2 * y[k-2];
|
||||
}
|
||||
|
||||
// If we need to filter more, but don't have any signal left,
|
||||
// assume the signal is zero.
|
||||
for (var k = signal.length; k < len; ++k) {
|
||||
y[k] = - a1 * y[k-1] - a2 * y[k-2];
|
||||
}
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
// Map the filter type name to a function that computes the filter coefficents for the given filter
|
||||
// type.
|
||||
var filterCreatorFunction = {"lowpass": createLowpassFilter,
|
||||
"highpass": createHighpassFilter,
|
||||
"bandpass": createBandpassFilter,
|
||||
"lowshelf": createLowShelfFilter,
|
||||
"highshelf": createHighShelfFilter,
|
||||
"peaking": createPeakingFilter,
|
||||
"notch": createNotchFilter,
|
||||
"allpass": createAllpassFilter};
|
||||
|
||||
var filterTypeName = {"lowpass": "Lowpass filter",
|
||||
"highpass": "Highpass filter",
|
||||
"bandpass": "Bandpass filter",
|
||||
"lowshelf": "Lowshelf filter",
|
||||
"highshelf": "Highshelf filter",
|
||||
"peaking": "Peaking filter",
|
||||
"notch": "Notch filter",
|
||||
"allpass": "Allpass filter"};
|
||||
|
||||
function createFilter(filterType, freq, q, gain) {
|
||||
return filterCreatorFunction[filterType](freq, q, gain);
|
||||
}
|
|
@ -0,0 +1,132 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<title>Test IIRFilter getFrequencyResponse() functionality</title>
|
||||
<script src="../resources/js-test.js"></script>
|
||||
<script src="resources/compatibility.js"></script>
|
||||
<script src="resources/audio-testing.js"></script>
|
||||
<script src="resources/biquad-filters.js"></script>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<script>
|
||||
description("Test IIRFilter getFrequencyResponse() functionality");
|
||||
window.jsTestIsAsync = true;
|
||||
|
||||
var sampleRate = 48000;
|
||||
// Some short duration; we're not actually looking at the rendered output.
|
||||
var testDurationSec = 0.01;
|
||||
|
||||
// Number of frequency samples to take.
|
||||
var numberOfFrequencies = 1000;
|
||||
|
||||
var audit = Audit.createTaskRunner();
|
||||
|
||||
|
||||
// Compute a set of linearly spaced frequencies.
|
||||
function createFrequencies(nFrequencies, sampleRate)
|
||||
{
|
||||
var frequencies = new Float32Array(nFrequencies);
|
||||
var nyquist = sampleRate / 2;
|
||||
var freqDelta = nyquist / nFrequencies;
|
||||
|
||||
for (var k = 0; k < nFrequencies; ++k) {
|
||||
frequencies[k] = k * freqDelta;
|
||||
}
|
||||
|
||||
return frequencies;
|
||||
}
|
||||
|
||||
audit.defineTask("1-pole IIR", function (done) {
|
||||
var context = new OfflineAudioContext(1, testDurationSec * sampleRate, sampleRate);
|
||||
|
||||
var iir = context.createIIRFilter([1], [1, -0.9]);
|
||||
var frequencies = createFrequencies(numberOfFrequencies, context.sampleRate);
|
||||
|
||||
var iirMag = new Float32Array(numberOfFrequencies);
|
||||
var iirPhase = new Float32Array(numberOfFrequencies);
|
||||
var trueMag = new Float32Array(numberOfFrequencies);
|
||||
var truePhase = new Float32Array(numberOfFrequencies);
|
||||
|
||||
// The IIR filter is
|
||||
// H(z) = 1/(1 - 0.9*z^(-1)).
|
||||
//
|
||||
// The frequency response is
|
||||
// H(exp(j*w)) = 1/(1 - 0.9*exp(-j*w)).
|
||||
//
|
||||
// Thus, the magnitude is
|
||||
// |H(exp(j*w))| = 1/sqrt(1.81-1.8*cos(w)).
