Backed out changeset 18614b05270d (bug 1315554)

This commit is contained in:
Sebastian Hengst 2017-07-22 11:03:46 +02:00
Родитель d4bb320357
Коммит 8604a9cc71
2 изменённых файлов: 149 добавлений и 229 удалений

Просмотреть файл

@ -55,7 +55,9 @@ nsICODecoder::nsICODecoder(RasterImage* aImage)
: Decoder(aImage)
, mLexer(Transition::To(ICOState::HEADER, ICOHEADERSIZE),
Transition::TerminateSuccess())
, mDirEntry(nullptr)
, mBiggestResourceColorDepth(0)
, mBestResourceDelta(INT_MIN)
, mBestResourceColorDepth(0)
, mNumIcons(0)
, mCurrIcon(0)
, mBPP(0)
@ -149,176 +151,104 @@ nsICODecoder::ReadDirEntry(const char* aData)
{
mCurrIcon++;
// Ensure the resource has an offset past the ICO headers.
uint32_t offset = LittleEndian::readUint32(aData + 12);
if (offset >= FirstResourceOffset()) {
// Read the directory entry.
IconDirEntryEx e;
e.mWidth = aData[0];
e.mHeight = aData[1];
e.mColorCount = aData[2];
e.mReserved = aData[3];
e.mPlanes = LittleEndian::readUint16(aData + 4);
e.mBitCount = LittleEndian::readUint16(aData + 6);
e.mBytesInRes = LittleEndian::readUint32(aData + 8);
e.mImageOffset = offset;
e.mSize = IntSize(e.mWidth, e.mHeight);
if (e.mWidth == 0 || e.mHeight == 0) {
mUnsizedDirEntries.AppendElement(e);
} else {
mDirEntries.AppendElement(e);
// Read the directory entry.
IconDirEntry e;
e.mWidth = aData[0];
e.mHeight = aData[1];
e.mColorCount = aData[2];
e.mReserved = aData[3];
e.mPlanes = LittleEndian::readUint16(aData + 4);
e.mBitCount = LittleEndian::readUint16(aData + 6);
e.mBytesInRes = LittleEndian::readUint32(aData + 8);
e.mImageOffset = LittleEndian::readUint32(aData + 12);
// If an explicit output size was specified, we'll try to select the resource
// that matches it best below.
const Maybe<IntSize> desiredSize = ExplicitOutputSize();
// Determine if this is the biggest resource we've seen so far. We always use
// the biggest resource for the intrinsic size, and if we don't have a
// specific desired size, we select it as the best resource as well.
IntSize entrySize(GetRealWidth(e), GetRealHeight(e));
if (e.mBitCount >= mBiggestResourceColorDepth &&
entrySize.width * entrySize.height >=
mBiggestResourceSize.width * mBiggestResourceSize.height) {
mBiggestResourceSize = entrySize;
mBiggestResourceColorDepth = e.mBitCount;
mBiggestResourceHotSpot = IntSize(e.mXHotspot, e.mYHotspot);
if (!desiredSize) {
mDirEntry = e;
}
}
mImageMetadata.AddNativeSize(entrySize);
if (desiredSize) {
// Calculate the delta between this resource's size and the desired size, so
// we can see if it is better than our current-best option. In the case of
// several equally-good resources, we use the last one. "Better" in this
// case is determined by |delta|, a measure of the difference in size
// between the entry we've found and the desired size. We will choose the
// smallest resource that is greater than or equal to the desired size (i.e.
// we assume it's better to downscale a larger icon than to upscale a
// smaller one).
int32_t delta = std::min(entrySize.width - desiredSize->width,
entrySize.height - desiredSize->height);
if (e.mBitCount >= mBestResourceColorDepth &&
((mBestResourceDelta < 0 && delta >= mBestResourceDelta) ||
(delta >= 0 && delta <= mBestResourceDelta))) {
mBestResourceDelta = delta;
mBestResourceColorDepth = e.mBitCount;
mDirEntry = e;
}
}
if (mCurrIcon == mNumIcons) {
if (mUnsizedDirEntries.IsEmpty()) {
return Transition::To(ICOState::FINISHED_DIR_ENTRY, 0);
// Ensure the resource we selected has an offset past the ICO headers.
if (mDirEntry.mImageOffset < FirstResourceOffset()) {
return Transition::TerminateFailure();
}
return Transition::To(ICOState::ITERATE_UNSIZED_DIR_ENTRY, 0);
// If this is a cursor, set the hotspot. We use the hotspot from the biggest
// resource since we also use that resource for the intrinsic size.
if (mIsCursor) {
mImageMetadata.SetHotspot(mBiggestResourceHotSpot.width,
mBiggestResourceHotSpot.height);
}
// We always report the biggest resource's size as the intrinsic size; this
// is necessary for downscale-during-decode to work since we won't even
// attempt to *upscale* while decoding.
