зеркало из https://github.com/mozilla/gecko-dev.git
Bug 1341254 - Update libspeex_resampler to 79822c. r=karlt
MozReview-Commit-ID: EDYCyjrWmz1 --HG-- extra : rebase_source : 94d87c4b911ac646e755e03dc938da57ce237aad
This commit is contained in:
Родитель
6bb696b272
Коммит
a01cea3a7b
|
@ -1,5 +1,5 @@
|
|||
This source is from the Speex DSP library
|
||||
(http://git.xiph.org/?p=speexdsp.git), from commit d60e75b2.
|
||||
(http://git.xiph.org/?p=speexdsp.git), from commit 79822c.
|
||||
|
||||
It consists in the audio resampling code (resampler.c) and its header files
|
||||
dependancies, imported into the tree using the update.sh script.
|
||||
|
|
|
@ -1,87 +0,0 @@
|
|||
diff --git a/media/libspeex_resampler/fix-overflow.patch b/media/libspeex_resampler/fix-overflow.patch
|
||||
new file mode 100644
|
||||
index 0000000..e69de29
|
||||
diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/src/resample.c
|
||||
index a3859e3..d99595a 100644
|
||||
--- a/media/libspeex_resampler/src/resample.c
|
||||
+++ b/media/libspeex_resampler/src/resample.c
|
||||
@@ -98,6 +98,10 @@ static void speex_free (void *ptr) {free(ptr);}
|
||||
#define NULL 0
|
||||
#endif
|
||||
|
||||
+#ifndef UINT32_MAX
|
||||
+#define UINT32_MAX 4294967296U
|
||||
+#endif
|
||||
+
|
||||
#include "simd_detect.h"
|
||||
|
||||
/* Numer of elements to allocate on the stack */
|
||||
@@ -603,6 +607,22 @@ static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_in
|
||||
return out_sample;
|
||||
}
|
||||
|
||||
+static int _muldiv_safe(spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div)
|
||||
+{
|
||||
+ /* TODO: Could be simplified with 64 bits operation. */
|
||||
+ spx_uint32_t major = value / div;
|
||||
+ spx_uint32_t remainder = value % div;
|
||||
+ return remainder <= UINT32_MAX / mul && major <= UINT32_MAX / mul &&
|
||||
+ major * mul <= UINT32_MAX - remainder * mul / div;
|
||||
+}
|
||||
+
|
||||
+static spx_uint32_t _muldiv(spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div)
|
||||
+{
|
||||
+ spx_uint32_t major = value / div;
|
||||
+ spx_uint32_t remainder = value % div;
|
||||
+ return remainder * mul / div + major * mul;
|
||||
+}
|
||||
+
|
||||
static int update_filter(SpeexResamplerState *st)
|
||||
{
|
||||
spx_uint32_t old_length = st->filt_len;
|
||||
@@ -620,8 +640,9 @@ static int update_filter(SpeexResamplerState *st)
|
||||
{
|
||||
/* down-sampling */
|
||||
st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
|
||||
- /* FIXME: divide the numerator and denominator by a certain amount if they're too large */
|
||||
- st->filt_len = st->filt_len*st->num_rate / st->den_rate;
|
||||
+ if (!_muldiv_safe(st->filt_len,st->num_rate,st->den_rate))
|
||||
+ goto fail;
|
||||
+ st->filt_len = _muldiv(st->filt_len,st->num_rate,st->den_rate);
|
||||
/* Round up to make sure we have a multiple of 8 for SSE */
|
||||
st->filt_len = ((st->filt_len-1)&(~0x7))+8;
|
||||
if (2*st->den_rate < st->num_rate)
|
||||
@@ -1129,7 +1150,9 @@ EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t r
|
||||
{
|
||||
for (i=0;i<st->nb_channels;i++)
|
||||
{
|
||||
- st->samp_frac_num[i]=st->samp_frac_num[i]*st->den_rate/old_den;
|
||||
+ if (!_muldiv_safe(st->samp_frac_num[i],st->den_rate,old_den))
|
||||
+ return RESAMPLER_ERR_OVERFLOW;
|
||||
+ st->samp_frac_num[i]= _muldiv(st->samp_frac_num[i],st->den_rate,old_den);
|
||||
/* Safety net */
|
||||
if (st->samp_frac_num[i] >= st->den_rate)
|
||||
st->samp_frac_num[i] = st->den_rate-1;
|
||||
diff --git a/media/libspeex_resampler/src/speex_resampler.h b/media/libspeex_resampler/src/speex_resampler.h
|
||||
index 70abe52..1286872 100644
|
||||
--- a/media/libspeex_resampler/src/speex_resampler.h
|
||||
+++ b/media/libspeex_resampler/src/speex_resampler.h
|
||||
@@ -106,7 +106,8 @@ enum {
|
||||
RESAMPLER_ERR_BAD_STATE = 2,
|
||||
RESAMPLER_ERR_INVALID_ARG = 3,
|
||||
RESAMPLER_ERR_PTR_OVERLAP = 4,
|
||||
-
|
||||
+ RESAMPLER_ERR_OVERFLOW = 5,
|
||||
+
|
||||
RESAMPLER_ERR_MAX_ERROR
|
||||
};
|
||||
|
||||
diff --git a/media/libspeex_resampler/update.sh b/media/libspeex_resampler/update.sh
|
||||