|
||||
//
|
||||
// The phase is
|
||||
// arg(H(exp(j*w)) = atan(0.9*sin(w)/(.9*cos(w)-1))
|
||||
|
||||
var frequencyScale = Math.PI / (sampleRate / 2);
|
||||
|
||||
for (var k = 0; k < frequencies.length; ++k) {
|
||||
var omega = frequencyScale * frequencies[k];
|
||||
trueMag[k] = 1/Math.sqrt(1.81-1.8*Math.cos(omega));
|
||||
truePhase[k] = Math.atan(0.9 * Math.sin(omega) / (0.9 * Math.cos(omega) - 1));
|
||||
}
|
||||
|
||||
iir.getFrequencyResponse(frequencies, iirMag, iirPhase);
|
||||
|
||||
var success = true;
|
||||
|
||||
// Thresholds were experimentally determined.
|
||||
success = Should("1-pole IIR Magnitude Response", iirMag).beCloseToArray(trueMag, 2.8611e-6);
|
||||
success = Should("1-pole IIR Phase Response", iirPhase).beCloseToArray(truePhase, 1.7882e-7)
|
||||
&& success;
|
||||
if (success)
|
||||
testPassed("1-pole IIR response matched expected response.\n");
|
||||
else
|
||||
testFailed("1-pole IIR response did not match expected response.\n");
|
||||
|
||||
done();
|
||||
});
|
||||
|
||||
audit.defineTask("compare IIR and biquad", function(done) {
|
||||
// Create an IIR filter equivalent to the biquad filter. Compute the frequency response for
|
||||
// both and verify that they are the same.
|
||||
var context = new OfflineAudioContext(1, testDurationSec * sampleRate, sampleRate);
|
||||
|
||||
var biquad = context.createBiquadFilter();
|
||||
var coef = createFilter(biquad.type,
|
||||
biquad.frequency.value / (context.sampleRate / 2),
|
||||
biquad.Q.value,
|
||||
biquad.gain.value);
|
||||
|
||||
var iir = context.createIIRFilter([coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]);
|
||||
|
||||
var frequencies = createFrequencies(numberOfFrequencies, context.sampleRate);
|
||||
var biquadMag = new Float32Array(numberOfFrequencies);
|
||||
var biquadPhase = new Float32Array(numberOfFrequencies);
|
||||
var iirMag = new Float32Array(numberOfFrequencies);
|
||||
var iirPhase = new Float32Array(numberOfFrequencies);
|
||||
|
||||
biquad.getFrequencyResponse(frequencies, biquadMag, biquadPhase);
|
||||
iir.getFrequencyResponse(frequencies, iirMag, iirPhase);
|
||||
|
||||
var success = true;
|
||||
|
||||
// Thresholds were experimentally determined.
|
||||
success = Should("IIR Magnitude Response", iirMag).beCloseToArray(biquadMag, 2.7419e-5);
|
||||
success = Should("IIR Phase Response", iirPhase).beCloseToArray(biquadPhase, 2.7657e-5) && success;
|
||||
|
||||
if (success)
|
||||
testPassed("IIR response matched equivalent " + biquad.type + " Biquad response.\n");
|
||||
else
|
||||
testFailed("IIR response did not equivalent " + biquad.type + " Biquad response.\n");
|
||||
|
||||
done();
|
||||
});
|
||||
|
||||
audit.defineTask("finish", function (done) {
|
||||
finishJSTest();
|
||||
done();
|
||||
});
|
||||
|
||||
audit.runTasks();
|
||||
successfullyParsed = true;
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,574 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<title>Test Basic IIRFilterNode Operation</title>
|
||||
<script src="../resources/js-test.js"></script>
|
||||
<script src="resources/compatibility.js"></script>
|
||||
<script src="resources/audio-testing.js"></script>
|
||||
<script src="resources/biquad-filters.js"></script>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<script>
|
||||
description("Test Basic IIRFilterNode Operation");
|
||||
window.jsTestIsAsync = true;
|
||||
|
||||
var sampleRate = 48000;
|
||||
var testDurationSec = 1;
|
||||
var testFrames = testDurationSec * sampleRate;
|
||||
|
||||
var audit = Audit.createTaskRunner();
|
||||
|
||||
audit.defineTask("coefficient-normalization", function (done) {
|
||||
// Test that the feedback coefficients are normalized. Do this be creating two
|
||||
// IIRFilterNodes. One has normalized coefficients, and one doesn't. Compute the
|
||||
// difference and make sure they're the same.
