Bug 1172785 - RTCCertificate implementation, r=rbarnes

--HG--
extra : commitid : CBco7h85lO6
extra : rebase_source : 9cec281dd07e6d503a19a0ea57e5d4ceee98197c
This commit is contained in:
Martin Thomson 2015-07-06 10:40:04 -07:00
Родитель a9fc4bf678
Коммит 93f1797507
8 изменённых файлов: 803 добавлений и 215 удалений

1
config/external/nss/nss.def поставляемый
Просмотреть файл

@ -23,6 +23,7 @@ CERT_CacheOCSPResponseFromSideChannel
CERT_CertChainFromCert
CERT_CertificateRequestTemplate DATA
CERT_CertificateTemplate DATA
CERT_CertListFromCert
CERT_ChangeCertTrust
CERT_CheckCertUsage
CERT_CheckCertValidTimes

Просмотреть файл

@ -43,6 +43,8 @@ enum StructuredCloneTags {
SCTAG_DOM_NFC_NDEF,
SCTAG_DOM_RTC_CERTIFICATE,
SCTAG_DOM_MAX
};

Просмотреть файл

@ -61,6 +61,8 @@
#ifdef MOZ_NFC
#include "mozilla/dom/MozNDEFRecord.h"
#endif // MOZ_NFC
#include "mozilla/dom/RTCCertificate.h"
#include "mozilla/dom/RTCCertificateBinding.h"
#include "mozilla/dom/StructuredClone.h"
#include "mozilla/dom/SubtleCryptoBinding.h"
#include "mozilla/ipc/BackgroundUtils.h"
@ -2547,6 +2549,25 @@ NS_DOMReadStructuredClone(JSContext* cx,
#endif
}
if (tag == SCTAG_DOM_RTC_CERTIFICATE) {
nsIGlobalObject *global = xpc::NativeGlobal(JS::CurrentGlobalOrNull(cx));
if (!global) {
return nullptr;
}
// Prevent the return value from being trashed by a GC during ~nsRefPtr.
JS::Rooted<JSObject*> result(cx);
{
nsRefPtr<RTCCertificate> cert = new RTCCertificate(global);
if (!cert->ReadStructuredClone(reader)) {
result = nullptr;
} else {
result = cert->WrapObject(cx, nullptr);
}
}
return result;
}
// Don't know what this is. Bail.
xpc::Throw(cx, NS_ERROR_DOM_DATA_CLONE_ERR);
return nullptr;
@ -2571,6 +2592,13 @@ NS_DOMWriteStructuredClone(JSContext* cx,
key->WriteStructuredClone(writer);
}
// Handle WebRTC Certificate cloning
RTCCertificate* cert;
if (NS_SUCCEEDED(UNWRAP_OBJECT(RTCCertificate, obj, cert))) {
return JS_WriteUint32Pair(writer, SCTAG_DOM_RTC_CERTIFICATE, 0) &&
cert->WriteStructuredClone(writer);
}
if (xpc::IsReflector(obj)) {
nsCOMPtr<nsISupports> base = xpc::UnwrapReflectorToISupports(obj);
nsCOMPtr<nsIPrincipal> principal = do_QueryInterface(base);

Просмотреть файл

@ -161,15 +161,21 @@ ReadBuffer(JSStructuredCloneReader* aReader, CryptoBuffer& aBuffer)
}
inline bool
WriteBuffer(JSStructuredCloneWriter* aWriter, const CryptoBuffer& aBuffer)
WriteBuffer(JSStructuredCloneWriter* aWriter, const uint8_t* aBuffer, size_t aLength)
{
bool ret = JS_WriteUint32Pair(aWriter, aBuffer.Length(), 0);
if (ret && aBuffer.Length() > 0) {
ret = JS_WriteBytes(aWriter, aBuffer.Elements(), aBuffer.Length());
bool ret = JS_WriteUint32Pair(aWriter, aLength, 0);
if (ret && aLength > 0) {
ret = JS_WriteBytes(aWriter, aBuffer, aLength);
}
return ret;
}
inline bool
WriteBuffer(JSStructuredCloneWriter* aWriter, const CryptoBuffer& aBuffer)
{
return WriteBuffer(aWriter, aBuffer.Elements(), aBuffer.Length());
}
inline CK_MECHANISM_TYPE
MapAlgorithmNameToMechanism(const nsString& aName)
{

