зеркало из https://github.com/mozilla/gecko-dev.git
Backed out changeset 41f59bd4b801 (bug 933257)
This commit is contained in:
Родитель
0ae35aa9f0
Коммит
888c069d36
|
@ -131,18 +131,28 @@ js::math_abs(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_abs_handle(cx, args[0], args.rval());
|
||||
}
|
||||
|
||||
#if defined(SOLARIS) && defined(__GNUC__)
|
||||
#define ACOS_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN();
|
||||
#else
|
||||
#define ACOS_IF_OUT_OF_RANGE(x)
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_acos_impl(MathCache* cache, double x)
|
||||
{
|
||||
ACOS_IF_OUT_OF_RANGE(x);
|
||||
return cache->lookup(fdlibm::acos, x, MathCache::Acos);
|
||||
}
|
||||
|
||||
double
|
||||
js::math_acos_uncached(double x)
|
||||
{
|
||||
ACOS_IF_OUT_OF_RANGE(x);
|
||||
return fdlibm::acos(x);
|
||||
}
|
||||
|
||||
#undef ACOS_IF_OUT_OF_RANGE
|
||||
|
||||
bool
|
||||
js::math_acos(JSContext* cx, unsigned argc, Value* vp)
|
||||
{
|
||||
|
@ -166,18 +176,28 @@ js::math_acos(JSContext* cx, unsigned argc, Value* vp)
|
|||
return true;
|
||||
}
|
||||
|
||||
#if defined(SOLARIS) && defined(__GNUC__)
|
||||
#define ASIN_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN();
|
||||
#else
|
||||
#define ASIN_IF_OUT_OF_RANGE(x)
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_asin_impl(MathCache* cache, double x)
|
||||
{
|
||||
ASIN_IF_OUT_OF_RANGE(x);
|
||||
return cache->lookup(fdlibm::asin, x, MathCache::Asin);
|
||||
}
|
||||
|
||||
double
|
||||
js::math_asin_uncached(double x)
|
||||
{
|
||||
ASIN_IF_OUT_OF_RANGE(x);
|
||||
return fdlibm::asin(x);
|
||||
}
|
||||
|
||||
#undef ASIN_IF_OUT_OF_RANGE
|
||||
|
||||
bool
|
||||
js::math_asin(JSContext* cx, unsigned argc, Value* vp)
|
||||
{
|
||||
|
@ -239,6 +259,30 @@ js::math_atan(JSContext* cx, unsigned argc, Value* vp)
|
|||
double
|
||||
js::ecmaAtan2(double y, double x)
|
||||
{
|
||||
#if defined(_MSC_VER)
|
||||
/*
|
||||
* MSVC's atan2 does not yield the result demanded by ECMA when both x
|
||||
* and y are infinite.
|
||||
* - The result is a multiple of pi/4.
|
||||
* - The sign of y determines the sign of the result.
|
||||
* - The sign of x determines the multiplicator, 1 or 3.
|
||||
*/
|
||||
if (IsInfinite(y) && IsInfinite(x)) {
|
||||
double z = js_copysign(M_PI / 4, y);
|
||||
if (x < 0)
|
||||
z *= 3;
|
||||
return z;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(SOLARIS) && defined(__GNUC__)
|
||||
if (y == 0) {
|
||||
if (IsNegativeZero(x))
|
||||
return js_copysign(M_PI, y);
|
||||
if (x == 0)
|
||||
return y;
|
||||
}
|
||||
#endif
|
||||
return fdlibm::atan2(y, x);
|
||||
}
|
||||
|
||||
|
@ -269,6 +313,10 @@ js::math_atan2(JSContext* cx, unsigned argc, Value* vp)
|
|||
double
|
||||
js::math_ceil_impl(double x)
|
||||
{
|
||||
#ifdef __APPLE__
|
||||
if (x < 0 && x > -1.0)
|
||||
return js_copysign(0, -1);
|
||||
