Bug 1752404 - Remove MacroAssembler-x86-shared-SIMD-unused.cpp. r=lth

Differential Revision: https://phabricator.services.mozilla.com/D137458
This commit is contained in:
Yury Delendik 2022-01-31 16:57:37 +00:00
Родитель 472075915e
Коммит a55812b188
3 изменённых файлов: 0 добавлений и 752 удалений

Просмотреть файл

@ -104,7 +104,6 @@ elif CONFIG["JS_CODEGEN_X86"] or CONFIG["JS_CODEGEN_X64"]:
"x86-shared/AssemblerBuffer-x86-shared.cpp",
"x86-shared/CodeGenerator-x86-shared.cpp",
"x86-shared/Lowering-x86-shared.cpp",
"x86-shared/MacroAssembler-x86-shared-SIMD-unused.cpp",
"x86-shared/MacroAssembler-x86-shared-SIMD.cpp",
"x86-shared/MacroAssembler-x86-shared.cpp",
"x86-shared/MoveEmitter-x86-shared.cpp",

Просмотреть файл

@ -1,627 +0,0 @@
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/MacroAssembler.h"
#include "jit/x86-shared/MacroAssembler-x86-shared.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::DebugOnly;
using mozilla::FloatingPoint;
using mozilla::Maybe;
using mozilla::SpecificNaN;
// The following routines are from the old asm.js implementation but are UNUSED
// in the wasm implementation currently. They are preserved here because it's
// sad to throw out working code. They are defined in the header file.
//
// Before using these, they should minimally be moved to
// MacroAssembler-x86-shared-SIMD.cpp, and it would be a wrong move to assume
// that they are correct according to the wasm spec.
void MacroAssemblerX86Shared::checkedConvertFloat32x4ToInt32x4(
FloatRegister src, FloatRegister dest, Register temp, Label* oolEntry,
Label* rejoin) {
// Does the conversion and jumps to the OOL entry if the result value
// is the undefined integer pattern.
static const SimdConstant InvalidResult =
SimdConstant::SplatX4(int32_t(-2147483648));
convertFloat32x4ToInt32x4(src, dest);
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Int(InvalidResult, scratch);
vpcmpeqd(Operand(dest), scratch, scratch);
// TODO (bug 1156228): If we have SSE4.1, we can use PTEST here instead of
// the two following instructions.
vmovmskps(scratch, temp);
cmp32(temp, Imm32(0));
j(Assembler::NotEqual, oolEntry);
bind(rejoin);
}
void MacroAssemblerX86Shared::oolConvertFloat32x4ToInt32x4(
FloatRegister src, Register temp, Label* rejoin, Label* onConversionError) {
static const SimdConstant Int32MaxX4 = SimdConstant::SplatX4(2147483647.f);
static const SimdConstant Int32MinX4 = SimdConstant::SplatX4(-2147483648.f);
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Float(Int32MinX4, scratch);
vcmpleps(Operand(src), scratch, scratch);
vmovmskps(scratch, temp);
cmp32(temp, Imm32(15));
j(Assembler::NotEqual, onConversionError);
asMasm().loadConstantSimd128Float(Int32MaxX4, scratch);
vcmpleps(Operand(src), scratch, scratch);
vmovmskps(scratch, temp);
cmp32(temp, Imm32(0));
j(Assembler::NotEqual, onConversionError);
jump(rejoin);
}
void MacroAssemblerX86Shared::checkedConvertFloat32x4ToUint32x4(
FloatRegister in, FloatRegister out, Register temp, FloatRegister tempF,
Label* failed) {
// Classify lane values into 4 disjoint classes:
//
// N-lanes: in <= -1.0
// A-lanes: -1.0 < in <= 0x0.ffffffp31
// B-lanes: 0x1.0p31 <= in <= 0x0.ffffffp32
// V-lanes: 0x1.0p32 <= in, or isnan(in)
//
// We need to bail out to throw a RangeError if we see any N-lanes or
// V-lanes.