Просмотреть файл

@ -2163,251 +2163,239 @@ private:
}
};
class GenerateAsymmetricKeyTask : public WebCryptoTask
GenerateAsymmetricKeyTask::GenerateAsymmetricKeyTask(
JSContext* aCx, const ObjectOrString& aAlgorithm, bool aExtractable,
const Sequence<nsString>& aKeyUsages)
{
public:
GenerateAsymmetricKeyTask(JSContext* aCx,
const ObjectOrString& aAlgorithm, bool aExtractable,
const Sequence<nsString>& aKeyUsages)
{
nsIGlobalObject* global = xpc::NativeGlobal(JS::CurrentGlobalOrNull(aCx));
if (!global) {
mEarlyRv = NS_ERROR_DOM_UNKNOWN_ERR;
return;
}
nsIGlobalObject* global = xpc::NativeGlobal(JS::CurrentGlobalOrNull(aCx));
if (!global) {
mEarlyRv = NS_ERROR_DOM_UNKNOWN_ERR;
return;
}
mArena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
if (!mArena) {
mEarlyRv = NS_ERROR_DOM_UNKNOWN_ERR;
return;
}
mArena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
if (!mArena) {
mEarlyRv = NS_ERROR_DOM_UNKNOWN_ERR;
return;
}
// Create an empty key and set easy attributes
mKeyPair.mPrivateKey = new CryptoKey(global);
mKeyPair.mPublicKey = new CryptoKey(global);
// Create an empty key and set easy attributes
mKeyPair.mPrivateKey = new CryptoKey(global);
mKeyPair.mPublicKey = new CryptoKey(global);
// Extract algorithm name
nsString algName;
mEarlyRv = GetAlgorithmName(aCx, aAlgorithm, algName);
// Extract algorithm name
mEarlyRv = GetAlgorithmName(aCx, aAlgorithm, mAlgName);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
// Construct an appropriate KeyAlorithm
uint32_t privateAllowedUsages = 0, publicAllowedUsages = 0;
if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_RSASSA_PKCS1) ||
mAlgName.EqualsLiteral(WEBCRYPTO_ALG_RSA_OAEP)) {
RootedDictionary<RsaHashedKeyGenParams> params(aCx);
mEarlyRv = Coerce(aCx, params, aAlgorithm);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
// Construct an appropriate KeyAlorithm
uint32_t privateAllowedUsages = 0, publicAllowedUsages = 0;
if (algName.EqualsLiteral(WEBCRYPTO_ALG_RSASSA_PKCS1) ||
algName.EqualsLiteral(WEBCRYPTO_ALG_RSA_OAEP)) {
RootedDictionary<RsaHashedKeyGenParams> params(aCx);
mEarlyRv = Coerce(aCx, params, aAlgorithm);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
// Pull relevant info
uint32_t modulusLength = params.mModulusLength;
CryptoBuffer publicExponent;
ATTEMPT_BUFFER_INIT(publicExponent, params.mPublicExponent);
nsString hashName;
mEarlyRv = GetAlgorithmName(aCx, params.mHash, hashName);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
// Pull relevant info
uint32_t modulusLength = params.mModulusLength;
CryptoBuffer publicExponent;
ATTEMPT_BUFFER_INIT(publicExponent, params.mPublicExponent);
nsString hashName;
mEarlyRv = GetAlgorithmName(aCx, params.mHash, hashName);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
// Create algorithm
if (!mKeyPair.mPublicKey.get()->Algorithm().MakeRsa(mAlgName,
modulusLength,
publicExponent,
hashName)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
if (!mKeyPair.mPrivateKey.get()->Algorithm().MakeRsa(mAlgName,
modulusLength,
publicExponent,
hashName)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
mMechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;
// Create algorithm
if (!mKeyPair.mPublicKey.get()->Algorithm().MakeRsa(algName,
modulusLength,
publicExponent,
hashName)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
if (!mKeyPair.mPrivateKey.get()->Algorithm().MakeRsa(algName,
modulusLength,
publicExponent,
hashName)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
mMechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;
// Set up params struct
mRsaParams.keySizeInBits = modulusLength;
bool converted = publicExponent.GetBigIntValue(mRsaParams.pe);
if (!converted) {
mEarlyRv = NS_ERROR_DOM_INVALID_ACCESS_ERR;
return;
}
} else if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_ECDH) ||
mAlgName.EqualsLiteral(WEBCRYPTO_ALG_ECDSA)) {
RootedDictionary<EcKeyGenParams> params(aCx);
mEarlyRv = Coerce(aCx, params, aAlgorithm);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
// Set up params struct
mRsaParams.keySizeInBits = modulusLength;
bool converted = publicExponent.GetBigIntValue(mRsaParams.pe);
if (!converted) {
mEarlyRv = NS_ERROR_DOM_INVALID_ACCESS_ERR;
return;
}