PostSize(mBiggestResourceSize.width, mBiggestResourceSize.height);
if (HasError()) {
return Transition::TerminateFailure();
}
if (IsMetadataDecode()) {
return Transition::TerminateSuccess();
}
// If the resource we selected matches the output size perfectly, we don't
// need to do any downscaling.
if (GetRealSize() == OutputSize()) {
MOZ_ASSERT_IF(desiredSize, GetRealSize() == *desiredSize);
MOZ_ASSERT_IF(!desiredSize, GetRealSize() == Size());
mDownscaler.reset();
}
size_t offsetToResource = mDirEntry.mImageOffset - FirstResourceOffset();
return Transition::ToUnbuffered(ICOState::FOUND_RESOURCE,
ICOState::SKIP_TO_RESOURCE,
offsetToResource);
}
return Transition::To(ICOState::DIR_ENTRY, ICODIRENTRYSIZE);
}
LexerTransition<ICOState>
nsICODecoder::IterateUnsizedDirEntry()
{
MOZ_ASSERT(!mUnsizedDirEntries.IsEmpty());
if (!mDirEntry) {
// The first time we are here, there is no entry selected. We must prepare a
// new iterator for the contained decoder to advance as it wills. Cloning at
// this point ensures it will begin at the end of the dir entries.
mReturnIterator.emplace(mLexer.Clone(*mIterator, SIZE_MAX));
} else {
// We have already selected an entry which means a metadata decoder has
// finished. Verify the size is valid and if so, add to the discovered
// resources.
if (mDirEntry->mSize.width > 0 && mDirEntry->mSize.height > 0) {
mDirEntries.AppendElement(*mDirEntry);
}
// Remove the entry from the unsized list either way.
mDirEntry = nullptr;
mUnsizedDirEntries.RemoveElementAt(0);
// Our iterator is at an unknown point, so reset it to the point that we
// saved.
mIterator.reset();
mIterator.emplace(mLexer.Clone(*mReturnIterator, SIZE_MAX));
}
// There are no more unsized entries, so we can finally decide which entry to
// select for decoding.
if (mUnsizedDirEntries.IsEmpty()) {
mReturnIterator.reset();
return Transition::To(ICOState::FINISHED_DIR_ENTRY, 0);
}
// Move to the resource data to start metadata decoding.
mDirEntry = &mUnsizedDirEntries[0];
size_t offsetToResource = mDirEntry->mImageOffset - FirstResourceOffset();
return Transition::ToUnbuffered(ICOState::FOUND_RESOURCE,
ICOState::SKIP_TO_RESOURCE,
offsetToResource);
}
LexerTransition<ICOState>
nsICODecoder::FinishDirEntry()
{
MOZ_ASSERT(!mDirEntry);
if (mDirEntries.IsEmpty()) {
return Transition::TerminateFailure();
}
// If an explicit output size was specified, we'll try to select the resource
// that matches it best below.
const Maybe<IntSize> desiredSize = ExplicitOutputSize();
// Determine the biggest resource. We always use the biggest resource for the
// intrinsic size, and if we don't have a specific desired size, we select it
// as the best resource as well.
int32_t bestDelta = INT32_MIN;
IconDirEntryEx* biggestEntry = nullptr;
for (size_t i = 0; i < mDirEntries.Length(); ++i) {
IconDirEntryEx& e = mDirEntries[i];
mImageMetadata.AddNativeSize(e.mSize);
if (!biggestEntry ||
(e.mBitCount >= biggestEntry->mBitCount &&
e.mSize.width * e.mSize.height >=
biggestEntry->mSize.width * biggestEntry->mSize.height)) {
biggestEntry = &e;
if (!desiredSize) {
mDirEntry = &e;
}
}
if (desiredSize) {
// Calculate the delta between this resource's size and the desired size, so
// we can see if it is better than our current-best option. In the case of
// several equally-good resources, we use the last one. "Better" in this
// case is determined by |delta|, a measure of the difference in size
// between the entry we've found and the desired size. We will choose the
// smallest resource that is greater than or equal to the desired size (i.e.