//
// For A-lanes and B-lanes, we make two float -> int32 conversions:
//
// A = cvttps2dq(in)
// B = cvttps2dq(in - 0x1.0p31f)
//
// Note that the subtraction for the B computation is exact for B-lanes.
// There is no rounding, so B is the low 31 bits of the correctly converted
// result.
//
// The cvttps2dq instruction produces 0x80000000 when the input is NaN or
// out of range for a signed int32_t. This conveniently provides the missing
// high bit for B, so the desired result is A for A-lanes and A|B for
// B-lanes.
ScratchSimd128Scope scratch(asMasm());
// TODO: If the majority of lanes are A-lanes, it could be faster to compute
// A first, use vmovmskps to check for any non-A-lanes and handle them in
// ool code. OTOH, we we're wrong about the lane distribution, that would be
// slower.
// Compute B in |scratch|.
static const float Adjust = 0x80000000; // 0x1.0p31f for the benefit of MSVC.
static const SimdConstant Bias = SimdConstant::SplatX4(-Adjust);
asMasm().loadConstantSimd128Float(Bias, scratch);
packedAddFloat32(Operand(in), scratch);
convertFloat32x4ToInt32x4(scratch, scratch);
// Compute A in |out|. This is the last time we use |in| and the first time
// we use |out|, so we can tolerate if they are the same register.
convertFloat32x4ToInt32x4(in, out);
// We can identify A-lanes by the sign bits in A: Any A-lanes will be
// positive in A, and N, B, and V-lanes will be 0x80000000 in A. Compute a
// mask of non-A-lanes into |tempF|.
zeroSimd128Float(tempF);
vpcmpgtd(Operand(out), tempF, tempF);
// Clear the A-lanes in B.
bitwiseAndSimdInt(scratch, Operand(tempF), scratch);
// Compute the final result: A for A-lanes, A|B for B-lanes.
bitwiseOrSimdInt(out, Operand(scratch), out);
// We still need to filter out the V-lanes. They would show up as 0x80000000
// in both A and B. Since we cleared the valid A-lanes in B, the V-lanes are
// the remaining negative lanes in B.
vmovmskps(scratch, temp);
cmp32(temp, Imm32(0));
j(Assembler::NotEqual, failed);
}
void MacroAssemblerX86Shared::createInt32x4(Register lane0, Register lane1,
Register lane2, Register lane3,
FloatRegister dest) {
if (AssemblerX86Shared::HasSSE41()) {
vmovd(lane0, dest);
vpinsrd(1, lane1, dest, dest);
vpinsrd(2, lane2, dest, dest);
vpinsrd(3, lane3, dest, dest);
return;
}
asMasm().reserveStack(Simd128DataSize);
store32(lane0, Address(StackPointer, 0 * sizeof(int32_t)));
store32(lane1, Address(StackPointer, 1 * sizeof(int32_t)));
store32(lane2, Address(StackPointer, 2 * sizeof(int32_t)));
store32(lane3, Address(StackPointer, 3 * sizeof(int32_t)));
loadAlignedSimd128Int(Address(StackPointer, 0), dest);
asMasm().freeStack(Simd128DataSize);
}
void MacroAssemblerX86Shared::createFloat32x4(
FloatRegister lane0, FloatRegister lane1, FloatRegister lane2,
FloatRegister lane3, FloatRegister temp, FloatRegister output) {
FloatRegister lane0Copy = reusedInputSimd128Float(lane0, output);
FloatRegister lane1Copy = reusedInputSimd128Float(lane1, temp);
vunpcklps(lane3, lane1Copy, temp);
vunpcklps(lane2, lane0Copy, output);
vunpcklps(temp, output, output);
}
void MacroAssemblerX86Shared::reinterpretSimd(bool isIntegerLaneType,
FloatRegister input,
FloatRegister output) {
if (input.aliases(output)) {
return;
}
if (isIntegerLaneType) {
vmovdqa(input, output);
} else {
vmovaps(input, output);
}
}
void MacroAssemblerX86Shared::extractLaneSimdBool(FloatRegister input,
Register output,
unsigned numLanes,
unsigned lane) {
switch (numLanes) {
case 4:
extractLaneInt32x4(input, output, lane);
break;
case 8:
// Get a lane, don't bother fixing the high bits since we'll mask below.
