зеркало из https://github.com/mozilla/gecko-dev.git
Bug 931915, part 1 - Add an AppendRoundedRectToPath helper to Moz2D. r=Bas
This commit is contained in:
Родитель
d3b8da349d
Коммит
9f49af5ab7
|
@ -0,0 +1,155 @@
|
|||
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
||||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||||
|
||||
#include "PathHelpers.h"
|
||||
|
||||
namespace mozilla {
|
||||
namespace gfx {
|
||||
|
||||
void
|
||||
AppendRoundedRectToPath(PathBuilder* aPathBuilder,
|
||||
const Rect& aRect,
|
||||
// paren's needed due to operator precedence:
|
||||
const Size(& aCornerRadii)[4],
|
||||
bool aDrawClockwise)
|
||||
{
|
||||
// For CW drawing, this looks like:
|
||||
//
|
||||
// ...******0** 1 C
|
||||
// ****
|
||||
// *** 2
|
||||
// **
|
||||
// *
|
||||
// *
|
||||
// 3
|
||||
// *
|
||||
// *
|
||||
//
|
||||
// Where 0, 1, 2, 3 are the control points of the Bezier curve for
|
||||
// the corner, and C is the actual corner point.
|
||||
//
|
||||
// At the start of the loop, the current point is assumed to be
|
||||
// the point adjacent to the top left corner on the top
|
||||
// horizontal. Note that corner indices start at the top left and
|
||||
// continue clockwise, whereas in our loop i = 0 refers to the top
|
||||
// right corner.
|
||||
//
|
||||
// When going CCW, the control points are swapped, and the first
|
||||
// corner that's drawn is the top left (along with the top segment).
|
||||
//
|
||||
// There is considerable latitude in how one chooses the four
|
||||
// control points for a Bezier curve approximation to an ellipse.
|
||||
// For the overall path to be continuous and show no corner at the
|
||||
// endpoints of the arc, points 0 and 3 must be at the ends of the
|
||||
// straight segments of the rectangle; points 0, 1, and C must be
|
||||
// collinear; and points 3, 2, and C must also be collinear. This
|
||||
// leaves only two free parameters: the ratio of the line segments
|
||||
// 01 and 0C, and the ratio of the line segments 32 and 3C. See
|
||||
// the following papers for extensive discussion of how to choose
|
||||
// these ratios:
|
||||
//
|
||||
// Dokken, Tor, et al. "Good approximation of circles by
|
||||
// curvature-continuous Bezier curves." Computer-Aided
|
||||
// Geometric Design 7(1990) 33--41.
|
||||
// Goldapp, Michael. "Approximation of circular arcs by cubic
|
||||
// polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
|
||||
// Maisonobe, Luc. "Drawing an elliptical arc using polylines,
|
||||
// quadratic, or cubic Bezier curves."
|
||||
// http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
|
||||
//
|
||||
// We follow the approach in section 2 of Goldapp (least-error,
|
||||
// Hermite-type approximation) and make both ratios equal to
|
||||
//
|
||||
// 2 2 + n - sqrt(2n + 28)
|
||||
// alpha = - * ---------------------
|
||||
// 3 n - 4
|
||||
//
|
||||
// where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
|
||||
//
|
||||
// This is the result of Goldapp's equation (10b) when the angle
|
||||
// swept out by the arc is pi/2, and the parameter "a-bar" is the
|
||||
// expression given immediately below equation (21).
|
||||
//
|
||||
// Using this value, the maximum radial error for a circle, as a
|
||||
// fraction of the radius, is on the order of 0.2 x 10^-3.
|
||||
// Neither Dokken nor Goldapp discusses error for a general
|
||||
// ellipse; Maisonobe does, but his choice of control points
|
||||
// follows different constraints, and Goldapp's expression for
|
||||
// 'alpha' gives much smaller radial error, even for very flat
|
||||
// ellipses, than Maisonobe's equivalent.
|
||||
//
|
||||
// For the various corners and for each axis, the sign of this
|
||||
// constant changes, or it might be 0 -- it's multiplied by the
|
||||
// appropriate multiplier from the list before using.