index d4a025b..6950bc6 100644
|
||||
--- a/media/libspeex_resampler/update.sh
|
||||
+++ b/media/libspeex_resampler/update.sh
|
||||
@@ -26,3 +26,4 @@ patch -p3 < set-skip-frac.patch
|
||||
patch -p3 < hugemem.patch
|
||||
patch -p3 < remove-empty-asm-clobber.patch
|
||||
patch -p3 < handle-memory-error.patch
|
||||
+patch -p3 < fix-overflow.patch
|
|
@ -1,46 +0,0 @@
|
|||
diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/src/resample.c
|
||||
index 83ad119..a3859e3 100644
|
||||
--- a/media/libspeex_resampler/src/resample.c
|
||||
+++ b/media/libspeex_resampler/src/resample.c
|
||||
@@ -811,6 +811,12 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
||||
return NULL;
|
||||
}
|
||||
st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState));
|
||||
+ if (!st)
|
||||
+ {
|
||||
+ if (err)
|
||||
+ *err = RESAMPLER_ERR_ALLOC_FAILED;
|
||||
+ return NULL;
|
||||
+ }
|
||||
st->initialised = 0;
|
||||
st->started = 0;
|
||||
st->in_rate = 0;
|
||||
@@ -832,9 +838,12 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
||||
st->buffer_size = 160;
|
||||
|
||||
/* Per channel data */
|
||||
- st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t));
|
||||
- st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t));
|
||||
- st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t));
|
||||
+ if (!(st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t))))
|
||||
+ goto fail;
|
||||
+ if (!(st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
|
||||
+ goto fail;
|
||||
+ if (!(st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
|
||||
+ goto fail;
|
||||
for (i=0;i<nb_channels;i++)
|
||||
{
|
||||
st->last_sample[i] = 0;
|
||||
@@ -857,6 +866,12 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
||||
*err = filter_err;
|
||||
|
||||
return st;
|
||||
+
|
||||
+fail:
|
||||
+ if (err)
|
||||
+ *err = RESAMPLER_ERR_ALLOC_FAILED;
|
||||
+ speex_resampler_destroy(st);
|
||||
+ return NULL;
|
||||
}
|
||||
|
||||
EXPORT void speex_resampler_destroy(SpeexResamplerState *st)
|
|
@ -2,7 +2,7 @@ diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/
|
|||
--- a/media/libspeex_resampler/src/resample.c
|
||||
+++ b/media/libspeex_resampler/src/resample.c
|
||||
@@ -56,16 +56,18 @@
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
|
||||
*/
|
||||
|
||||
|
@ -20,7 +20,7 @@ diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/
|
|||
#include "speex_resampler.h"
|
||||
#include "arch.h"
|
||||
#else /* OUTSIDE_SPEEX */
|
||||
@@ -632,25 +634,26 @@ static int update_filter(SpeexResamplerS
|
||||
@@ -643,25 +645,26 @@ static int update_filter(SpeexResamplerS
|
||||
st->oversample >>= 1;
|
||||
if (st->oversample < 1)
|
||||
st->oversample = 1;
|
||||
|
@ -28,7 +28,7 @@ diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/
|
|||
/* up-sampling */
|
||||
st->cutoff = quality_map[st->quality].upsample_bandwidth;
|
||||
}
|
||||
|
||||
|
||||
- /* Choose the resampling type that requires the least amount of memory */
|
||||
-#ifdef RESAMPLE_FULL_SINC_TABLE
|
||||
- use_direct = 1;
|
||||
|
@ -54,3 +54,4 @@ diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/
|
|||
goto fail;
|
||||
|
||||
min_sinc_table_length = st->filt_len*st->oversample+8;
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ diff --git a/media/libspeex_resampler/src/speex_resampler.h b/media/libspeex_res
|
|||
|
||||
/********* WARNING: MENTAL SANITY ENDS HERE *************/
|
||||
|
||||
/* If the resampler is defined outside of Speex, we change the symbol names so that
|
||||
/* If the resampler is defined outside of Speex, we change the symbol names so that
|
||||
there won't be any clash if linking with Speex later on. */
|
||||
|
||||
/* #define RANDOM_PREFIX your software name here */
|
||||
|
@ -26,5 +26,5 @@ diff --git a/media/libspeex_resampler/src/speex_resampler.h b/media/libspeex_res
|
|||
|
||||
#define CAT_PREFIX2(a,b) a ## b
|
||||
#define CAT_PREFIX(a,b) CAT_PREFIX2(a, b)
|
||||
|
||||
|
||||
#define speex_resampler_init CAT_PREFIX(RANDOM_PREFIX,_resampler_init)
|
||||
|
|
|
@ -1,23 +1,25 @@
|
|||
diff --git a/media/libspeex_resampler/src/resample.c b/media/libspeex_resampler/src/resample.c