extractLaneInt16x8(input, output, lane, SimdSign::NotApplicable);
break;
case 16:
extractLaneInt8x16(input, output, lane, SimdSign::NotApplicable);
break;
default:
MOZ_CRASH("Unhandled SIMD number of lanes");
}
// We need to generate a 0/1 value. We have 0/-1 and possibly dirty high bits.
asMasm().and32(Imm32(1), output);
}
void MacroAssemblerX86Shared::allTrueSimdBool(FloatRegister input,
Register output) {
// We know that the input lanes are boolean, so they are either 0 or -1.
// The all-true vector has all 128 bits set, no matter the lane geometry.
vpmovmskb(input, output);
cmp32(output, Imm32(0xffff));
emitSet(Assembler::Zero, output);
}
void MacroAssemblerX86Shared::anyTrueSimdBool(FloatRegister input,
Register output) {
vpmovmskb(input, output);
cmp32(output, Imm32(0x0));
emitSet(Assembler::NonZero, output);
}
void MacroAssemblerX86Shared::swizzleInt32x4(FloatRegister input,
FloatRegister output,
unsigned lanes[4]) {
uint32_t mask = MacroAssembler::ComputeShuffleMask(lanes[0], lanes[1],
lanes[2], lanes[3]);
shuffleInt32(mask, input, output);
}
// For SIMD.js
void MacroAssemblerX86Shared::oldSwizzleInt8x16(FloatRegister input,
FloatRegister output,
const Maybe<Register>& temp,
int8_t lanes[16]) {
if (AssemblerX86Shared::HasSSSE3()) {
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Int(SimdConstant::CreateX16(lanes), scratch);
FloatRegister inputCopy = reusedInputInt32x4(input, output);
vpshufb(scratch, inputCopy, output);
return;
}
// Worst-case fallback for pre-SSSE3 machines. Bounce through memory.
MOZ_ASSERT(!!temp, "needs a temp for the memory fallback");
asMasm().reserveStack(2 * Simd128DataSize);
storeAlignedSimd128Int(input, Address(StackPointer, Simd128DataSize));
for (unsigned i = 0; i < 16; i++) {
load8ZeroExtend(Address(StackPointer, Simd128DataSize + lanes[i]), *temp);
store8(*temp, Address(StackPointer, i));
}
loadAlignedSimd128Int(Address(StackPointer, 0), output);
asMasm().freeStack(2 * Simd128DataSize);
}
static inline bool LanesMatch(unsigned lanes[4], unsigned x, unsigned y,
unsigned z, unsigned w) {
return lanes[0] == x && lanes[1] == y && lanes[2] == z && lanes[3] == w;
}
void MacroAssemblerX86Shared::swizzleFloat32x4(FloatRegister input,
FloatRegister output,
unsigned lanes[4]) {
if (AssemblerX86Shared::HasSSE3()) {
if (LanesMatch(lanes, 0, 0, 2, 2)) {
vmovsldup(input, output);
return;
}
if (LanesMatch(lanes, 1, 1, 3, 3)) {
vmovshdup(input, output);
return;
}
}
// TODO Here and below, arch specific lowering could identify this pattern
// and use defineReuseInput to avoid this move (bug 1084404)
if (LanesMatch(lanes, 2, 3, 2, 3)) {
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vmovhlps(input, inputCopy, output);
return;
}
if (LanesMatch(lanes, 0, 1, 0, 1)) {
if (AssemblerX86Shared::HasSSE3() && !AssemblerX86Shared::HasAVX()) {
vmovddup(Operand(input), output);
return;
}
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vmovlhps(input, inputCopy, output);
return;
}
if (LanesMatch(lanes, 0, 0, 1, 1)) {
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vunpcklps(input, inputCopy, output);
return;
}
if (LanesMatch(lanes, 2, 2, 3, 3)) {
FloatRegister inputCopy = reusedInputSimd128Float(input, output);
vunpckhps(input, inputCopy, output);
return;
}
uint32_t x = lanes[0];
uint32_t y = lanes[1];
uint32_t z = lanes[2];
uint32_t w = lanes[3];
uint32_t mask = MacroAssembler::ComputeShuffleMask(x, y, z, w);
shuffleFloat32(mask, input, output);
}
void MacroAssemblerX86Shared::shuffleX4(FloatRegister lhs, Operand rhs,
FloatRegister out,
const Maybe<FloatRegister>& maybeTemp,
unsigned lanes[4]) {
uint32_t x = lanes[0];
uint32_t y = lanes[1];
uint32_t z = lanes[2];
uint32_t w = lanes[3];
// Check that lanes come from LHS in majority:
unsigned numLanesFromLHS = (x < 4) + (y < 4) + (z < 4) + (w < 4);
MOZ_ASSERT(numLanesFromLHS >= 2);
// When reading this method, remember that vshufps takes the two first
// inputs of the destination operand (right operand) and the two last
// inputs of the source operand (left operand).