// we assume it's better to downscale a larger icon than to upscale a
// smaller one).
int32_t delta = std::min(e.mSize.width - desiredSize->width,
e.mSize.height - desiredSize->height);
if (!mDirEntry ||
(e.mBitCount >= mDirEntry->mBitCount &&
((bestDelta < 0 && delta >= bestDelta) ||
(delta >= 0 && delta <= bestDelta)))) {
mDirEntry = &e;
bestDelta = delta;
}
}
}
MOZ_ASSERT(mDirEntry);
MOZ_ASSERT(biggestEntry);
// If this is a cursor, set the hotspot. We use the hotspot from the biggest
// resource since we also use that resource for the intrinsic size.
if (mIsCursor) {
mImageMetadata.SetHotspot(biggestEntry->mXHotspot,
biggestEntry->mYHotspot);
}
// We always report the biggest resource's size as the intrinsic size; this
// is necessary for downscale-during-decode to work since we won't even
// attempt to *upscale* while decoding.
PostSize(biggestEntry->mSize.width, biggestEntry->mSize.height);
if (HasError()) {
return Transition::TerminateFailure();
}
if (IsMetadataDecode()) {
return Transition::TerminateSuccess();
}
// If the resource we selected matches the output size perfectly, we don't
// need to do any downscaling.
if (mDirEntry->mSize == OutputSize()) {
MOZ_ASSERT_IF(desiredSize, mDirEntry->mSize == *desiredSize);
MOZ_ASSERT_IF(!desiredSize, mDirEntry->mSize == Size());
mDownscaler.reset();
}
size_t offsetToResource = mDirEntry->mImageOffset - FirstResourceOffset();
return Transition::ToUnbuffered(ICOState::FOUND_RESOURCE,
ICOState::SKIP_TO_RESOURCE,
offsetToResource);
}
LexerTransition<ICOState>
nsICODecoder::SniffResource(const char* aData)
{
MOZ_ASSERT(mDirEntry);
// We have BITMAPINFOSIZE bytes buffered at this point. We know an embedded
// BMP will have at least that many bytes by definition. We can also infer
// that any valid embedded PNG will contain that many bytes as well because:
@ -333,28 +263,25 @@ nsICODecoder::SniffResource(const char* aData)
bool isPNG = !memcmp(aData, nsPNGDecoder::pngSignatureBytes,
PNGSIGNATURESIZE);
if (isPNG) {
if (mDirEntry->mBytesInRes <= BITMAPINFOSIZE) {
if (mDirEntry.mBytesInRes <= BITMAPINFOSIZE) {
return Transition::TerminateFailure();
}
// Prepare a new iterator for the contained decoder to advance as it wills.
// Cloning at the point ensures it will begin at the resource offset.
SourceBufferIterator containedIterator
= mLexer.Clone(*mIterator, mDirEntry->mBytesInRes);
= mLexer.Clone(*mIterator, mDirEntry.mBytesInRes);
// Create a PNG decoder which will do the rest of the work for us.
bool metadataDecode = mReturnIterator.isSome();
Maybe<IntSize> expectedSize = metadataDecode ? Nothing()
: Some(mDirEntry->mSize);
mContainedDecoder =
DecoderFactory::CreateDecoderForICOResource(DecoderType::PNG,
Move(containedIterator),
WrapNotNull(this),
metadataDecode,
expectedSize);
false,
Some(GetRealSize()));
// Read in the rest of the PNG unbuffered.
size_t toRead = mDirEntry->mBytesInRes - BITMAPINFOSIZE;
size_t toRead = mDirEntry.mBytesInRes - BITMAPINFOSIZE;
return Transition::ToUnbuffered(ICOState::FINISHED_RESOURCE,
ICOState::READ_RESOURCE,
toRead);
@ -383,8 +310,6 @@ nsICODecoder::ReadResource()
LexerTransition<ICOState>
nsICODecoder::ReadBIH(const char* aData)
{
MOZ_ASSERT(mDirEntry);
// Extract the BPP from the BIH header; it should be trusted over the one
// we have from the ICO header which is usually set to 0.
mBPP = LittleEndian::readUint16(aData + 14);
@ -407,19 +332,16 @@ nsICODecoder::ReadBIH(const char* aData)
// Prepare a new iterator for the contained decoder to advance as it wills.