|
||||
var success = true;
|
||||
var context = new OfflineAudioContext(2, testFrames, sampleRate);
|
||||
|
||||
// Use a simple impulse as the source.
|
||||
var buffer = context.createBuffer(1, 1, sampleRate);
|
||||
buffer.getChannelData(0)[0] = 1;
|
||||
var source = context.createBufferSource();
|
||||
source.buffer = buffer;
|
||||
|
||||
// Gain node for computing the difference between the filters.
|
||||
var gain = context.createGain();
|
||||
gain.gain.value = -1;
|
||||
|
||||
// The IIR filters. Use a common feedforward array.
|
||||
var ff = [1];
|
||||
|
||||
var fb1 = [1, .9];
|
||||
|
||||
var fb2 = new Float64Array(2);
|
||||
// Scale the feedback coefficients by an arbitrary factor.
|
||||
var coefScaleFactor = 2;
|
||||
for (var k = 0; k < fb2.length; ++k) {
|
||||
fb2[k] = coefScaleFactor * fb1[k];
|
||||
}
|
||||
|
||||
var iir1;
|
||||
var iir2;
|
||||
|
||||
success = Should("createIIRFilter with normalized coefficients", function () {
|
||||
iir1 = context.createIIRFilter(ff, fb1);
|
||||
}).notThrow() && success;
|
||||
|
||||
success = Should("createIIRFilter with unnormalized coefficients", function () {
|
||||
iir2 = context.createIIRFilter(ff, fb2);
|
||||
}).notThrow() && success;
|
||||
|
||||
// Create the graph. The output of iir1 (normalized coefficients) is channel 0, and the
|
||||
// output of iir2 (unnormalized coefficients), with appropriate scaling, is channel 1.
|
||||
var merger = context.createChannelMerger(2);
|
||||
source.connect(iir1);
|
||||
source.connect(iir2);
|
||||
iir1.connect(merger, 0, 0);
|
||||
iir2.connect(gain);
|
||||
|
||||
// The gain for the gain node should be set to compensate for the scaling of the
|
||||
// coefficients. Since iir2 has scaled the coefficients by coefScaleFactor, the output is
|
||||
// reduced by the same factor, so adjust the gain to scale the output of iir2 back up.
|
||||
gain.gain.value = coefScaleFactor;
|
||||
gain.connect(merger, 0, 1);
|
||||
|
||||
merger.connect(context.destination);
|
||||
|
||||
source.start();
|
||||
|
||||
// Rock and roll!
|
||||
|
||||
context.startRendering().then(function (result) {
|
||||
// Find the max amplitude of the result, which should be near zero.
|
||||
var iir1Data = result.getChannelData(0);
|
||||
var iir2Data = result.getChannelData(1);
|
||||
|
||||
// Threshold isn't exactly zero because the arithmetic is done differently between the
|
||||
// IIRFilterNode and the BiquadFilterNode.
|
||||
success = Should("Output of IIR filter with unnormalized coefficients", iir2Data)
|
||||
.beCloseToArray(iir1Data, 2.1958e-38) && success;
|
||||
if (success)
|
||||
testPassed("IIRFilter coefficients correctly normalized.\n");
|
||||
else
|
||||
testFailed("IIRFilter coefficients not correctly normalized.\n");
|
||||
}).then(done);
|
||||
});
|
||||
|
||||
audit.defineTask("one-zero", function (done) {
|
||||
// Create a simple 1-zero filter and compare with the expected output.
|
||||
var context = new OfflineAudioContext(1, testFrames, sampleRate);
|
||||
|
||||
// Use a simple impulse as the source
|
||||
var buffer = context.createBuffer(1, 1, sampleRate);
|
||||
buffer.getChannelData(0)[0] = 1;
|
||||
var source = context.createBufferSource();
|
||||
source.buffer = buffer;
|
||||
|
||||
// The filter is y(n) = 0.5*(x(n) + x(n-1)), a simple 2-point moving average. This is
|
||||
// rather arbitrary; keep it simple.
|
||||
|
||||
var iir = context.createIIRFilter([0.5, 0.5], [1]);
|
||||
|
||||
// Create the graph
|
||||
source.connect(iir);
|
||||
iir.connect(context.destination);
|
||||
|
||||
// Rock and roll!