//
// Legend for explanations:
// - L: LHS
// - R: RHS
// - T: temporary
uint32_t mask;
// If all lanes came from a single vector, we should use swizzle instead.
MOZ_ASSERT(numLanesFromLHS < 4);
// If all values stay in their lane, this is a blend.
if (AssemblerX86Shared::HasSSE41()) {
if (x % 4 == 0 && y % 4 == 1 && z % 4 == 2 && w % 4 == 3) {
vblendps(blendpsMask(x >= 4, y >= 4, z >= 4, w >= 4), rhs, lhs, out);
return;
}
}
// One element of the second, all other elements of the first
if (numLanesFromLHS == 3) {
unsigned firstMask = -1, secondMask = -1;
// register-register vmovss preserves the high lanes.
if (LanesMatch(lanes, 4, 1, 2, 3) && rhs.kind() == Operand::FPREG) {
vmovss(FloatRegister::FromCode(rhs.fpu()), lhs, out);
return;
}
// SSE4.1 vinsertps can handle any single element.
unsigned numLanesUnchanged = (x == 0) + (y == 1) + (z == 2) + (w == 3);
if (AssemblerX86Shared::HasSSE41() && numLanesUnchanged == 3) {
unsigned srcLane;
unsigned dstLane;
if (x >= 4) {
srcLane = x - 4;
dstLane = 0;
} else if (y >= 4) {
srcLane = y - 4;
dstLane = 1;
} else if (z >= 4) {
srcLane = z - 4;
dstLane = 2;
} else {
MOZ_ASSERT(w >= 4);
srcLane = w - 4;
dstLane = 3;
}
vinsertps(vinsertpsMask(srcLane, dstLane), rhs, lhs, out);
return;
}
MOZ_ASSERT(!!maybeTemp);
FloatRegister rhsCopy = *maybeTemp;
loadAlignedSimd128Float(rhs, rhsCopy);
if (x < 4 && y < 4) {
if (w >= 4) {
w %= 4;
// T = (Rw Rw Lz Lz) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(w, w, z, z);
// (Lx Ly Lz Rw) = (Lx Ly Tz Tx) = vshufps(secondMask, T, lhs, out)
secondMask = MacroAssembler::ComputeShuffleMask(x, y, 2, 0);
} else {
MOZ_ASSERT(z >= 4);
z %= 4;
// T = (Rz Rz Lw Lw) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(z, z, w, w);
// (Lx Ly Rz Lw) = (Lx Ly Tx Tz) = vshufps(secondMask, T, lhs, out)
secondMask = MacroAssembler::ComputeShuffleMask(x, y, 0, 2);
}
vshufps(firstMask, lhs, rhsCopy, rhsCopy);
vshufps(secondMask, rhsCopy, lhs, out);
return;
}
MOZ_ASSERT(z < 4 && w < 4);
if (y >= 4) {
y %= 4;
// T = (Ry Ry Lx Lx) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(y, y, x, x);
// (Lx Ry Lz Lw) = (Tz Tx Lz Lw) = vshufps(secondMask, lhs, T, out)
secondMask = MacroAssembler::ComputeShuffleMask(2, 0, z, w);
} else {
MOZ_ASSERT(x >= 4);
x %= 4;
// T = (Rx Rx Ly Ly) = vshufps(firstMask, lhs, rhs, rhsCopy)
firstMask = MacroAssembler::ComputeShuffleMask(x, x, y, y);
// (Rx Ly Lz Lw) = (Tx Tz Lz Lw) = vshufps(secondMask, lhs, T, out)
secondMask = MacroAssembler::ComputeShuffleMask(0, 2, z, w);
}
vshufps(firstMask, lhs, rhsCopy, rhsCopy);
if (AssemblerX86Shared::HasAVX()) {
vshufps(secondMask, lhs, rhsCopy, out);
} else {
vshufps(secondMask, lhs, rhsCopy, rhsCopy);
moveSimd128Float(rhsCopy, out);
}
return;
}
// Two elements from one vector, two other elements from the other
MOZ_ASSERT(numLanesFromLHS == 2);
// TODO Here and below, symmetric case would be more handy to avoid a move,
// but can't be reached because operands would get swapped (bug 1084404).