// Cloning at the point ensures it will begin at the resource offset.
SourceBufferIterator containedIterator
= mLexer.Clone(*mIterator, mDirEntry->mBytesInRes);
= mLexer.Clone(*mIterator, mDirEntry.mBytesInRes);
// Create a BMP decoder which will do most of the work for us; the exception
// is the AND mask, which isn't present in standalone BMPs.
bool metadataDecode = mReturnIterator.isSome();
Maybe<IntSize> expectedSize = metadataDecode ? Nothing()
: Some(mDirEntry->mSize);
mContainedDecoder =
DecoderFactory::CreateDecoderForICOResource(DecoderType::BMP,
Move(containedIterator),
WrapNotNull(this),
metadataDecode,
expectedSize,
false,
Some(GetRealSize()),
Some(dataOffset));
RefPtr<nsBMPDecoder> bmpDecoder =
@ -430,15 +352,10 @@ nsICODecoder::ReadBIH(const char* aData)
return Transition::TerminateFailure();
}
// If this is a metadata decode, FinishResource will any necessary checks.
if (mContainedDecoder->IsMetadataDecode()) {
return Transition::To(ICOState::FINISHED_RESOURCE, 0);
}
// Do we have an AND mask on this BMP? If so, we need to read it after we read
// the BMP data itself.
uint32_t bmpDataLength = bmpDecoder->GetCompressedImageSize() + 4 * numColors;
bool hasANDMask = (BITMAPINFOSIZE + bmpDataLength) < mDirEntry->mBytesInRes;
bool hasANDMask = (BITMAPINFOSIZE + bmpDataLength) < mDirEntry.mBytesInRes;
ICOState afterBMPState = hasANDMask ? ICOState::PREPARE_FOR_MASK
: ICOState::FINISHED_RESOURCE;
@ -451,9 +368,6 @@ nsICODecoder::ReadBIH(const char* aData)
LexerTransition<ICOState>
nsICODecoder::PrepareForMask()
{
MOZ_ASSERT(mDirEntry);
MOZ_ASSERT(mContainedDecoder->GetDecodeDone());
// We have received all of the data required by the BMP decoder so flushing
// here guarantees the decode has finished.
if (!FlushContainedDecoder()) {
@ -471,22 +385,24 @@ nsICODecoder::PrepareForMask()
// Determine the length of the AND mask.
uint32_t bmpLengthWithHeader =
BITMAPINFOSIZE + bmpDecoder->GetCompressedImageSize() + 4 * numColors;
MOZ_ASSERT(bmpLengthWithHeader < mDirEntry->mBytesInRes);
uint32_t maskLength = mDirEntry->mBytesInRes - bmpLengthWithHeader;
MOZ_ASSERT(bmpLengthWithHeader < mDirEntry.mBytesInRes);
uint32_t maskLength = mDirEntry.mBytesInRes - bmpLengthWithHeader;
// If the BMP provides its own transparency, we ignore the AND mask.
if (bmpDecoder->HasTransparency()) {
// If the BMP provides its own transparency, we ignore the AND mask. We can
// also obviously ignore it if the image has zero width or zero height.
if (bmpDecoder->HasTransparency() ||
GetRealWidth() == 0 || GetRealHeight() == 0) {
return Transition::ToUnbuffered(ICOState::FINISHED_RESOURCE,
ICOState::SKIP_MASK,
maskLength);
}
// Compute the row size for the mask.
mMaskRowSize = ((mDirEntry->mSize.width + 31) / 32) * 4; // + 31 to round up
mMaskRowSize = ((GetRealWidth() + 31) / 32) * 4; // + 31 to round up
// If the expected size of the AND mask is larger than its actual size, then
// we must have a truncated (and therefore corrupt) AND mask.