|
||||
source.start();
|
||||
|
||||
context.startRendering().then(function (result) {
|
||||
var actual = result.getChannelData(0);
|
||||
var expected = new Float64Array(testFrames);
|
||||
// The filter is a simple 2-point moving average of an impulse, so the first two values
|
||||
// are non-zero and the rest are zero.
|
||||
expected[0] = 0.5;
|
||||
expected[1] = 0.5;
|
||||
Should('IIR 1-zero output', actual).beCloseToArray(expected, 0);
|
||||
}).then(done);
|
||||
});
|
||||
|
||||
audit.defineTask("one-pole", function (done) {
|
||||
// Create a simple 1-pole filter and compare with the expected output.
|
||||
|
||||
// The filter is y(n) + c*y(n-1)= x(n). The analytical response is (-c)^n, so choose a
|
||||
// suitable number of frames to run the test for where the output isn't flushed to zero.
|
||||
var c = 0.9;
|
||||
var eps = 1e-20;
|
||||
var duration = Math.floor(Math.log(eps) / Math.log(Math.abs(c)));
|
||||
var context = new OfflineAudioContext(1, duration, sampleRate);
|
||||
|
||||
// Use a simple impulse as the source
|
||||
var buffer = context.createBuffer(1, 1, sampleRate);
|
||||
buffer.getChannelData(0)[0] = 1;
|
||||
var source = context.createBufferSource();
|
||||
source.buffer = buffer;
|
||||
|
||||
var iir = context.createIIRFilter([1], [1, c]);
|
||||
|
||||
// Create the graph
|
||||
source.connect(iir);
|
||||
iir.connect(context.destination);
|
||||
|
||||
// Rock and roll!
|
||||
source.start();
|
||||
|
||||
context.startRendering().then(function (result) {
|
||||
var actual = result.getChannelData(0);
|
||||
var expected = new Float64Array(actual.length);
|
||||
|
||||
// The filter is a simple 1-pole filter: y(n) = -c*y(n-k)+x(n), with an impulse as the
|
||||
// input.
|
||||
expected[0] = 1;
|
||||
for (k = 1; k < testFrames; ++k) {
|
||||
expected[k] = -c * expected[k-1];
|
||||
}
|
||||
|
||||
// Threshold isn't exactly zero due to round-off in the single-precision IIRFilterNode
|
||||
// computations versus the double-precision Javascript computations.
|
||||
Should('IIR 1-pole output', actual, {verbose: true})
|
||||
.beCloseToArray(expected, {relativeThreshold: 5.723e-8});
|
||||
}).then(done);
|
||||
});
|
||||
|
||||
// Return a function suitable for use as a defineTask function. This function creates an
|
||||
// IIRFilterNode equivalent to the specified BiquadFilterNode and compares the outputs. The
|
||||
// outputs from the two filters should be virtually identical.
|
||||
function testWithBiquadFilter (filterType, errorThreshold, snrThreshold) {
|
||||
return function (done) {
|
||||
var context = new OfflineAudioContext(2, testFrames, sampleRate);
|
||||
|
||||
// Use a constant (step function) as the source
|
||||
var buffer = createConstantBuffer(context, testFrames, 1);
|
||||
var source = context.createBufferSource();
|
||||
source.buffer = buffer;
|
||||
|
||||
|
||||
// Create the biquad. Choose some rather arbitrary values for Q and gain for the biquad
|
||||
// so that the shelf filters aren't identical.
|
||||
var biquad = context.createBiquadFilter();
|
||||
biquad.type = filterType;
|
||||
biquad.Q.value = 10;
|
||||
biquad.gain.value = 10;
|
||||
|
||||
// Create the equivalent IIR Filter node by computing the coefficients of the given biquad
|
||||
// filter type.
|
||||
var nyquist = sampleRate / 2;
|
||||
var coef = createFilter(filterType,
|
||||
biquad.frequency.value / nyquist,
|
||||
biquad.Q.value,
|
||||
biquad.gain.value);
|
||||
|
||||
var iir = context.createIIRFilter([coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]);
|
||||
|
||||
var merger = context.createChannelMerger(2);
|
||||
// Create the graph
|
||||
source.connect(biquad);
|
||||
source.connect(iir);
|
||||
|
||||
biquad.connect(merger, 0, 0);
|
||||
iir.connect(merger, 0, 1);
|
||||
|
||||
merger.connect(context.destination);
|
||||
|
||||
// Rock and roll!