if (LanesMatch(lanes, 2, 3, 6, 7)) {
ScratchSimd128Scope scratch(asMasm());
if (AssemblerX86Shared::HasAVX()) {
FloatRegister rhsCopy = reusedInputAlignedSimd128Float(rhs, scratch);
vmovhlps(lhs, rhsCopy, out);
} else {
loadAlignedSimd128Float(rhs, scratch);
vmovhlps(lhs, scratch, scratch);
moveSimd128Float(scratch, out);
}
return;
}
if (LanesMatch(lanes, 0, 1, 4, 5)) {
FloatRegister rhsCopy;
ScratchSimd128Scope scratch(asMasm());
if (rhs.kind() == Operand::FPREG) {
// No need to make an actual copy, since the operand is already
// in a register, and it won't be clobbered by the vmovlhps.
rhsCopy = FloatRegister::FromCode(rhs.fpu());
} else {
loadAlignedSimd128Float(rhs, scratch);
rhsCopy = scratch;
}
vmovlhps(rhsCopy, lhs, out);
return;
}
if (LanesMatch(lanes, 0, 4, 1, 5)) {
vunpcklps(rhs, lhs, out);
return;
}
// TODO swapped case would be better (bug 1084404)
if (LanesMatch(lanes, 4, 0, 5, 1)) {
ScratchSimd128Scope scratch(asMasm());
if (AssemblerX86Shared::HasAVX()) {
FloatRegister rhsCopy = reusedInputAlignedSimd128Float(rhs, scratch);
vunpcklps(lhs, rhsCopy, out);
} else {
loadAlignedSimd128Float(rhs, scratch);
vunpcklps(lhs, scratch, scratch);
moveSimd128Float(scratch, out);
}
return;
}
if (LanesMatch(lanes, 2, 6, 3, 7)) {
vunpckhps(rhs, lhs, out);
return;
}
// TODO swapped case would be better (bug 1084404)
if (LanesMatch(lanes, 6, 2, 7, 3)) {
ScratchSimd128Scope scratch(asMasm());
if (AssemblerX86Shared::HasAVX()) {
FloatRegister rhsCopy = reusedInputAlignedSimd128Float(rhs, scratch);
vunpckhps(lhs, rhsCopy, out);
} else {
loadAlignedSimd128Float(rhs, scratch);
vunpckhps(lhs, scratch, scratch);
moveSimd128Float(scratch, out);
}
return;
}
// In one vshufps
if (x < 4 && y < 4) {
mask = MacroAssembler::ComputeShuffleMask(x, y, z % 4, w % 4);
vshufps(mask, rhs, lhs, out);
return;
}
// At creation, we should have explicitly swapped in this case.