#endif
|
||||
return fdlibm::ceil(x);
|
||||
}
|
||||
|
||||
|
@ -355,18 +403,34 @@ js::math_cos(JSContext* cx, unsigned argc, Value* vp)
|
|||
return true;
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
#define EXP_IF_OUT_OF_RANGE(x) \
|
||||
if (!IsNaN(x)) { \
|
||||
if (x == PositiveInfinity<double>()) \
|
||||
return PositiveInfinity<double>(); \
|
||||
if (x == NegativeInfinity<double>()) \
|
||||
return 0.0; \
|
||||
}
|
||||
#else
|
||||
#define EXP_IF_OUT_OF_RANGE(x)
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_exp_impl(MathCache* cache, double x)
|
||||
{
|
||||
EXP_IF_OUT_OF_RANGE(x);
|
||||
return cache->lookup(fdlibm::exp, x, MathCache::Exp);
|
||||
}
|
||||
|
||||
double
|
||||
js::math_exp_uncached(double x)
|
||||
{
|
||||
EXP_IF_OUT_OF_RANGE(x);
|
||||
return fdlibm::exp(x);
|
||||
}
|
||||
|
||||
#undef EXP_IF_OUT_OF_RANGE
|
||||
|
||||
bool
|
||||
js::math_exp(JSContext* cx, unsigned argc, Value* vp)
|
||||
{
|
||||
|
@ -480,18 +544,28 @@ js::math_fround(JSContext* cx, unsigned argc, Value* vp)
|
|||
return RoundFloat32(cx, args[0], args.rval());
|
||||
}
|
||||
|
||||
#if defined(SOLARIS) && defined(__GNUC__)
|
||||
#define LOG_IF_OUT_OF_RANGE(x) if (x < 0) return GenericNaN();
|
||||
#else
|
||||
#define LOG_IF_OUT_OF_RANGE(x)
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_log_impl(MathCache* cache, double x)
|
||||
{
|
||||
LOG_IF_OUT_OF_RANGE(x);
|
||||
return cache->lookup(math_log_uncached, x, MathCache::Log);
|
||||
}
|
||||
|
||||
double
|
||||
js::math_log_uncached(double x)
|
||||
{
|
||||
LOG_IF_OUT_OF_RANGE(x);
|
||||
return fdlibm::log(x);
|
||||
}
|
||||
|
||||
#undef LOG_IF_OUT_OF_RANGE
|
||||
|
||||
bool
|
||||
js::math_log_handle(JSContext* cx, HandleValue val, MutableHandleValue res)
|
||||
{
|
||||
|
@ -983,6 +1057,13 @@ js::math_log10(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_function<math_log10_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_LOG2
|
||||
double log2(double x)
|
||||
{
|
||||
return log(x) / M_LN2;
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_log2_impl(MathCache* cache, double x)
|
||||
{
|
||||
|
@ -1001,24 +1082,73 @@ js::math_log2(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_function<math_log2_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_LOG1P
|
||||
double log1p(double x)
|
||||
{
|
||||
if (fabs(x) < 1e-4) {
|
||||
/*
|
||||
* Use Taylor approx. log(1 + x) = x - x^2 / 2 + x^3 / 3 - x^4 / 4 with error x^5 / 5
|
||||
* Since |x| < 10^-4, |x|^5 < 10^-20, relative error less than 10^-16
|
||||
*/
|
||||
double z = -(x * x * x * x) / 4 + (x * x * x) / 3 - (x * x) / 2 + x;
|
||||
return z;
|
||||
} else {
|
||||
/* For other large enough values of x use direct computation */
|
||||
return log(1.0 + x);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __APPLE__
|
||||
// Ensure that log1p(-0) is -0.