|
||||
--- a/media/libspeex_resampler/src/resample.c
|
||||
+++ b/media/libspeex_resampler/src/resample.c
|
||||
@@ -1146,17 +1146,19 @@ EXPORT int speex_resampler_set_rate_frac
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1141,18 +1141,19 @@ EXPORT int speex_resampler_set_rate_frac
|
||||
|
||||
st->num_rate /= fact;
|
||||
st->den_rate /= fact;
|
||||
|
||||
if (old_den > 0)
|
||||
{
|
||||
for (i=0;i<st->nb_channels;i++)
|
||||
{
|
||||
if (!_muldiv_safe(st->samp_frac_num[i],st->den_rate,old_den))
|
||||
- if (_muldiv(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS)
|
||||
- return RESAMPLER_ERR_OVERFLOW;
|
||||
+ {
|
||||
+ st->samp_frac_num[i] = st->den_rate-1;
|
||||
+ if (_muldiv(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS) {
|
||||
+ st->samp_frac_num[i] = st->den_rate-1;
|
||||
+ }
|
||||
st->samp_frac_num[i]= _muldiv(st->samp_frac_num[i],st->den_rate,old_den);
|
||||
/* Safety net */
|
||||
if (st->samp_frac_num[i] >= st->den_rate)
|
||||
st->samp_frac_num[i] = st->den_rate-1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (st->initialised)
|
||||
return update_filter(st);
|
||||
|
|
|
@ -7,18 +7,18 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
@ -101,6 +101,8 @@ typedef spx_word32_t spx_sig_t;
|
|||
#define SIG_SHIFT 14
|
||||
#define GAIN_SHIFT 6
|
||||
|
||||
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
|
||||
|
||||
#define VERY_SMALL 0
|
||||
#define VERY_LARGE32 ((spx_word32_t)2147483647)
|
||||
#define VERY_LARGE16 ((spx_word16_t)32767)
|
||||
|
@ -203,18 +205,19 @@ typedef float spx_word32_t;
|
|||
#define DIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
|
||||
#define PDIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
|
||||
|
||||
|
||||
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : \
|
||||
((x) > 32766.5f ? 32767 : (spx_int16_t)floor(.5 + (x))))
|
||||
#endif
|
||||
|
||||
|
||||
#if defined (CONFIG_TI_C54X) || defined (CONFIG_TI_C55X)
|
||||
|
||||
/* 2 on TI C5x DSP */
|
||||
#define BYTES_PER_CHAR 2
|
||||
#define BYTES_PER_CHAR 2
|
||||
#define BITS_PER_CHAR 16
|
||||
#define LOG2_BITS_PER_CHAR 4
|
||||
|
||||
#else
|
||||
#else
|
||||
|
||||
#define BYTES_PER_CHAR 1
|
||||
#define BITS_PER_CHAR 8
|
||||
|
|
|
@ -7,18 +7,18 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
/* Copyright (C) 2007-2008 Jean-Marc Valin
|
||||
Copyright (C) 2008 Thorvald Natvig
|
||||
|
||||
|
||||
File: resample.c
|
||||
Arbitrary resampling code
|
||||
|
||||
|
@ -38,22 +38,22 @@
|
|||
- Low memory requirement
|
||||
- Good *perceptual* quality (and not best SNR)
|
||||
|
||||
Warning: This resampler is relatively new. Although I think I got rid of
|
||||
Warning: This resampler is relatively new. Although I think I got rid of
|
||||
all the major bugs and I don't expect the API to change anymore, there
|
||||
may be something I've missed. So use with caution.
|
||||
|
||||
This algorithm is based on this original resampling algorithm:
|
||||
Smith, Julius O. Digital Audio Resampling Home Page
|
||||
Center for Computer Research in Music and Acoustics (CCRMA),
|
||||
Center for Computer Research in Music and Acoustics (CCRMA),
|
||||
Stanford University, 2007.
|
||||
Web published at http://www-ccrma.stanford.edu/~jos/resample/.
|
||||
Web published at http://ccrma.stanford.edu/~jos/resample/.
|
||||
|
||||
There is one main difference, though. This resampler uses cubic
|
||||
There is one main difference, though. This resampler uses cubic
|
||||
interpolation instead of linear interpolation in the above paper. This
|
||||
makes the table much smaller and makes it possible to compute that table
|
||||
on a per-stream basis. In turn, being able to tweak the table for each
|
||||
stream makes it possible to both reduce complexity on simple ratios
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
on a per-stream basis. In turn, being able to tweak the table for each
|
||||
stream makes it possible to both reduce complexity on simple ratios
|
||||
(e.g. 2/3), and get rid of the rounding operations in the inner loop.