|
||||
source.start();
|
||||
|
||||
context.startRendering().then(function (result) {
|
||||
// Find the max amplitude of the result, which should be near zero.
|
||||
var expected = result.getChannelData(0);
|
||||
var actual = result.getChannelData(1);
|
||||
|
||||
// On MacOSX, WebAudio uses an optimized Biquad implementation that is different from
|
||||
// the implementation used for Linux and Windows. This will cause the output to differ,
|
||||
// even if the threshold passes. Thus, only print out a very small number of elements
|
||||
// of the array where we have tested that they are consistent.
|
||||
Should("IIRFilter for Biquad " + filterType, actual, {
|
||||
precision: 5,
|
||||
verbose: true
|
||||
})
|
||||
.beCloseToArray(expected, errorThreshold);
|
||||
|
||||
var snr = 10*Math.log10(computeSNR(actual, expected));
|
||||
Should("SNR for IIRFIlter for Biquad " + filterType, snr).beGreaterThanOrEqualTo(snrThreshold);
|
||||
}).then(done);
|
||||
};
|
||||
}
|
||||
|
||||
// Thresholds here are experimentally determined.
|
||||
var biquadTestConfigs = [{
|
||||
filterType: "lowpass",
|
||||
snrThreshold: 91.222,
|
||||
errorThreshold: {
|
||||
relativeThreshold: 4.15e-5
|
||||
}
|
||||
}, {
|
||||
filterType: "highpass",
|
||||
snrThreshold: 107.246,
|
||||
errorThreshold: {
|
||||
absoluteThreshold: 2.9e-6,
|
||||
relativeThreshold: 3e-5
|
||||
}
|
||||
}, {
|
||||
filterType: "bandpass",
|
||||
snrThreshold: 104.060,
|
||||
errorThreshold: {
|
||||
absoluteThreshold: 2e-7,
|
||||
relativeThreshold: 8.7e-4
|
||||
}
|
||||
}, {
|
||||
filterType: "notch",
|
||||
snrThreshold: 91.312,
|
||||
errorThreshold: {
|
||||
absoluteThreshold: 0,
|
||||
relativeThreshold: 4.22e-5
|
||||
}
|
||||
}, {
|
||||
filterType: "allpass",
|
||||
snrThreshold: 91.319,
|
||||
errorThreshold: {
|
||||
absoluteThreshold: 0,
|
||||
relativeThreshold: 4.31e-5
|
||||
}
|
||||
}, {
|
||||
filterType: "lowshelf",
|
||||
snrThreshold: 90.609,
|
||||
errorThreshold: {
|
||||
absoluteThreshold: 0,
|
||||
relativeThreshold: 2.98e-5
|
||||
}
|
||||
}, {
|
||||
filterType: "highshelf",
|
||||
snrThreshold: 103.159,
|
||||
errorThreshold: {
|
||||
absoluteThreshold: 0,
|
||||
relativeThreshold: 1.24e-5
|
||||
}
|
||||
}, {
|
||||
filterType: "peaking",
|
||||
snrThreshold: 91.504,
|
||||
errorThreshold: {
|
||||
absoluteThreshold: 0,
|
||||
relativeThreshold: 5.05e-5
|
||||
}
|
||||
}];
|
||||
|
||||
// Create a set of tasks based on biquadTestConfigs.
|
||||
for (k = 0; k < biquadTestConfigs.length; ++k) {
|
||||
var config = biquadTestConfigs[k];
|
||||
var name = k + ": " + config.filterType;
|
||||
audit.defineTask(name, testWithBiquadFilter(config.filterType, config.errorThreshold, config.snrThreshold));
|
||||
}
|
||||
|
||||
audit.defineTask("multi-channel", function (done) {
|
||||
// Multi-channel test. Create a biquad filter and the equivalent IIR filter. Filter the
|
||||
// same multichannel signal and compare the results.