|
||||
#define LOG1P_IF_OUT_OF_RANGE(x) if (x == 0) return x;
|
||||
#else
|
||||
#define LOG1P_IF_OUT_OF_RANGE(x)
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_log1p_impl(MathCache* cache, double x)
|
||||
{
|
||||
LOG1P_IF_OUT_OF_RANGE(x);
|
||||
return cache->lookup(fdlibm::log1p, x, MathCache::Log1p);
|
||||
}
|
||||
|
||||
double
|
||||
js::math_log1p_uncached(double x)
|
||||
{
|
||||
LOG1P_IF_OUT_OF_RANGE(x);
|
||||
return fdlibm::log1p(x);
|
||||
}
|
||||
|
||||
#undef LOG1P_IF_OUT_OF_RANGE
|
||||
|
||||
bool
|
||||
js::math_log1p(JSContext* cx, unsigned argc, Value* vp)
|
||||
{
|
||||
return math_function<math_log1p_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_EXPM1
|
||||
double expm1(double x)
|
||||
{
|
||||
/* Special handling for -0 */
|
||||
if (x == 0.0)
|
||||
return x;
|
||||
|
||||
if (fabs(x) < 1e-5) {
|
||||
/*
|
||||
* Use Taylor approx. exp(x) - 1 = x + x^2 / 2 + x^3 / 6 with error x^4 / 24
|
||||
* Since |x| < 10^-5, |x|^4 < 10^-20, relative error less than 10^-15
|
||||
*/
|
||||
double z = (x * x * x) / 6 + (x * x) / 2 + x;
|
||||
return z;
|
||||
} else {
|
||||
/* For other large enough values of x use direct computation */
|
||||
return exp(x) - 1.0;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_expm1_impl(MathCache* cache, double x)
|
||||
{
|
||||
|
@ -1037,6 +1167,17 @@ js::math_expm1(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_function<math_expm1_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_SQRT1PM1
|
||||
/* This algorithm computes sqrt(1+x)-1 for small x */
|
||||
double sqrt1pm1(double x)
|
||||
{
|
||||
if (fabs(x) > 0.75)
|
||||
return sqrt(1 + x) - 1;
|
||||
|
||||
return expm1(log1p(x) / 2);
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_cosh_impl(MathCache* cache, double x)
|
||||
{
|
||||
|
@ -1091,6 +1232,37 @@ js::math_tanh(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_function<math_tanh_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_ACOSH
|
||||
double acosh(double x)
|
||||
{
|
||||
const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon());
|
||||
|
||||
if ((x - 1) >= SQUARE_ROOT_EPSILON) {
|
||||
if (x > 1 / SQUARE_ROOT_EPSILON) {
|
||||
/*
|
||||
* http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/
|
||||
* approximation by laurent series in 1/x at 0+ order from -1 to 0
|
||||
*/
|
||||
return log(x) + M_LN2;
|
||||
} else if (x < 1.5) {
|
||||
// This is just a rearrangement of the standard form below
|
||||
// devised to minimize loss of precision when x ~ 1:
|
||||
double y = x - 1;
|
||||
return log1p(y + sqrt(y * y + 2 * y));
|
||||
} else {
|
||||
// http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/
|
||||
return log(x + sqrt(x * x - 1));
|
||||
}
|
||||
} else {
|
||||
// see http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/
|
||||
double y = x - 1;
|
||||
// approximation by taylor series in y at 0 up to order 2.
|
||||
// If x is less than 1, sqrt(2 * y) is NaN and the result is NaN.
|
||||
return sqrt(2 * y) * (1 - y / 12 + 3 * y * y / 160);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_acosh_impl(MathCache* cache, double x)
|
||||
{
|
||||
|
@ -1109,16 +1281,59 @@ js::math_acosh(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_function<math_acosh_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_ASINH
|
||||
// Bug 899712 - gcc incorrectly rewrites -asinh(-x) to asinh(x) when overriding
|
||||
// asinh.