|
||||
The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
|
||||
*/
|
||||
|
||||
|
@ -85,12 +85,6 @@ static void speex_free (void *ptr) {free(ptr);}
|
|||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
|
||||
#else
|
||||
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
|
||||
#endif
|
||||
|
||||
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
|
||||
#define IMIN(a,b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
|
@ -118,7 +112,7 @@ struct SpeexResamplerState_ {
|
|||
spx_uint32_t out_rate;
|
||||
spx_uint32_t num_rate;
|
||||
spx_uint32_t den_rate;
|
||||
|
||||
|
||||
int quality;
|
||||
spx_uint32_t nb_channels;
|
||||
spx_uint32_t filt_len;
|
||||
|
@ -130,17 +124,17 @@ struct SpeexResamplerState_ {
|
|||
spx_uint32_t oversample;
|
||||
int initialised;
|
||||
int started;
|
||||
|
||||
|
||||
/* These are per-channel */
|
||||
spx_int32_t *last_sample;
|
||||
spx_uint32_t *samp_frac_num;
|
||||
spx_uint32_t *magic_samples;
|
||||
|
||||
|
||||
spx_word16_t *mem;
|
||||
spx_word16_t *sinc_table;
|
||||
spx_uint32_t sinc_table_length;
|
||||
resampler_basic_func resampler_ptr;
|
||||
|
||||
|
||||
int in_stride;
|
||||
int out_stride;
|
||||
} ;
|
||||
|
@ -182,7 +176,7 @@ static const double kaiser8_table[36] = {
|
|||
0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
|
||||
0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
|
||||
0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
|
||||
|
||||
|
||||
static const double kaiser6_table[36] = {
|
||||
0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
|
||||
0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
|
||||
|
@ -195,7 +189,7 @@ struct FuncDef {
|
|||
const double *table;
|
||||
int oversample;
|
||||
};
|
||||
|
||||
|
||||
static const struct FuncDef _KAISER12 = {kaiser12_table, 64};
|
||||
#define KAISER12 (&_KAISER12)
|
||||
/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
|
||||
|
@ -217,7 +211,7 @@ struct QualityMapping {
|
|||
|
||||
|
||||
/* This table maps conversion quality to internal parameters. There are two
|
||||
reasons that explain why the up-sampling bandwidth is larger than the
|
||||
reasons that explain why the up-sampling bandwidth is larger than the
|
||||
down-sampling bandwidth:
|
||||
1) When up-sampling, we can assume that the spectrum is already attenuated
|
||||
close to the Nyquist rate (from an A/D or a previous resampling filter)
|
||||
|
@ -243,7 +237,7 @@ static double compute_func(float x, const struct FuncDef *func)
|
|||
{
|
||||
float y, frac;
|
||||
double interp[4];
|
||||
int ind;
|
||||
int ind;
|
||||
y = x*func->oversample;
|
||||
ind = (int)floor(y);
|
||||
frac = (y-ind);
|
||||
|
@ -254,7 +248,7 @@ static double compute_func(float x, const struct FuncDef *func)
|
|||
interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac);
|
||||
/* Just to make sure we don't have rounding problems */
|
||||
interp[1] = 1.f-interp[3]-interp[2]-interp[0];
|
||||
|
||||
|
||||
/*sum = frac*accum[1] + (1-frac)*accum[2];*/
|
||||
return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
|
||||
}
|
||||
|
@ -493,7 +487,7 @@ static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint3
|
|||
sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
out[out_stride * out_sample++] = sum;
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
|
@ -559,7 +553,7 @@ static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint3
|
|||
sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
out[out_stride * out_sample++] = PSHR32(sum,15);
|
||||
last_sample += int_advance;
|
||||
samp_frac_num += frac_advance;
|
||||
|
@ -607,20 +601,17 @@ static int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_in
|
|||
return out_sample;
|
||||
}
|
||||
|
||||
static int _muldiv_safe(spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div)
|
||||
static int _muldiv(spx_uint32_t *result, spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div)
|
||||
{
|
||||
/* TODO: Could be simplified with 64 bits operation. */
|
||||
spx_uint32_t major = value / div;
|
||||
spx_uint32_t remainder = value % div;
|
||||
return remainder <= UINT32_MAX / mul && major <= UINT32_MAX / mul &&
|
||||
major * mul <= UINT32_MAX - remainder * mul / div;
|
||||
}
|
||||
|
||||
static spx_uint32_t _muldiv(spx_uint32_t value, spx_uint32_t mul, spx_uint32_t div)
|
||||
{
|
||||
spx_uint32_t major = value / div;
|
||||
spx_uint32_t remainder = value % div;
|
||||
return remainder * mul / div + major * mul;
|
||||
speex_assert(result);
|
||||
spx_uint32_t major = value / div;
|
||||
spx_uint32_t remainder = value % div;
|
||||
/* TODO: Could use 64 bits operation to check for overflow. But only guaranteed in C99+ */
|
||||
if (remainder > UINT32_MAX / mul || major > UINT32_MAX / mul
|
||||
|| major * mul > UINT32_MAX - remainder * mul / div)
|
||||
return RESAMPLER_ERR_OVERFLOW;