} else if (algName.EqualsLiteral(WEBCRYPTO_ALG_ECDH) ||
algName.EqualsLiteral(WEBCRYPTO_ALG_ECDSA)) {
RootedDictionary<EcKeyGenParams> params(aCx);
mEarlyRv = Coerce(aCx, params, aAlgorithm);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
if (!NormalizeToken(params.mNamedCurve, mNamedCurve)) {
mEarlyRv = NS_ERROR_DOM_NOT_SUPPORTED_ERR;
return;
}
// Create algorithm.
mKeyPair.mPublicKey.get()->Algorithm().MakeEc(algName, mNamedCurve);
mKeyPair.mPrivateKey.get()->Algorithm().MakeEc(algName, mNamedCurve);
mMechanism = CKM_EC_KEY_PAIR_GEN;
} else if (algName.EqualsLiteral(WEBCRYPTO_ALG_DH)) {
RootedDictionary<DhKeyGenParams> params(aCx);
mEarlyRv = Coerce(aCx, params, aAlgorithm);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
CryptoBuffer prime;
ATTEMPT_BUFFER_INIT(prime, params.mPrime);
CryptoBuffer generator;
ATTEMPT_BUFFER_INIT(generator, params.mGenerator);
// Set up params.
if (!prime.ToSECItem(mArena, &mDhParams.prime) ||
!generator.ToSECItem(mArena, &mDhParams.base)) {
mEarlyRv = NS_ERROR_DOM_UNKNOWN_ERR;
return;
}
// Create algorithm.
if (!mKeyPair.mPublicKey.get()->Algorithm().MakeDh(algName,
prime,
generator)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
if (!mKeyPair.mPrivateKey.get()->Algorithm().MakeDh(algName,
prime,
generator)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
mMechanism = CKM_DH_PKCS_KEY_PAIR_GEN;
} else {
if (!NormalizeToken(params.mNamedCurve, mNamedCurve)) {
mEarlyRv = NS_ERROR_DOM_NOT_SUPPORTED_ERR;
return;
}
// Set key usages.
if (algName.EqualsLiteral(WEBCRYPTO_ALG_RSASSA_PKCS1) ||
algName.EqualsLiteral(WEBCRYPTO_ALG_ECDSA)) {
privateAllowedUsages = CryptoKey::SIGN;
publicAllowedUsages = CryptoKey::VERIFY;
} else if (algName.EqualsLiteral(WEBCRYPTO_ALG_RSA_OAEP)) {
privateAllowedUsages = CryptoKey::DECRYPT | CryptoKey::UNWRAPKEY;
publicAllowedUsages = CryptoKey::ENCRYPT | CryptoKey::WRAPKEY;
} else if (algName.EqualsLiteral(WEBCRYPTO_ALG_ECDH) ||
algName.EqualsLiteral(WEBCRYPTO_ALG_DH)) {
privateAllowedUsages = CryptoKey::DERIVEKEY | CryptoKey::DERIVEBITS;
publicAllowedUsages = 0;
// Create algorithm.
mKeyPair.mPublicKey.get()->Algorithm().MakeEc(mAlgName, mNamedCurve);
mKeyPair.mPrivateKey.get()->Algorithm().MakeEc(mAlgName, mNamedCurve);
mMechanism = CKM_EC_KEY_PAIR_GEN;
} else if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_DH)) {
RootedDictionary<DhKeyGenParams> params(aCx);
mEarlyRv = Coerce(aCx, params, aAlgorithm);
if (NS_FAILED(mEarlyRv)) {
mEarlyRv = NS_ERROR_DOM_SYNTAX_ERR;
return;
}
mKeyPair.mPrivateKey.get()->SetExtractable(aExtractable);
mKeyPair.mPrivateKey.get()->SetType(CryptoKey::PRIVATE);
CryptoBuffer prime;
ATTEMPT_BUFFER_INIT(prime, params.mPrime);
mKeyPair.mPublicKey.get()->SetExtractable(true);
mKeyPair.mPublicKey.get()->SetType(CryptoKey::PUBLIC);
CryptoBuffer generator;
ATTEMPT_BUFFER_INIT(generator, params.mGenerator);
mKeyPair.mPrivateKey.get()->ClearUsages();
mKeyPair.mPublicKey.get()->ClearUsages();
for (uint32_t i=0; i < aKeyUsages.Length(); ++i) {
mEarlyRv = mKeyPair.mPrivateKey.get()->AddUsageIntersecting(aKeyUsages[i],
privateAllowedUsages);
if (NS_FAILED(mEarlyRv)) {
return;
}
mEarlyRv = mKeyPair.mPublicKey.get()->AddUsageIntersecting(aKeyUsages[i],
publicAllowedUsages);
if (NS_FAILED(mEarlyRv)) {
return;
}
// Set up params.
if (!prime.ToSECItem(mArena, &mDhParams.prime) ||
!generator.ToSECItem(mArena, &mDhParams.base)) {
mEarlyRv = NS_ERROR_DOM_UNKNOWN_ERR;
return;
}
// If no usages ended up being allowed, DataError
if (!mKeyPair.mPublicKey.get()->HasAnyUsage() &&
!mKeyPair.mPrivateKey.get()->HasAnyUsage()) {
mEarlyRv = NS_ERROR_DOM_DATA_ERR;
// Create algorithm.
if (!mKeyPair.mPublicKey.get()->Algorithm().MakeDh(mAlgName,
prime,
generator)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
if (!mKeyPair.mPrivateKey.get()->Algorithm().MakeDh(mAlgName,
prime,
generator)) {
mEarlyRv = NS_ERROR_DOM_OPERATION_ERR;
return;
}
mMechanism = CKM_DH_PKCS_KEY_PAIR_GEN;
} else {
mEarlyRv = NS_ERROR_DOM_NOT_SUPPORTED_ERR;
return;
}
// Set key usages.
if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_RSASSA_PKCS1) ||
mAlgName.EqualsLiteral(WEBCRYPTO_ALG_ECDSA)) {
privateAllowedUsages = CryptoKey::SIGN;
publicAllowedUsages = CryptoKey::VERIFY;