uint32_t expectedLength = mMaskRowSize * mDirEntry->mSize.height;
uint32_t expectedLength = mMaskRowSize * GetRealHeight();
if (maskLength < expectedLength) {
return Transition::TerminateFailure();
}
@ -500,7 +416,7 @@ nsICODecoder::PrepareForMask()
mDownscaler->TargetSize().height *
sizeof(uint32_t));
mMaskBuffer = MakeUnique<uint8_t[]>(bmpDecoder->GetImageDataLength());
nsresult rv = mDownscaler->BeginFrame(mDirEntry->mSize, Nothing(),
nsresult rv = mDownscaler->BeginFrame(GetRealSize(), Nothing(),
mMaskBuffer.get(),
/* aHasAlpha = */ true,
/* aFlipVertically = */ true);
@ -509,7 +425,7 @@ nsICODecoder::PrepareForMask()
}
}
mCurrMaskLine = mDirEntry->mSize.height;
mCurrMaskLine = GetRealHeight();
return Transition::To(ICOState::READ_MASK_ROW, mMaskRowSize);
}
@ -517,8 +433,6 @@ nsICODecoder::PrepareForMask()
LexerTransition<ICOState>
nsICODecoder::ReadMaskRow(const char* aData)
{
MOZ_ASSERT(mDirEntry);
mCurrMaskLine--;
uint8_t sawTransparency = 0;
@ -532,7 +446,7 @@ nsICODecoder::ReadMaskRow(const char* aData)
uint32_t* decoded = nullptr;
if (mDownscaler) {
// Initialize the row to all white and fully opaque.
memset(mDownscaler->RowBuffer(), 0xFF, mDirEntry->mSize.width * sizeof(uint32_t));
memset(mDownscaler->RowBuffer(), 0xFF, GetRealWidth() * sizeof(uint32_t));
decoded = reinterpret_cast<uint32_t*>(mDownscaler->RowBuffer());
} else {
@ -543,11 +457,11 @@ nsICODecoder::ReadMaskRow(const char* aData)
return Transition::TerminateFailure();
}
decoded = imageData + mCurrMaskLine * mDirEntry->mSize.width;
decoded = imageData + mCurrMaskLine * GetRealWidth();
}
MOZ_ASSERT(decoded);
uint32_t* decodedRowEnd = decoded + mDirEntry->mSize.width;
uint32_t* decodedRowEnd = decoded + GetRealWidth();
// Iterate simultaneously through the AND mask and the image data.
while (mask < maskRowEnd) {
@ -607,8 +521,6 @@ nsICODecoder::FinishMask()
LexerTransition<ICOState>
nsICODecoder::FinishResource()
{
MOZ_ASSERT(mDirEntry);
// We have received all of the data required by the PNG/BMP decoder so
// flushing here guarantees the decode has finished.
if (!FlushContainedDecoder()) {
@ -617,13 +529,11 @@ nsICODecoder::FinishResource()
MOZ_ASSERT(mContainedDecoder->GetDecodeDone());
// If it is a metadata decode, all we were trying to get was the size
// information missing from the dir entry.
if (mContainedDecoder->IsMetadataDecode()) {
if (mContainedDecoder->HasSize()) {
mDirEntry->mSize = mContainedDecoder->Size();
}
return Transition::To(ICOState::ITERATE_UNSIZED_DIR_ENTRY, 0);
// Make sure the actual size of the resource matches the size in the directory
// entry. If not, we consider the image corrupt.
if (mContainedDecoder->HasSize() &&
mContainedDecoder->Size() != GetRealSize()) {
return Transition::TerminateFailure();
}
// Raymond Chen says that 32bpp only are valid PNG ICOs
@ -632,10 +542,6 @@ nsICODecoder::FinishResource()
return Transition::TerminateFailure();
}
// This size from the resource should match that from the dir entry.
MOZ_ASSERT_IF(mContainedDecoder->HasSize(),
mContainedDecoder->Size() == mDirEntry->mSize);
// Finalize the frame which we deferred to ensure we could modify the final
// result (e.g. to apply the BMP mask).