|
||||
*result = remainder * mul / div + major * mul;
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
static int update_filter(SpeexResamplerState *st)
|
||||
|
@ -635,14 +626,13 @@ static int update_filter(SpeexResamplerState *st)
|
|||
st->frac_advance = st->num_rate%st->den_rate;
|
||||
st->oversample = quality_map[st->quality].oversample;
|
||||
st->filt_len = quality_map[st->quality].base_length;
|
||||
|
||||
|
||||
if (st->num_rate > st->den_rate)
|
||||
{
|
||||
/* down-sampling */
|
||||
st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
|
||||
if (!_muldiv_safe(st->filt_len,st->num_rate,st->den_rate))
|
||||
if (_muldiv(&st->filt_len,st->filt_len,st->num_rate,st->den_rate) != RESAMPLER_ERR_SUCCESS)
|
||||
goto fail;
|
||||
st->filt_len = _muldiv(st->filt_len,st->num_rate,st->den_rate);
|
||||
/* Round up to make sure we have a multiple of 8 for SSE */
|
||||
st->filt_len = ((st->filt_len-1)&(~0x7))+8;
|
||||
if (2*st->den_rate < st->num_rate)
|
||||
|
@ -659,7 +649,7 @@ static int update_filter(SpeexResamplerState *st)
|
|||
/* up-sampling */
|
||||
st->cutoff = quality_map[st->quality].upsample_bandwidth;
|
||||
}
|
||||
|
||||
|
||||
use_direct =
|
||||
#ifdef RESAMPLE_HUGEMEM
|
||||
/* Choose the direct resampler, even with higher initialization costs,
|
||||
|
@ -759,7 +749,7 @@ static int update_filter(SpeexResamplerState *st)
|
|||
/*if (st->magic_samples[i])*/
|
||||
{
|
||||
/* Try and remove the magic samples as if nothing had happened */
|
||||
|
||||
|
||||
/* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
|
||||
olen = old_length + 2*st->magic_samples[i];
|
||||
for (j=old_length-1+st->magic_samples[i];j--;)
|
||||
|
@ -825,7 +815,7 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
|||
SpeexResamplerState *st;
|
||||
int filter_err;
|
||||
|
||||
if (quality > 10 || quality < 0)
|
||||
if (nb_channels == 0 || ratio_num == 0 || ratio_den == 0 || quality > 10 || quality < 0)
|
||||
{
|
||||
if (err)
|
||||
*err = RESAMPLER_ERR_INVALID_ARG;
|
||||
|
@ -850,14 +840,14 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
|||
st->filt_len = 0;
|
||||
st->mem = 0;
|
||||
st->resampler_ptr = 0;
|
||||
|
||||
|
||||
st->cutoff = 1.f;
|
||||
st->nb_channels = nb_channels;
|
||||
st->in_stride = 1;
|
||||
st->out_stride = 1;
|
||||
|
||||
|
||||
st->buffer_size = 160;
|
||||
|
||||
|
||||
/* Per channel data */
|
||||
if (!(st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t))))
|
||||
goto fail;
|
||||
|
@ -865,12 +855,6 @@ EXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
|||
goto fail;
|
||||
if (!(st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t))))
|
||||
goto fail;
|
||||
for (i=0;i<nb_channels;i++)
|
||||
{
|
||||
st->last_sample[i] = 0;
|
||||
st->magic_samples[i] = 0;
|
||||
st->samp_frac_num[i] = 0;
|
||||
}
|
||||
|
||||
speex_resampler_set_quality(st, quality);
|
||||
speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate);
|
||||
|
@ -912,17 +896,17 @@ static int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t
|
|||
int out_sample = 0;
|
||||
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
||||
spx_uint32_t ilen;
|
||||
|
||||
|
||||
st->started = 1;
|
||||
|
||||
|
||||
/* Call the right resampler through the function ptr */
|
||||
out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len);
|
||||
|
||||
|
||||
if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
|
||||
*in_len = st->last_sample[channel_index];
|
||||
*out_len = out_sample;
|
||||
st->last_sample[channel_index] -= *in_len;
|
||||
|
||||
|
||||
ilen = *in_len;
|
||||
|
||||
for(j=0;j<N-1;++j)
|
||||
|
@ -935,11 +919,11 @@ static int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_i
|
|||
spx_uint32_t tmp_in_len = st->magic_samples[channel_index];
|
||||
spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size;
|
||||
const int N = st->filt_len;
|
||||
|
||||
|
||||
speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len);
|
||||
|
||||
st->magic_samples[channel_index] -= tmp_in_len;
|
||||
|
||||
|
||||
/* If we couldn't process all "magic" input samples, save the rest for next time */
|
||||
if (st->magic_samples[channel_index])
|
||||
{
|
||||
|
@ -965,13 +949,13 @@ EXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t c
|
|||
const spx_uint32_t xlen = st->mem_alloc_size - filt_offs;
|
||||
const int istride = st->in_stride;
|
||||
|
||||
if (st->magic_samples[channel_index])
|
||||
if (st->magic_samples[channel_index])
|
||||
olen -= speex_resampler_magic(st, channel_index, &out, olen);
|
||||
if (! st->magic_samples[channel_index]) {
|
||||
while (ilen && olen) {
|
||||
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
||||
spx_uint32_t ochunk = olen;
|
||||
|
||||
|
||||
if (in) {
|
||||
for(j=0;j<ichunk;++j)
|
||||
x[j+filt_offs]=in[j*istride];
|
||||
|
@ -1015,7 +999,7 @@ EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t cha