|
||||
static double my_asinh(double x)
|
||||
{
|
||||
const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon());
|
||||
const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON);
|
||||
|
||||
if (x >= FOURTH_ROOT_EPSILON) {
|
||||
if (x > 1 / SQUARE_ROOT_EPSILON)
|
||||
// http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/
|
||||
// approximation by laurent series in 1/x at 0+ order from -1 to 1
|
||||
return M_LN2 + log(x) + 1 / (4 * x * x);
|
||||
else if (x < 0.5)
|
||||
return log1p(x + sqrt1pm1(x * x));
|
||||
else
|
||||
return log(x + sqrt(x * x + 1));
|
||||
} else if (x <= -FOURTH_ROOT_EPSILON) {
|
||||
return -my_asinh(-x);
|
||||
} else {
|
||||
// http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/
|
||||
// approximation by taylor series in x at 0 up to order 2
|
||||
double result = x;
|
||||
|
||||
if (fabs(x) >= SQUARE_ROOT_EPSILON) {
|
||||
double x3 = x * x * x;
|
||||
// approximation by taylor series in x at 0 up to order 4
|
||||
result -= x3 / 6;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_asinh_impl(MathCache* cache, double x)
|
||||
{
|
||||
#ifdef HAVE_ASINH
|
||||
return cache->lookup(fdlibm::asinh, x, MathCache::Asinh);
|
||||
#else
|
||||
return cache->lookup(my_asinh, x, MathCache::Asinh);
|
||||
#endif
|
||||
}
|
||||
|
||||
double
|
||||
js::math_asinh_uncached(double x)
|
||||
{
|
||||
#ifdef HAVE_ASINH
|
||||
return fdlibm::asinh(x);
|
||||
#else
|
||||
return my_asinh(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
bool
|
||||
|
@ -1127,6 +1342,34 @@ js::math_asinh(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_function<math_asinh_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_ATANH
|
||||
double atanh(double x)
|
||||
{
|
||||
const double EPSILON = std::numeric_limits<double>::epsilon();
|
||||
const double SQUARE_ROOT_EPSILON = sqrt(EPSILON);
|
||||
const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON);
|
||||
|
||||
if (fabs(x) >= FOURTH_ROOT_EPSILON) {
|
||||
// http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/
|
||||
if (fabs(x) < 0.5)
|
||||
return (log1p(x) - log1p(-x)) / 2;
|
||||
|
||||
return log((1 + x) / (1 - x)) / 2;
|
||||
} else {
|
||||
// http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/
|
||||
// approximation by taylor series in x at 0 up to order 2
|
||||
double result = x;
|
||||
|
||||
if (fabs(x) >= SQUARE_ROOT_EPSILON) {
|
||||
double x3 = x * x * x;
|
||||
result += x3 / 3;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_atanh_impl(MathCache* cache, double x)
|
||||
{
|
||||
|
@ -1149,6 +1392,15 @@ js::math_atanh(JSContext* cx, unsigned argc, Value* vp)
|
|||
double
|
||||
js::ecmaHypot(double x, double y)
|
||||
{
|
||||
#ifdef XP_WIN
|
||||
/*
|
||||
* Workaround MS hypot bug, where hypot(Infinity, NaN or Math.MIN_VALUE)
|
||||
* is NaN, not Infinity.
|
||||
*/
|
||||
if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y)) {
|
||||
return mozilla::PositiveInfinity<double>();
|
||||
}
|
||||
#endif
|
||||
return fdlibm::hypot(x, y);
|
||||
}
|
||||
|
||||
|
@ -1290,6 +1542,19 @@ js::math_sign(JSContext* cx, unsigned argc, Value* vp)
|
|||
return math_function<math_sign_impl>(cx, argc, vp);
|
||||
}
|
||||
|
||||
#if !HAVE_CBRT
|
||||
double cbrt(double x)
|
||||
{
|
||||
if (x > 0) {
|
||||
return pow(x, 1.0 / 3.0);
|
||||
} else if (x == 0) {
|
||||
return x;
|
||||
} else {
|
||||
return -pow(-x, 1.0 / 3.0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
js::math_cbrt_impl(MathCache* cache, double x)
|
||||
{
|
||||
|
|
|
@ -661,6 +661,7 @@ if CONFIG['_MSC_VER']:
|
|||
CXXFLAGS += ['-wd4661']
|
||||
CXXFLAGS += ['-we4067', '-we4258', '-we4275']
|
||||
CXXFLAGS += ['-wd4146'] # FIXME: unary minus operator applied to unsigned type (bug 1229189)
|
||||
CXXFLAGS += ['-wd4273'] # FIXME: inconsistent dll linkage (bug 1229666)
|
||||
|
||||
if CONFIG['OS_ARCH'] not in ('WINNT', 'HP-UX'):
|
||||
OS_LIBS += [
|
||||
|
|
|
@ -1702,7 +1702,9 @@ fi
|
|||
|
||||
dnl Checks for math functions.
|
||||
dnl ========================================================
|
||||
AC_CHECK_LIB(m, sin)
|
||||
AC_CHECK_LIB(m, __sincos, AC_DEFINE(HAVE_SINCOS))
|
||||
AC_CHECK_FUNCS([log2 log1p expm1 sqrt1pm1 acosh asinh atanh cbrt])
|
||||
|
||||
|
||||
dnl check for wcrtomb/mbrtowc
|
||||
|
|
Загрузка…
Ссылка в новой задаче