|
||||
var nChannels = 3;
|
||||
var context = new OfflineAudioContext(nChannels, testFrames, sampleRate);
|
||||
|
||||
// Create a set of oscillators as the multi-channel source.
|
||||
var source = [];
|
||||
|
||||
for (k = 0; k < nChannels; ++k) {
|
||||
source[k] = context.createOscillator();
|
||||
source[k].type = "sawtooth";
|
||||
// The frequency of the oscillator is pretty arbitrary, but each oscillator should have a
|
||||
// different frequency.
|
||||
source[k].frequency.value = 100 + k * 100;
|
||||
}
|
||||
|
||||
var merger = context.createChannelMerger(3);
|
||||
|
||||
var biquad = context.createBiquadFilter();
|
||||
|
||||
// Create the equivalent IIR Filter node.
|
||||
var nyquist = sampleRate / 2;
|
||||
var coef = createFilter(biquad.type,
|
||||
biquad.frequency.value / nyquist,
|
||||
biquad.Q.value,
|
||||
biquad.gain.value);
|
||||
var fb = [1, coef.a1, coef.a2];
|
||||
var ff = [coef.b0, coef.b1, coef.b2];
|
||||
|
||||
var iir = context.createIIRFilter(ff, fb);
|
||||
// Gain node to compute the difference between the IIR and biquad filter.
|
||||
var gain = context.createGain();
|
||||
gain.gain.value = -1;
|
||||
|
||||
// Create the graph.
|
||||
for (k = 0; k < nChannels; ++k)
|
||||
source[k].connect(merger, 0, k);
|
||||
|
||||
merger.connect(biquad);
|
||||
merger.connect(iir);
|
||||
iir.connect(gain);
|
||||
biquad.connect(context.destination);
|
||||
gain.connect(context.destination);
|
||||
|
||||
for (k = 0; k < nChannels; ++k)
|
||||
source[k].start();
|
||||
|
||||
context.startRendering().then(function (result) {
|
||||
var success = true;
|
||||
var errorThresholds = [3.7671e-5, 3.0071e-5, 2.6241e-5];
|
||||
|
||||
// Check the difference signal on each channel
|
||||
for (channel = 0; channel < result.numberOfChannels; ++channel) {
|
||||
// Find the max amplitude of the result, which should be near zero.
|
||||
var data = result.getChannelData(channel);
|
||||
var maxError = data.reduce(function(reducedValue, currentValue) {
|
||||
return Math.max(reducedValue, Math.abs(currentValue));
|
||||
});
|
||||
|
||||
success = Should("Max difference between IIR and Biquad on channel " + channel,
|
||||
maxError).beLessThanOrEqualTo(errorThresholds[channel]);
|
||||
}
|
||||
|
||||
if (success) {
|
||||
testPassed("IIRFilter correctly processed " + result.numberOfChannels +
|
||||
"-channel input.");
|
||||
} else {
|
||||
testFailed("IIRFilter failed to correctly process " + result.numberOfChannels +
|
||||
"-channel input.");
|
||||
}
|
||||
}).then(done);
|
||||
});
|
||||
|
||||
// Apply an IIRFilter to the given input signal.
|
||||
//
|
||||
// IIR filter in the time domain is
|
||||
//
|
||||
// y[n] = sum(ff[k]*x[n-k], k, 0, M) - sum(fb[k]*y[n-k], k, 1, N)
|
||||
//
|
||||
function iirFilter(input, feedforward, feedback) {
|
||||
// For simplicity, create an x buffer that contains the input, and a y buffer that contains
|
||||
// the output. Both of these buffers have an initial work space to implement the initial
|
||||
// memory of the filter.
|
||||
var workSize = Math.max(feedforward.length, feedback.length);
|
||||
var x = new Float32Array(input.length + workSize);
|
||||
|
||||
// Float64 because we want to match the implementation that uses doubles to minimize
|
||||
// roundoff.
|
||||
var y = new Float64Array(input.length + workSize);
|
||||
|
||||
// Copy the input over.