|
|||
#endif
|
||||
|
||||
st->out_stride = 1;
|
||||
|
||||
|
||||
while (ilen && olen) {
|
||||
spx_word16_t *y = ystack;
|
||||
spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen;
|
||||
|
@ -1052,7 +1036,7 @@ EXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t cha
|
|||
#else
|
||||
out[j*ostride_save] = WORD2INT(ystack[j]);
|
||||
#endif
|
||||
|
||||
|
||||
ilen -= ichunk;
|
||||
olen -= ochunk;
|
||||
out += (ochunk+omagic) * ostride_save;
|
||||
|
@ -1088,7 +1072,7 @@ EXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, co
|
|||
st->out_stride = ostride_save;
|
||||
return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
EXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len)
|
||||
{
|
||||
spx_uint32_t i;
|
||||
|
@ -1123,44 +1107,54 @@ EXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_r
|
|||
*out_rate = st->out_rate;
|
||||
}
|
||||
|
||||
static inline spx_uint32_t _gcd(spx_uint32_t a, spx_uint32_t b)
|
||||
{
|
||||
while (b != 0)
|
||||
{
|
||||
spx_uint32_t temp = a;
|
||||
|
||||
a = b;
|
||||
b = temp % b;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
EXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
|
||||
{
|
||||
spx_uint32_t fact;
|
||||
spx_uint32_t old_den;
|
||||
spx_uint32_t i;
|
||||
|
||||
if (ratio_num == 0 || ratio_den == 0)
|
||||
return RESAMPLER_ERR_INVALID_ARG;
|
||||
|
||||
if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den)
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
|
||||
|
||||
old_den = st->den_rate;
|
||||
st->in_rate = in_rate;
|
||||
st->out_rate = out_rate;
|
||||
st->num_rate = ratio_num;
|
||||
st->den_rate = ratio_den;
|
||||
/* FIXME: This is terribly inefficient, but who cares (at least for now)? */
|
||||
for (fact=2;fact<=IMIN(st->num_rate, st->den_rate);fact++)
|
||||
{
|
||||
while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0))
|
||||
{
|
||||
st->num_rate /= fact;
|
||||
st->den_rate /= fact;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fact = _gcd (st->num_rate, st->den_rate);
|
||||
|
||||
st->num_rate /= fact;
|
||||
st->den_rate /= fact;
|
||||
|
||||
if (old_den > 0)
|
||||
{
|
||||
for (i=0;i<st->nb_channels;i++)
|
||||
{
|
||||
if (!_muldiv_safe(st->samp_frac_num[i],st->den_rate,old_den))
|
||||
{
|
||||
st->samp_frac_num[i] = st->den_rate-1;
|
||||
if (_muldiv(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS) {
|
||||
st->samp_frac_num[i] = st->den_rate-1;
|
||||
}
|
||||
st->samp_frac_num[i]= _muldiv(st->samp_frac_num[i],st->den_rate,old_den);
|
||||
/* Safety net */
|
||||
if (st->samp_frac_num[i] >= st->den_rate)
|
||||
st->samp_frac_num[i] = st->den_rate-1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (st->initialised)
|
||||
return update_filter(st);
|
||||
return RESAMPLER_ERR_SUCCESS;
|
||||
|
|
|
@ -9,18 +9,18 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
/* Copyright (C) 2007 Jean-Marc Valin
|
||||
|
||||
|
||||
File: speex_resampler.h
|
||||
Resampling code
|
||||
|
||||
|
||||
The design goals of this code are:
|
||||
- Very fast algorithm
|
||||
- Low memory requirement
|
||||
|
@ -43,7 +43,7 @@
|
|||
|
||||
/********* WARNING: MENTAL SANITY ENDS HERE *************/
|
||||
|
||||
/* If the resampler is defined outside of Speex, we change the symbol names so that
|
||||
/* If the resampler is defined outside of Speex, we change the symbol names so that
|
||||
there won't be any clash if linking with Speex later on. */
|
||||
|
||||
/* #define RANDOM_PREFIX your software name here */
|
||||
|
@ -54,7 +54,7 @@
|
|||
|
||||
#define CAT_PREFIX2(a,b) a ## b
|
||||
#define CAT_PREFIX(a,b) CAT_PREFIX2(a, b)
|
||||
|
||||
|
||||
#define speex_resampler_init CAT_PREFIX(RANDOM_PREFIX,_resampler_init)
|
||||
#define speex_resampler_init_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_init_frac)
|
||||
#define speex_resampler_destroy CAT_PREFIX(RANDOM_PREFIX,_resampler_destroy)
|
||||
|
@ -83,7 +83,9 @@
|
|||
#define spx_int32_t int
|
||||
#define spx_uint16_t unsigned short
|
||||
#define spx_uint32_t unsigned int
|
||||
|
||||
|
||||
#define speex_assert(cond)
|
||||
|
||||
#else /* OUTSIDE_SPEEX */
|
||||
|
||||
#include "speexdsp_types.h"
|
||||
|
@ -123,14 +125,14 @@ typedef struct SpeexResamplerState_ SpeexResamplerState;
|
|||
* @return Newly created resampler state
|
||||
* @retval NULL Error: not enough memory
|
||||
*/
|
||||
SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
int quality,
|
||||
int *err);
|
||||
|
||||
/** Create a new resampler with fractional input/output rates. The sampling
|
||||
* rate ratio is an arbitrary rational number with both the numerator and
|
||||
/** Create a new resampler with fractional input/output rates. The sampling
|
||||
* rate ratio is an arbitrary rational number with both the numerator and
|
||||
* denominator being 32-bit integers.