} else if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_RSA_OAEP)) {
privateAllowedUsages = CryptoKey::DECRYPT | CryptoKey::UNWRAPKEY;
publicAllowedUsages = CryptoKey::ENCRYPT | CryptoKey::WRAPKEY;
} else if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_ECDH) ||
mAlgName.EqualsLiteral(WEBCRYPTO_ALG_DH)) {
privateAllowedUsages = CryptoKey::DERIVEKEY | CryptoKey::DERIVEBITS;
publicAllowedUsages = 0;
}
mKeyPair.mPrivateKey.get()->SetExtractable(aExtractable);
mKeyPair.mPrivateKey.get()->SetType(CryptoKey::PRIVATE);
mKeyPair.mPublicKey.get()->SetExtractable(true);
mKeyPair.mPublicKey.get()->SetType(CryptoKey::PUBLIC);
mKeyPair.mPrivateKey.get()->ClearUsages();
mKeyPair.mPublicKey.get()->ClearUsages();
for (uint32_t i=0; i < aKeyUsages.Length(); ++i) {
mEarlyRv = mKeyPair.mPrivateKey.get()->AddUsageIntersecting(aKeyUsages[i],
privateAllowedUsages);
if (NS_FAILED(mEarlyRv)) {
return;
}
mEarlyRv = mKeyPair.mPublicKey.get()->AddUsageIntersecting(aKeyUsages[i],
publicAllowedUsages);
if (NS_FAILED(mEarlyRv)) {
return;
}
}
private:
ScopedPLArenaPool mArena;
CryptoKeyPair mKeyPair;
CK_MECHANISM_TYPE mMechanism;
PK11RSAGenParams mRsaParams;
SECKEYDHParams mDhParams;
ScopedSECKEYPublicKey mPublicKey;
ScopedSECKEYPrivateKey mPrivateKey;
nsString mNamedCurve;
virtual void ReleaseNSSResources() override
{
mPublicKey.dispose();
mPrivateKey.dispose();
// If no usages ended up being allowed, DataError
if (!mKeyPair.mPublicKey.get()->HasAnyUsage() &&
!mKeyPair.mPrivateKey.get()->HasAnyUsage()) {
mEarlyRv = NS_ERROR_DOM_DATA_ERR;
return;
}
}
virtual nsresult DoCrypto() override
{
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
MOZ_ASSERT(slot.get());
void
GenerateAsymmetricKeyTask::ReleaseNSSResources()
{
mPublicKey.dispose();
mPrivateKey.dispose();
}
void* param;
switch (mMechanism) {
case CKM_RSA_PKCS_KEY_PAIR_GEN:
param = &mRsaParams;
break;
case CKM_DH_PKCS_KEY_PAIR_GEN:
param = &mDhParams;
break;
case CKM_EC_KEY_PAIR_GEN: {
param = CreateECParamsForCurve(mNamedCurve, mArena);
if (!param) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
break;
nsresult
GenerateAsymmetricKeyTask::DoCrypto()
{
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
MOZ_ASSERT(slot.get());
void* param;
switch (mMechanism) {
case CKM_RSA_PKCS_KEY_PAIR_GEN:
param = &mRsaParams;
break;
case CKM_DH_PKCS_KEY_PAIR_GEN:
param = &mDhParams;
break;
case CKM_EC_KEY_PAIR_GEN: {
param = CreateECParamsForCurve(mNamedCurve, mArena);
if (!param) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
default:
return NS_ERROR_DOM_NOT_SUPPORTED_ERR;
break;
}
SECKEYPublicKey* pubKey = nullptr;
mPrivateKey = PK11_GenerateKeyPair(slot.get(), mMechanism, param, &pubKey,
PR_FALSE, PR_FALSE, nullptr);
mPublicKey = pubKey;
if (!mPrivateKey.get() || !mPublicKey.get()) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
mKeyPair.mPrivateKey.get()->SetPrivateKey(mPrivateKey);
mKeyPair.mPublicKey.get()->SetPublicKey(mPublicKey);
// PK11_GenerateKeyPair() does not set a CKA_EC_POINT attribute on the
// private key, we need this later when exporting to PKCS8 and JWK though.
if (mMechanism == CKM_EC_KEY_PAIR_GEN) {
nsresult rv = mKeyPair.mPrivateKey->AddPublicKeyData(mPublicKey);
NS_ENSURE_SUCCESS(rv, NS_ERROR_DOM_OPERATION_ERR);
}
return NS_OK;
default:
return NS_ERROR_DOM_NOT_SUPPORTED_ERR;
}
virtual void Resolve() override
{
mResultPromise->MaybeResolve(mKeyPair);
SECKEYPublicKey* pubKey = nullptr;
mPrivateKey = PK11_GenerateKeyPair(slot.get(), mMechanism, param, &pubKey,
PR_FALSE, PR_FALSE, nullptr);
mPublicKey = pubKey;
if (!mPrivateKey.get() || !mPublicKey.get()) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
};
mKeyPair.mPrivateKey.get()->SetPrivateKey(mPrivateKey);
mKeyPair.mPublicKey.get()->SetPublicKey(mPublicKey);
// PK11_GenerateKeyPair() does not set a CKA_EC_POINT attribute on the
// private key, we need this later when exporting to PKCS8 and JWK though.
if (mMechanism == CKM_EC_KEY_PAIR_GEN) {
nsresult rv = mKeyPair.mPrivateKey->AddPublicKeyData(mPublicKey);
NS_ENSURE_SUCCESS(rv, NS_ERROR_DOM_OPERATION_ERR);
}
return NS_OK;
}
void
GenerateAsymmetricKeyTask::Resolve()
{
mResultPromise->MaybeResolve(mKeyPair);
}
class DerivePbkdfBitsTask : public ReturnArrayBufferViewTask
{