|
||||
for (var k = 0; k < input.length; ++k)
|
||||
x[k + feedforward.length] = input[k];
|
||||
|
||||
// Run the filter
|
||||
for (var n = 0; n < input.length; ++n) {
|
||||
var index = n + workSize;
|
||||
var yn = 0;
|
||||
for (var k = 0; k < feedforward.length; ++k)
|
||||
yn += feedforward[k] * x[index - k];
|
||||
for (var k = 0; k < feedback.length; ++k)
|
||||
yn -= feedback[k] * y[index - k];
|
||||
|
||||
y[index] = yn;
|
||||
}
|
||||
|
||||
return y.slice(workSize).map(Math.fround);
|
||||
}
|
||||
|
||||
// Cascade the two given biquad filters to create one IIR filter.
|
||||
function cascadeBiquads(f1Coef, f2Coef) {
|
||||
// The biquad filters are:
|
||||
//
|
||||
// f1 = (b10 + b11/z + b12/z^2)/(1 + a11/z + a12/z^2);
|
||||
// f2 = (b20 + b21/z + b22/z^2)/(1 + a21/z + a22/z^2);
|
||||
//
|
||||
// To cascade them, multiply the two transforms together to get a fourth order IIR filter.
|
||||
|
||||
var numProduct = [f1Coef.b0 * f2Coef.b0,
|
||||
f1Coef.b0 * f2Coef.b1 + f1Coef.b1 * f2Coef.b0,
|
||||
f1Coef.b0 * f2Coef.b2 + f1Coef.b1 * f2Coef.b1 + f1Coef.b2 * f2Coef.b0,
|
||||
f1Coef.b1 * f2Coef.b2 + f1Coef.b2 * f2Coef.b1,
|
||||
f1Coef.b2 * f2Coef.b2
|
||||
];
|
||||
|
||||
var denProduct = [1,
|
||||
f2Coef.a1 + f1Coef.a1,
|
||||
f2Coef.a2 + f1Coef.a1 * f2Coef.a1 + f1Coef.a2,
|
||||
f1Coef.a1 * f2Coef.a2 + f1Coef.a2 * f2Coef.a1,
|
||||
f1Coef.a2 * f2Coef.a2
|
||||
];
|
||||
|
||||
return {
|
||||
ff: numProduct,
|
||||
fb: denProduct
|
||||
}
|
||||
}
|
||||
|
||||
// Find the magnitude of the root of the quadratic that has the maximum magnitude.
|
||||
//
|
||||
// The quadratic is z^2 + a1 * z + a2 and we want the root z that has the largest magnitude.
|
||||
function largestRootMagnitude(a1, a2) {
|
||||
var discriminant = a1 * a1 - 4 * a2;
|
||||
if (discriminant < 0) {
|
||||
// Complex roots: -a1/2 +/- i*sqrt(-d)/2. Thus the magnitude of each root is the same
|
||||
// and is sqrt(a1^2/4 + |d|/4)
|
||||
var d = Math.sqrt(-discriminant);
|
||||
return Math.hypot(a1 / 2, d / 2);
|
||||
} else {
|
||||
// Real roots
|
||||
var d = Math.sqrt(discriminant);
|
||||
return Math.max(Math.abs((-a1 + d) / 2), Math.abs((-a1 - d) / 2));
|
||||
}
|
||||
}
|
||||
|
||||
audit.defineTask("4th-order-iir", function(done) {
|
||||
// Cascade 2 lowpass biquad filters and compare that with the equivalent 4th order IIR
|
||||
// filter.
|
||||
|
||||
var nyquist = sampleRate / 2;
|
||||
// Compute the coefficients of a lowpass filter.
|
||||
|
||||
// First some preliminary stuff. Compute the coefficients of the biquad. This is used to
|
||||
// figure out how frames to use in the test.
|
||||
var biquadType = "lowpass";
|
||||
var biquadCutoff = 350;
|
||||
var biquadQ = 5;
|
||||
var biquadGain = 1;
|
||||
|
||||
var coef = createFilter(biquadType,
|
||||
biquadCutoff / nyquist,
|
||||
biquadQ,
|
||||
biquadGain);
|
||||
|
||||
// Cascade the biquads together to create an equivalent IIR filter.
|
||||
var cascade = cascadeBiquads(coef, coef);
|
||||
|
||||
// Since we're cascading two identical biquads, the root of denominator of the IIR filter is
|
||||
// repeated, so the root of the denominator with the largest magnitude occurs twice. The
|
||||
// impulse response of the IIR filter will be roughly c*(r*r)^n at time n, where r is the
|
||||
// root of largest magnitude. This approximation gets better as n increases. We can use
|
||||
// this to get a rough idea of when the response has died down to a small value.