|
||||
* @param nb_channels Number of channels to be processed
|
||||
* @param ratio_num Numerator of the sampling rate ratio
|
||||
|
@ -142,11 +144,11 @@ SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels,
|
|||
* @return Newly created resampler state
|
||||
* @retval NULL Error: not enough memory
|
||||
*/
|
||||
SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate,
|
||||
int quality,
|
||||
int *err);
|
||||
|
||||
|
@ -157,24 +159,24 @@ void speex_resampler_destroy(SpeexResamplerState *st);
|
|||
|
||||
/** Resample a float array. The input and output buffers must *not* overlap.
|
||||
* @param st Resampler state
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* base (0 otherwise)
|
||||
* @param in Input buffer
|
||||
* @param in_len Number of input samples in the input buffer. Returns the
|
||||
* @param in_len Number of input samples in the input buffer. Returns the
|
||||
* number of samples processed
|
||||
* @param out Output buffer
|
||||
* @param out_len Size of the output buffer. Returns the number of samples written
|
||||
*/
|
||||
int speex_resampler_process_float(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
int speex_resampler_process_float(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Resample an int array. The input and output buffers must *not* overlap.
|
||||
* @param st Resampler state
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* @param channel_index Index of the channel to process for the multi-channel
|
||||
* base (0 otherwise)
|
||||
* @param in Input buffer
|
||||
* @param in_len Number of input samples in the input buffer. Returns the number
|
||||
|
@ -182,11 +184,11 @@ int speex_resampler_process_float(SpeexResamplerState *st,
|
|||
* @param out Output buffer
|
||||
* @param out_len Size of the output buffer. Returns the number of samples written
|
||||
*/
|
||||
int speex_resampler_process_int(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
int speex_resampler_process_int(SpeexResamplerState *st,
|
||||
spx_uint32_t channel_index,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Resample an interleaved float array. The input and output buffers must *not* overlap.
|
||||
|
@ -198,10 +200,10 @@ int speex_resampler_process_int(SpeexResamplerState *st,
|
|||
* @param out_len Size of the output buffer. Returns the number of samples written.
|
||||
* This is all per-channel.
|
||||
*/
|
||||
int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
|
||||
const float *in,
|
||||
spx_uint32_t *in_len,
|
||||
float *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Resample an interleaved int array. The input and output buffers must *not* overlap.
|
||||
|
@ -213,10 +215,10 @@ int speex_resampler_process_interleaved_float(SpeexResamplerState *st,
|
|||
* @param out_len Size of the output buffer. Returns the number of samples written.
|
||||
* This is all per-channel.
|
||||
*/
|
||||
int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
|
||||
const spx_int16_t *in,
|
||||
spx_uint32_t *in_len,
|
||||
spx_int16_t *out,
|
||||
spx_uint32_t *out_len);
|
||||
|
||||
/** Set (change) the input/output sampling rates (integer value).
|
||||
|
@ -224,8 +226,8 @@ int speex_resampler_process_interleaved_int(SpeexResamplerState *st,
|
|||
* @param in_rate Input sampling rate (integer number of Hz).
|
||||
* @param out_rate Output sampling rate (integer number of Hz).
|
||||
*/
|
||||
int speex_resampler_set_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t in_rate,
|
||||
int speex_resampler_set_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate);
|
||||
|
||||
/** Get the current input/output sampling rates (integer value).
|
||||
|
@ -233,11 +235,11 @@ int speex_resampler_set_rate(SpeexResamplerState *st,
|
|||
* @param in_rate Input sampling rate (integer number of Hz) copied.
|
||||
* @param out_rate Output sampling rate (integer number of Hz) copied.
|
||||
*/
|
||||
void speex_resampler_get_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t *in_rate,
|
||||
void speex_resampler_get_rate(SpeexResamplerState *st,
|
||||
spx_uint32_t *in_rate,
|
||||
spx_uint32_t *out_rate);
|
||||
|
||||
/** Set (change) the input/output sampling rates and resampling ratio
|
||||
/** Set (change) the input/output sampling rates and resampling ratio
|
||||
* (fractional values in Hz supported).