Просмотреть файл

@ -205,6 +205,31 @@ protected:
virtual void CallCallback(nsresult rv) override final;
};
// XXX This class is declared here (unlike others) to enable reuse by WebRTC.
class GenerateAsymmetricKeyTask : public WebCryptoTask
{
public:
GenerateAsymmetricKeyTask(JSContext* aCx,
const ObjectOrString& aAlgorithm, bool aExtractable,
const Sequence<nsString>& aKeyUsages);
protected:
ScopedPLArenaPool mArena;
CryptoKeyPair mKeyPair;
nsString mAlgName;
CK_MECHANISM_TYPE mMechanism;
PK11RSAGenParams mRsaParams;
SECKEYDHParams mDhParams;
nsString mNamedCurve;
virtual void ReleaseNSSResources() override;
virtual nsresult DoCrypto() override;
virtual void Resolve() override;
private:
ScopedSECKEYPublicKey mPublicKey;
ScopedSECKEYPrivateKey mPrivateKey;
};
} // namespace dom
} // namespace mozilla

Просмотреть файл

@ -0,0 +1,443 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/RTCCertificate.h"
#include <cmath>
#include "cert.h"
#include "jsapi.h"
#include "mozilla/dom/CryptoKey.h"
#include "mozilla/dom/RTCCertificateBinding.h"
#include "mozilla/dom/WebCryptoCommon.h"
#include "mozilla/dom/WebCryptoTask.h"
#include <cstdio>
namespace mozilla {
namespace dom {
#define RTCCERTIFICATE_SC_VERSION 0x00000001
NS_IMPL_CYCLE_COLLECTION_WRAPPERCACHE(RTCCertificate, mGlobal)
NS_IMPL_CYCLE_COLLECTING_ADDREF(RTCCertificate)
NS_IMPL_CYCLE_COLLECTING_RELEASE(RTCCertificate)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(RTCCertificate)
NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
// Note: explicit casts necessary to avoid
// warning C4307: '*' : integral constant overflow
#define ONE_DAY PRTime(PR_USEC_PER_SEC) * PRTime(60) /*sec*/ \
* PRTime(60) /*min*/ * PRTime(24) /*hours*/
#define EXPIRATION_DEFAULT ONE_DAY * PRTime(30)
#define EXPIRATION_SLACK ONE_DAY
#define EXPIRATION_MAX ONE_DAY * PRTime(365) /*year*/
const size_t RTCCertificateCommonNameLength = 16;
const size_t RTCCertificateMinRsaSize = 1024;
class GenerateRTCCertificateTask : public GenerateAsymmetricKeyTask
{
public:
GenerateRTCCertificateTask(JSContext* aCx, const ObjectOrString& aAlgorithm,
const Sequence<nsString>& aKeyUsages)
: GenerateAsymmetricKeyTask(aCx, aAlgorithm, true, aKeyUsages),
mExpires(0),
mAuthType(ssl_kea_null),
mCertificate(nullptr),
mSignatureAlg(SEC_OID_UNKNOWN)
{
// Expiry is 30 days after by default.
// This is a sort of arbitrary range designed to be valid
// now with some slack in case the other side expects
// some before expiry.
//
mExpires = EXPIRATION_DEFAULT;
if (!aAlgorithm.IsObject()) {
return;
}
// Load the "expires" attribute from the algorithm dictionary. This is
// (currently) non-standard; it exists to support testing of certificate
// expiration, since one month is too long to wait for a test to run.
JS::Rooted<JS::Value> exp(aCx, JS::UndefinedValue());
JS::Rooted<JSObject*> jsval(aCx, aAlgorithm.GetAsObject());
bool ok = JS_GetProperty(aCx, jsval, "expires", &exp);
int64_t expval;
if (ok) {
ok = JS::ToInt64(aCx, exp, &expval);
}
if (ok && expval > 0) {
mExpires = std::min(expval, EXPIRATION_MAX);
}
}
private:
PRTime mExpires;
SSLKEAType mAuthType;
ScopedCERTCertificate mCertificate;
SECOidTag mSignatureAlg;
static CERTName* GenerateRandomName(PK11SlotInfo* aSlot)
{
uint8_t randomName[RTCCertificateCommonNameLength];
SECStatus rv = PK11_GenerateRandomOnSlot(aSlot, randomName,
sizeof(randomName));
if (rv != SECSuccess) {
return nullptr;
}
char buf[sizeof(randomName) * 2 + 4];
PL_strncpy(buf, "CN=", 3);
for (size_t i = 0; i < sizeof(randomName); ++i) {
PR_snprintf(&buf[i * 2 + 3], 2, "%.2x", randomName[i]);
}
buf[sizeof(buf) - 1] = '\0';
return CERT_AsciiToName(buf);
}
nsresult GenerateCertificate()
{
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
MOZ_ASSERT(slot.get());
ScopedCERTName subjectName(GenerateRandomName(slot.get()));
if (!subjectName) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
ScopedSECKEYPublicKey publicKey(mKeyPair.mPublicKey.get()->GetPublicKey());
ScopedCERTSubjectPublicKeyInfo spki(
SECKEY_CreateSubjectPublicKeyInfo(publicKey));
if (!spki) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
ScopedCERTCertificateRequest certreq(
CERT_CreateCertificateRequest(subjectName, spki, nullptr));