|
||||
|
||||
const Float alpha = Float(0.55191497064665766025);
|
||||
|
||||
typedef struct { Float a, b; } twoFloats;
|
||||
|
||||
twoFloats cwCornerMults[4] = { { -1, 0 }, // cc == clockwise
|
||||
{ 0, -1 },
|
||||
{ +1, 0 },
|
||||
{ 0, +1 } };
|
||||
twoFloats ccwCornerMults[4] = { { +1, 0 }, // ccw == counter-clockwise
|
||||
{ 0, -1 },
|
||||
{ -1, 0 },
|
||||
{ 0, +1 } };
|
||||
|
||||
twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
|
||||
|
||||
Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
|
||||
aRect.BottomRight(), aRect.BottomLeft() };
|
||||
|
||||
Point pc, p0, p1, p2, p3;
|
||||
|
||||
// The indexes of the corners:
|
||||
const int kTopLeft = 0, kTopRight = 1;
|
||||
|
||||
if (aDrawClockwise) {
|
||||
aPathBuilder->MoveTo(Point(aRect.X() + aCornerRadii[kTopLeft].width,
|
||||
aRect.Y()));
|
||||
} else {
|
||||
aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aCornerRadii[kTopRight].width,
|
||||
aRect.Y()));
|
||||
}
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
// the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
|
||||
int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);
|
||||
|
||||
// i+2 and i+3 respectively. These are used to index into the corner
|
||||
// multiplier table, and were deduced by calculating out the long form
|
||||
// of each corner and finding a pattern in the signs and values.
|
||||
int i2 = (i+2) % 4;
|
||||
int i3 = (i+3) % 4;
|
||||
|
||||
pc = cornerCoords[c];
|
||||
|
||||
if (aCornerRadii[c].width > 0.0 && aCornerRadii[c].height > 0.0) {
|
||||
p0.x = pc.x + cornerMults[i].a * aCornerRadii[c].width;
|
||||
p0.y = pc.y + cornerMults[i].b * aCornerRadii[c].height;
|
||||
|
||||
p3.x = pc.x + cornerMults[i3].a * aCornerRadii[c].width;
|
||||
p3.y = pc.y + cornerMults[i3].b * aCornerRadii[c].height;
|
||||
|
||||
p1.x = p0.x + alpha * cornerMults[i2].a * aCornerRadii[c].width;
|
||||
p1.y = p0.y + alpha * cornerMults[i2].b * aCornerRadii[c].height;
|
||||
|
||||
p2.x = p3.x - alpha * cornerMults[i3].a * aCornerRadii[c].width;
|
||||
p2.y = p3.y - alpha * cornerMults[i3].b * aCornerRadii[c].height;
|
||||
|
||||
aPathBuilder->LineTo(p0);
|
||||
aPathBuilder->BezierTo(p1, p2, p3);
|
||||
} else {
|
||||
aPathBuilder->LineTo(pc);
|
||||
}
|
||||
}
|
||||
|
||||
aPathBuilder->Close();
|
||||
}
|
||||
|
||||
} // namespace gfx
|
||||
} // namespace mozilla
|
||||
|
|
@ -81,7 +81,24 @@ void ArcToBezier(T* aSink, const Point &aOrigin, float aRadius, float aStartAngl
|
|||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
/**
|
||||
* Appends a path represending a rounded rectangle to the path being built by
|
||||
* aPathBuilder.
|
||||
*
|
||||
* aRect The rectangle to append.
|
||||
* aCornerRadii Contains the radii of the top-left, top-right, bottom-right
|
||||
* and bottom-left corners, in that order.
|
||||
* aDrawClockwise If set to true, the path will start at the left of the top
|
||||
* left edge and draw clockwise. If set to false the path will
|
||||
* start at the right of the top left edge and draw counter-
|
||||
* clockwise.
|
||||
*/
|
||||
GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder,
|
||||
const Rect& aRect,
|
||||
const Size(& aCornerRadii)[4],
|
||||
bool aDrawClockwise = true);
|
||||
|
||||
} // namespace gfx
|
||||
} // namespace mozilla
|
||||
|
||||
#endif /* MOZILLA_GFX_PATHHELPERS_H_ */
|
||||
|
|
|
@ -89,6 +89,7 @@ SOURCES += [
|
|||
'ImageScaling.cpp',
|
||||
'Matrix.cpp',
|
||||
'PathCairo.cpp',
|
||||
'PathHelpers.cpp',
|
||||
'PathRecording.cpp',
|
||||
'RecordedEvent.cpp',
|
||||
'Scale.cpp',
|
||||
|
|
Загрузка…
Ссылка в новой задаче