|
||||
* @param st Resampler state
|
||||
* @param ratio_num Numerator of the sampling rate ratio
|
||||
|
@ -245,10 +247,10 @@ void speex_resampler_get_rate(SpeexResamplerState *st,
|
|||
* @param in_rate Input sampling rate rounded to the nearest integer (in Hz).
|
||||
* @param out_rate Output sampling rate rounded to the nearest integer (in Hz).
|
||||
*/
|
||||
int speex_resampler_set_rate_frac(SpeexResamplerState *st,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
int speex_resampler_set_rate_frac(SpeexResamplerState *st,
|
||||
spx_uint32_t ratio_num,
|
||||
spx_uint32_t ratio_den,
|
||||
spx_uint32_t in_rate,
|
||||
spx_uint32_t out_rate);
|
||||
|
||||
/** Get the current resampling ratio. This will be reduced to the least
|
||||
|
@ -257,52 +259,52 @@ int speex_resampler_set_rate_frac(SpeexResamplerState *st,
|
|||
* @param ratio_num Numerator of the sampling rate ratio copied
|
||||
* @param ratio_den Denominator of the sampling rate ratio copied
|
||||
*/
|
||||
void speex_resampler_get_ratio(SpeexResamplerState *st,
|
||||
spx_uint32_t *ratio_num,
|
||||
void speex_resampler_get_ratio(SpeexResamplerState *st,
|
||||
spx_uint32_t *ratio_num,
|
||||
spx_uint32_t *ratio_den);
|
||||
|
||||
/** Set (change) the conversion quality.
|
||||
* @param st Resampler state
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* quality and 10 has very high quality.
|
||||
*/
|
||||
int speex_resampler_set_quality(SpeexResamplerState *st,
|
||||
int speex_resampler_set_quality(SpeexResamplerState *st,
|
||||
int quality);
|
||||
|
||||
/** Get the conversion quality.
|
||||
* @param st Resampler state
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* @param quality Resampling quality between 0 and 10, where 0 has poor
|
||||
* quality and 10 has very high quality.
|
||||
*/
|
||||
void speex_resampler_get_quality(SpeexResamplerState *st,
|
||||
void speex_resampler_get_quality(SpeexResamplerState *st,
|
||||
int *quality);
|
||||
|
||||
/** Set (change) the input stride.
|
||||
* @param st Resampler state
|
||||
* @param stride Input stride
|
||||
*/
|
||||
void speex_resampler_set_input_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_set_input_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t stride);
|
||||
|
||||
/** Get the input stride.
|
||||
* @param st Resampler state
|
||||
* @param stride Input stride copied
|
||||
*/
|
||||
void speex_resampler_get_input_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_get_input_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t *stride);
|
||||
|
||||
/** Set (change) the output stride.
|
||||
* @param st Resampler state
|
||||
* @param stride Output stride
|
||||
*/
|
||||
void speex_resampler_set_output_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_set_output_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t stride);
|
||||
|
||||
/** Get the output stride.
|
||||
* @param st Resampler state copied
|
||||
* @param stride Output stride
|
||||
*/
|
||||
void speex_resampler_get_output_stride(SpeexResamplerState *st,
|
||||
void speex_resampler_get_output_stride(SpeexResamplerState *st,
|
||||
spx_uint32_t *stride);
|
||||
|
||||
/** Get the latency introduced by the resampler measured in input samples.
|
||||
|
@ -315,8 +317,8 @@ int speex_resampler_get_input_latency(SpeexResamplerState *st);
|
|||
*/
|
||||
int speex_resampler_get_output_latency(SpeexResamplerState *st);
|
||||
|
||||
/** Make sure that the first samples to go out of the resamplers don't have
|
||||
* leading zeros. This is only useful before starting to use a newly created
|
||||
/** Make sure that the first samples to go out of the resamplers don't have
|
||||
* leading zeros. This is only useful before starting to use a newly created
|
||||
* resampler. It is recommended to use that when resampling an audio file, as
|
||||
* it will generate a file with the same length. For real-time processing,
|
||||
* it is probably easier not to use this call (so that the output duration
|
||||
|
|
|
@ -7,18 +7,18 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
|
||||
- Neither the name of the Xiph.org Foundation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
|
@ -101,7 +101,7 @@
|
|||
#endif
|
||||
|
||||
#if defined(VAR_ARRAYS)
|
||||
#define VARDECL(var)
|
||||
#define VARDECL(var)
|
||||
#define ALLOC(var, size, type) type var[size]
|
||||
#elif defined(USE_ALLOCA)
|
||||
#define VARDECL(var) var
|
||||
|
|
|
@ -25,6 +25,4 @@ patch -p3 < simd-detect-runtime.patch
|
|||
patch -p3 < set-skip-frac.patch
|
||||
patch -p3 < hugemem.patch
|
||||
patch -p3 < remove-empty-asm-clobber.patch
|
||||
patch -p3 < handle-memory-error.patch
|
||||
patch -p3 < fix-overflow.patch
|
||||
patch -p3 < set-rate-overflow-no-return.patch
|
||||
|
|
Загрузка…
Ссылка в новой задаче