if (!certreq) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
PRTime now = PR_Now();
PRTime notBefore = now - EXPIRATION_SLACK;
mExpires += now;
ScopedCERTValidity validity(CERT_CreateValidity(notBefore, mExpires));
if (!validity) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
unsigned long serial;
// Note: This serial in principle could collide, but it's unlikely, and we
// don't expect anyone to be validating certificates anyway.
SECStatus rv =
PK11_GenerateRandomOnSlot(slot,
reinterpret_cast<unsigned char *>(&serial),
sizeof(serial));
if (rv != SECSuccess) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
CERTCertificate* cert = CERT_CreateCertificate(serial, subjectName,
validity, certreq);
if (!cert) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
mCertificate.reset(cert);
return NS_OK;
}
nsresult SignCertificate()
{
MOZ_ASSERT(mSignatureAlg != SEC_OID_UNKNOWN);
PLArenaPool *arena = mCertificate->arena;
SECStatus rv = SECOID_SetAlgorithmID(arena, &mCertificate->signature,
mSignatureAlg, nullptr);
if (rv != SECSuccess) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
// Set version to X509v3.
*(mCertificate->version.data) = SEC_CERTIFICATE_VERSION_3;
mCertificate->version.len = 1;
SECItem innerDER = { siBuffer, nullptr, 0 };
if (!SEC_ASN1EncodeItem(arena, &innerDER, mCertificate,
SEC_ASN1_GET(CERT_CertificateTemplate))) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
SECItem *signedCert = PORT_ArenaZNew(arena, SECItem);
if (!signedCert) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
ScopedSECKEYPrivateKey privateKey(mKeyPair.mPrivateKey.get()->GetPrivateKey());
rv = SEC_DerSignData(arena, signedCert, innerDER.data, innerDER.len,
privateKey, mSignatureAlg);
if (rv != SECSuccess) {
return NS_ERROR_DOM_UNKNOWN_ERR;
}
mCertificate->derCert = *signedCert;
return NS_OK;
}
nsresult BeforeCrypto() override
{
if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_RSASSA_PKCS1)) {
// Double check that size is OK.
auto sz = static_cast<size_t>(mRsaParams.keySizeInBits);
if (sz < RTCCertificateMinRsaSize) {
return NS_ERROR_DOM_NOT_SUPPORTED_ERR;
}
mSignatureAlg = SEC_OID_PKCS1_SHA1_WITH_RSA_ENCRYPTION;
mAuthType = ssl_kea_rsa;
} else if (mAlgName.EqualsLiteral(WEBCRYPTO_ALG_ECDSA)) {
// We only support good curves in WebCrypto.
// If that ever changes, check that a good one was chosen.
mSignatureAlg = SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE;
mAuthType = ssl_kea_ecdh;
} else {
return NS_ERROR_DOM_NOT_SUPPORTED_ERR;
}
return NS_OK;
}
nsresult DoCrypto() override
{
nsresult rv = GenerateAsymmetricKeyTask::DoCrypto();
NS_ENSURE_SUCCESS(rv, rv);
rv = GenerateCertificate();
NS_ENSURE_SUCCESS(rv, rv);
rv = SignCertificate();
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
virtual void Resolve() override
{
// Make copies of the private key and certificate, otherwise, when this
// object is deleted, the structures they reference will be deleted too.
SECKEYPrivateKey* key = mKeyPair.mPrivateKey.get()->GetPrivateKey();
CERTCertificate* cert = CERT_DupCertificate(mCertificate);
nsRefPtr<RTCCertificate> result =
new RTCCertificate(mResultPromise->GetParentObject(),
key, cert, mAuthType, mExpires);
mResultPromise->MaybeResolve(result);
}
};
already_AddRefed<Promise>
RTCCertificate::GenerateCertificate(
const GlobalObject& aGlobal, const ObjectOrString& aKeygenAlgorithm,
ErrorResult& aRv, JSCompartment* aCompartment)
{
nsIGlobalObject* global = xpc::NativeGlobal(aGlobal.Get());
nsRefPtr<Promise> p = Promise::Create(global, aRv);
if (aRv.Failed()) {
return nullptr;
}
Sequence<nsString> usages;
if (!usages.AppendElement(NS_LITERAL_STRING("sign"), fallible)) {
return nullptr;
}
nsRefPtr<WebCryptoTask> task =
new GenerateRTCCertificateTask(aGlobal.Context(),
aKeygenAlgorithm, usages);
task->DispatchWithPromise(p);
return p.forget();
}
RTCCertificate::RTCCertificate(nsIGlobalObject* aGlobal)
: mGlobal(aGlobal),
mPrivateKey(nullptr),
mCertificate(nullptr),
mAuthType(ssl_kea_null),
mExpires(0)
{
}
RTCCertificate::RTCCertificate(nsIGlobalObject* aGlobal,
SECKEYPrivateKey* aPrivateKey,
CERTCertificate* aCertificate,
SSLKEAType aAuthType,
PRTime aExpires)