|
||||
|
||||
// This is the value we will use to determine how many frames to render. Rendering too many
|
||||
// is a waste of time and also makes it hard to compare the actual result to the expected
|
||||
// because the magnitudes are so small that they could be mostly round-off noise.
|
||||
//
|
||||
// Find magnitude of the root with largest magnitude
|
||||
var rootMagnitude = largestRootMagnitude(coef.a1, coef.a2);
|
||||
|
||||
// Find n such that |r|^(2*n) <= eps. That is, n = log(eps)/(2*log(r)). Somewhat
|
||||
// arbitrarily choose eps = 1e-20;
|
||||
var eps = 1e-20;
|
||||
var framesForTest = Math.floor(Math.log(eps) / (2 * Math.log(rootMagnitude)));
|
||||
|
||||
// We're ready to create the graph for the test. The offline context has two channels:
|
||||
// channel 0 is the expected (cascaded biquad) result and channel 1 is the actual IIR filter
|
||||
// result.
|
||||
var context = new OfflineAudioContext(2, framesForTest, sampleRate);
|
||||
|
||||
// Use a simple impulse with a large (arbitrary) amplitude as the source
|
||||
var amplitude = 1;
|
||||
var buffer = context.createBuffer(1, testFrames, sampleRate);
|
||||
buffer.getChannelData(0)[0] = amplitude;
|
||||
var source = context.createBufferSource();
|
||||
source.buffer = buffer;
|
||||
|
||||
// Create the two biquad filters. Doesn't really matter what, but for simplicity we choose
|
||||
// identical lowpass filters with the same parameters.
|
||||
var biquad1 = context.createBiquadFilter();
|
||||
biquad1.type = biquadType;
|
||||
biquad1.frequency.value = biquadCutoff;
|
||||
biquad1.Q.value = biquadQ;
|
||||
|
||||
var biquad2 = context.createBiquadFilter();
|
||||
biquad2.type = biquadType;
|
||||
biquad2.frequency.value = biquadCutoff;
|
||||
biquad2.Q.value = biquadQ;
|
||||
|
||||
var iir = context.createIIRFilter(cascade.ff, cascade.fb);
|
||||
|
||||
// Create the merger to get the signals into multiple channels
|
||||
var merger = context.createChannelMerger(2);
|
||||
|
||||
// Create the graph, filtering the source through two biquads.
|
||||
source.connect(biquad1);
|
||||
biquad1.connect(biquad2);
|
||||
biquad2.connect(merger, 0, 0);
|
||||
|
||||
source.connect(iir);
|
||||
iir.connect(merger, 0, 1);
|
||||
|
||||
merger.connect(context.destination);
|
||||
|
||||
// Now filter the source through the IIR filter.
|
||||
var y = iirFilter(buffer.getChannelData(0), cascade.ff, cascade.fb);
|
||||
|
||||
// Rock and roll!
|
||||
source.start();
|
||||
|
||||
context.startRendering().then(function(result) {
|
||||
var expected = result.getChannelData(0);
|
||||
var actual = result.getChannelData(1);
|
||||
|
||||
Should("4-th order IIRFilter (biquad ref)",
|
||||
actual, {
|
||||
verbose: true,
|
||||
precision: 5
|
||||
})
|
||||
.beCloseToArray(expected, {
|
||||
// Thresholds experimentally determined.
|
||||
absoluteThreshold: 8.4e-8,
|
||||
relativeThreshold: 5e-7,
|
||||
});
|
||||
|
||||
var snr = 10*Math.log10(computeSNR(actual, expected));
|
||||
Should("SNR of 4-th order IIRFilter (biquad ref)", snr)
|
||||
.beGreaterThanOrEqualTo(110.684);
|
||||
}).then(done);
|
||||
});
|
||||
|
||||
audit.defineTask("finish", function (done) {
|
||||
finishJSTest();
|
||||
done();
|
||||
});
|
||||
|
||||
audit.runTasks();
|
||||
successfullyParsed = true;
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
Загрузка…
Ссылка в новой задаче