MOZ_ASSERT(!mContainedDecoder->GetFinalizeFrames());
@ -658,10 +564,6 @@ nsICODecoder::DoDecode(SourceBufferIterator& aIterator, IResumable* aOnResume)
return ReadHeader(aData);
case ICOState::DIR_ENTRY:
return ReadDirEntry(aData);
case ICOState::FINISHED_DIR_ENTRY:
return FinishDirEntry();
case ICOState::ITERATE_UNSIZED_DIR_ENTRY:
return IterateUnsizedDirEntry();
case ICOState::SKIP_TO_RESOURCE:
return Transition::ContinueUnbuffered(ICOState::SKIP_TO_RESOURCE);
case ICOState::FOUND_RESOURCE:

Просмотреть файл

@ -24,8 +24,6 @@ enum class ICOState
{
HEADER,
DIR_ENTRY,
FINISHED_DIR_ENTRY,
ITERATE_UNSIZED_DIR_ENTRY,
SKIP_TO_RESOURCE,
FOUND_RESOURCE,
SNIFF_RESOURCE,
@ -42,6 +40,30 @@ class nsICODecoder : public Decoder
public:
virtual ~nsICODecoder() { }
/// @return the width of the icon directory entry @aEntry.
static uint32_t GetRealWidth(const IconDirEntry& aEntry)
{
return aEntry.mWidth == 0 ? 256 : aEntry.mWidth;
}
/// @return the width of the selected directory entry (mDirEntry).
uint32_t GetRealWidth() const { return GetRealWidth(mDirEntry); }
/// @return the height of the icon directory entry @aEntry.
static uint32_t GetRealHeight(const IconDirEntry& aEntry)
{
return aEntry.mHeight == 0 ? 256 : aEntry.mHeight;
}
/// @return the height of the selected directory entry (mDirEntry).
uint32_t GetRealHeight() const { return GetRealHeight(mDirEntry); }
/// @return the size of the selected directory entry (mDirEntry).
gfx::IntSize GetRealSize() const
{
return gfx::IntSize(GetRealWidth(), GetRealHeight());
}
/// @return The offset from the beginning of the ICO to the first resource.
size_t FirstResourceOffset() const;
@ -68,8 +90,6 @@ private:
LexerTransition<ICOState> ReadHeader(const char* aData);
LexerTransition<ICOState> ReadDirEntry(const char* aData);
LexerTransition<ICOState> IterateUnsizedDirEntry();
LexerTransition<ICOState> FinishDirEntry();
LexerTransition<ICOState> SniffResource(const char* aData);
LexerTransition<ICOState> ReadResource();
LexerTransition<ICOState> ReadBIH(const char* aData);
@ -78,20 +98,18 @@ private:
LexerTransition<ICOState> FinishMask();
LexerTransition<ICOState> FinishResource();
struct IconDirEntryEx : public IconDirEntry {
gfx::IntSize mSize;
};
StreamingLexer<ICOState, 32> mLexer; // The lexer.
RefPtr<Decoder> mContainedDecoder; // Either a BMP or PNG decoder.
Maybe<SourceBufferIterator> mReturnIterator; // Iterator to save return point.
UniquePtr<uint8_t[]> mMaskBuffer; // A temporary buffer for the alpha mask.
nsTArray<IconDirEntryEx> mDirEntries; // Valid dir entries with a size.
nsTArray<IconDirEntryEx> mUnsizedDirEntries; // Dir entries without a size.
IconDirEntryEx* mDirEntry; // The dir entry for the selected resource.
uint16_t mNumIcons; // Stores the number of icons in the ICO file.
uint16_t mCurrIcon; // Stores the current dir entry index we are processing.
uint16_t mBPP; // The BPP of the resource we're decoding.
UniquePtr<uint8_t[]> mMaskBuffer; // A temporary buffer for the alpha mask.
IconDirEntry mDirEntry; // The dir entry for the selected resource.
gfx::IntSize mBiggestResourceSize; // Used to select the intrinsic size.
gfx::IntSize mBiggestResourceHotSpot; // Used to select the intrinsic size.
uint16_t mBiggestResourceColorDepth; // Used to select the intrinsic size.
int32_t mBestResourceDelta; // Used to select the best resource.
uint16_t mBestResourceColorDepth; // Used to select the best resource.
uint16_t mNumIcons; // Stores the number of icons in the ICO file.
uint16_t mCurrIcon; // Stores the current dir entry index we are processing.
uint16_t mBPP; // The BPP of the resource we're decoding.
uint32_t mMaskRowSize; // The size in bytes of each row in the BMP alpha mask.
uint32_t mCurrMaskLine; // The line of the BMP alpha mask we're processing.
bool mIsCursor; // Is this ICO a cursor?