: mGlobal(aGlobal),
mPrivateKey(aPrivateKey),
mCertificate(aCertificate),
mAuthType(aAuthType),
mExpires(aExpires)
{
}
RTCCertificate::~RTCCertificate()
{
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown()) {
return;
}
destructorSafeDestroyNSSReference();
shutdown(calledFromObject);
}
// This creates some interesting lifecycle consequences, since the DtlsIdentity
// holds NSS objects, but does not implement nsNSSShutDownObject.
// Unfortunately, the code that uses DtlsIdentity cannot always use that lock
// due to external linkage requirements. Therefore, the lock is held on this
// object instead. Consequently, the DtlsIdentity that this method returns must
// have a lifetime that is strictly shorter than the RTCCertificate.
//
// RTCPeerConnection provides this guarantee by holding a strong reference to
// the RTCCertificate. It will cleanup any DtlsIdentity instances that it
// creates before the RTCCertificate reference is released.
RefPtr<DtlsIdentity>
RTCCertificate::CreateDtlsIdentity() const
{
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown() || !mPrivateKey || !mCertificate) {
return nullptr;
}
SECKEYPrivateKey* key = SECKEY_CopyPrivateKey(mPrivateKey);
CERTCertificate* cert = CERT_DupCertificate(mCertificate);
RefPtr<DtlsIdentity> id = new DtlsIdentity(key, cert, mAuthType);
return id;
}
JSObject*
RTCCertificate::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto)
{
return RTCCertificateBinding::Wrap(aCx, this, aGivenProto);
}
void
RTCCertificate::virtualDestroyNSSReference()
{
destructorSafeDestroyNSSReference();
}
void
RTCCertificate::destructorSafeDestroyNSSReference()
{
mPrivateKey.dispose();
mCertificate.dispose();
}
bool
RTCCertificate::WritePrivateKey(JSStructuredCloneWriter* aWriter,
const nsNSSShutDownPreventionLock& aLockProof) const
{
JsonWebKey jwk;
nsresult rv = CryptoKey::PrivateKeyToJwk(mPrivateKey, jwk, aLockProof);
if (NS_FAILED(rv)) {
return false;
}
nsString json;
if (!jwk.ToJSON(json)) {
return false;
}
return WriteString(aWriter, json);
}
bool
RTCCertificate::WriteCertificate(JSStructuredCloneWriter* aWriter,
const nsNSSShutDownPreventionLock& /*proof*/) const
{
ScopedCERTCertificateList certs(CERT_CertListFromCert(mCertificate.get()));
if (!certs || certs->len <= 0) {
return false;
}
if (!JS_WriteUint32Pair(aWriter, certs->certs[0].len, 0)) {
return false;
}
return JS_WriteBytes(aWriter, certs->certs[0].data, certs->certs[0].len);
}
bool
RTCCertificate::WriteStructuredClone(JSStructuredCloneWriter* aWriter) const
{
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown() || !mPrivateKey || !mCertificate) {
return false;
}
return JS_WriteUint32Pair(aWriter, RTCCERTIFICATE_SC_VERSION, mAuthType) &&
JS_WriteUint32Pair(aWriter, (mExpires >> 32) & 0xffffffff,
mExpires & 0xffffffff) &&
WritePrivateKey(aWriter, locker) &&
WriteCertificate(aWriter, locker);
}
bool
RTCCertificate::ReadPrivateKey(JSStructuredCloneReader* aReader,
const nsNSSShutDownPreventionLock& aLockProof)
{
nsString json;
if (!ReadString(aReader, json)) {
return false;
}
JsonWebKey jwk;
if (!jwk.Init(json)) {
return false;
}
mPrivateKey = CryptoKey::PrivateKeyFromJwk(jwk, aLockProof);
return !!mPrivateKey;
}
bool
RTCCertificate::ReadCertificate(JSStructuredCloneReader* aReader,
const nsNSSShutDownPreventionLock& /*proof*/)
{
CryptoBuffer cert;
if (!ReadBuffer(aReader, cert) || cert.Length() == 0) {
return false;
}
SECItem der = { siBuffer, cert.Elements(),
static_cast<unsigned int>(cert.Length()) };
mCertificate = CERT_NewTempCertificate(CERT_GetDefaultCertDB(),
&der, nullptr, true, true);
return !!mCertificate;
}
bool
RTCCertificate::ReadStructuredClone(JSStructuredCloneReader* aReader)
{
nsNSSShutDownPreventionLock locker;
if (isAlreadyShutDown()) {
return false;
}
uint32_t version, authType;
if (!JS_ReadUint32Pair(aReader, &version, &authType) ||
version != RTCCERTIFICATE_SC_VERSION) {
return false;
}
mAuthType = static_cast<SSLKEAType>(authType);
uint32_t high, low;
if (!JS_ReadUint32Pair(aReader, &high, &low)) {
return false;
}
mExpires = static_cast<PRTime>(high) << 32 | low;
return ReadPrivateKey(aReader, locker) &&
ReadCertificate(aReader, locker);
}
} // namespace dom
} // namespace mozilla

Просмотреть файл

@ -0,0 +1,95 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_dom_RTCCertificate_h
#define mozilla_dom_RTCCertificate_h
#include "nsCycleCollectionParticipant.h"
#include "nsWrapperCache.h"
#include "nsIGlobalObject.h"
#include "nsNSSShutDown.h"
#include "prtime.h"
#include "sslt.h"
#include "ScopedNSSTypes.h"
#include "mozilla/ErrorResult.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/RefPtr.h"
#include "mozilla/dom/Date.h"
#include "mozilla/dom/CryptoKey.h"
#include "mtransport/dtlsidentity.h"
#include "js/StructuredClone.h"
#include "js/TypeDecls.h"
namespace mozilla {
namespace dom {
class ObjectOrString;
class RTCCertificate final
: public nsISupports,
public nsWrapperCache,
public nsNSSShutDownObject
{
public:
NS_DECL_CYCLE_COLLECTING_ISUPPORTS
NS_DECL_CYCLE_COLLECTION_SCRIPT_HOLDER_CLASS(RTCCertificate)
// WebIDL method that implements RTCPeerConnection.generateCertificate.
static already_AddRefed<Promise> GenerateCertificate(
const GlobalObject& global, const ObjectOrString& keygenAlgorithm,
ErrorResult& aRv, JSCompartment* aCompartment = nullptr);
explicit RTCCertificate(nsIGlobalObject* aGlobal);
RTCCertificate(nsIGlobalObject* aGlobal, SECKEYPrivateKey* aPrivateKey,
CERTCertificate* aCertificate, SSLKEAType aAuthType,
PRTime aExpires);
nsIGlobalObject* GetParentObject() const { return mGlobal; }
virtual JSObject* WrapObject(JSContext* aCx,
JS::Handle<JSObject*> aGivenProto) override;
// WebIDL expires attribute. Note: JS dates are milliseconds since epoch;
// NSPR PRTime is in microseconds since the same epoch.
int64_t Expires() const { return mExpires / PR_USEC_PER_MSEC; }
// Accessors for use by PeerConnectionImpl.
RefPtr<DtlsIdentity> CreateDtlsIdentity() const;
CERTCertificate* Certificate() const { return mCertificate; }
// For nsNSSShutDownObject
virtual void virtualDestroyNSSReference() override;
void destructorSafeDestroyNSSReference();
// Structured clone methods
bool WriteStructuredClone(JSStructuredCloneWriter* aWriter) const;
bool ReadStructuredClone(JSStructuredCloneReader* aReader);
private:
~RTCCertificate();
void operator=(const RTCCertificate&) = delete;
RTCCertificate(const RTCCertificate&) = delete;
bool ReadCertificate(JSStructuredCloneReader* aReader,
const nsNSSShutDownPreventionLock& /*lockproof*/);
bool ReadPrivateKey(JSStructuredCloneReader* aReader,
const nsNSSShutDownPreventionLock& aLockProof);
bool WriteCertificate(JSStructuredCloneWriter* aWriter,
const nsNSSShutDownPreventionLock& /*lockproof*/) const;
bool WritePrivateKey(JSStructuredCloneWriter* aWriter,
const nsNSSShutDownPreventionLock& aLockProof) const;
nsRefPtr<nsIGlobalObject> mGlobal;
ScopedSECKEYPrivateKey mPrivateKey;
ScopedCERTCertificate mCertificate;
SSLKEAType mAuthType;
PRTime mExpires;
};
} // namespace dom
} // namespace mozilla
#endif // mozilla_dom_RTCCertificate_h