MOZ_ASSERT(!(z >= 4 && w >= 4));
// In two vshufps, for the most generic case:
uint32_t firstMask[4], secondMask[4];
unsigned i = 0, j = 2, k = 0;
#define COMPUTE_MASK(lane) \
if (lane >= 4) { \
firstMask[j] = lane % 4; \
secondMask[k++] = j++; \
} else { \
firstMask[i] = lane; \
secondMask[k++] = i++; \
}
COMPUTE_MASK(x)
COMPUTE_MASK(y)
COMPUTE_MASK(z)
COMPUTE_MASK(w)
#undef COMPUTE_MASK
MOZ_ASSERT(i == 2 && j == 4 && k == 4);
mask = MacroAssembler::ComputeShuffleMask(firstMask[0], firstMask[1],
firstMask[2], firstMask[3]);
vshufps(mask, rhs, lhs, lhs);
mask = MacroAssembler::ComputeShuffleMask(secondMask[0], secondMask[1],
secondMask[2], secondMask[3]);
vshufps(mask, lhs, lhs, lhs);
}
void MacroAssemblerX86Shared::minNumFloat32x4(FloatRegister lhs, Operand rhs,
FloatRegister temp,
FloatRegister output) {
ScratchSimd128Scope scratch(asMasm());
asMasm().loadConstantSimd128Int(SimdConstant::SplatX4(int32_t(0x80000000)),
temp);
FloatRegister mask = scratch;
FloatRegister tmpCopy = reusedInputSimd128Float(temp, scratch);
vpcmpeqd(Operand(lhs), tmpCopy, mask);
vandps(temp, mask, mask);
FloatRegister lhsCopy = reusedInputSimd128Float(lhs, temp);
vminps(rhs, lhsCopy, temp);
vorps(mask, temp, temp);
if (AssemblerX86Shared::HasAVX()) {
MOZ_CRASH("Can do better by avoiding the movaps");
} else {
vmovaps(rhs, mask);
vcmpneqps(rhs, mask, mask);
}
if (AssemblerX86Shared::HasAVX()) {
vblendvps(mask, lhs, temp, output);
} else {
// Emulate vblendvps.
// With SSE.4.1 we could use blendvps, however it's awkward since
// it requires the mask to be in xmm0.
if (lhs != output) {
moveSimd128Float(lhs, output);
}
vandps(Operand(mask), output, output);
vandnps(Operand(temp), mask, mask);
vorps(Operand(mask), output, output);
}
}
void MacroAssemblerX86Shared::maxNumFloat32x4(FloatRegister lhs, Operand rhs,
FloatRegister temp,
FloatRegister output) {
ScratchSimd128Scope scratch(asMasm());
FloatRegister mask = scratch;
asMasm().loadConstantSimd128Int(SimdConstant::SplatX4(0), mask);
vpcmpeqd(Operand(lhs), mask, mask);
asMasm().loadConstantSimd128Int(SimdConstant::SplatX4(int32_t(0x80000000)),
temp);
vandps(temp, mask, mask);
FloatRegister lhsCopy = reusedInputSimd128Float(lhs, temp);
vmaxps(rhs, lhsCopy, temp);
vandnps(Operand(temp), mask, mask);
// Ensure temp always contains the temporary result
mask = temp;
temp = scratch;
if (AssemblerX86Shared::HasAVX()) {
MOZ_CRASH("Can do better by avoiding the movaps");
} else {
vmovaps(rhs, mask);
vcmpneqps(rhs, mask, mask);
}
if (AssemblerX86Shared::HasAVX()) {
vblendvps(mask, lhs, temp, output);
} else {
// Emulate vblendvps.
// With SSE.4.1 we could use blendvps, however it's awkward since
// it requires the mask to be in xmm0.
if (lhs != output) {
moveSimd128Float(lhs, output);
}
vandps(Operand(mask), output, output);
vandnps(Operand(temp), mask, mask);
vorps(Operand(mask), output, output);
}
}
void MacroAssemblerX86Shared::selectX4(FloatRegister mask, FloatRegister onTrue,
FloatRegister onFalse,
FloatRegister temp,
FloatRegister output) {
if (AssemblerX86Shared::HasAVX()) {
vblendvps(mask, onTrue, onFalse, output);
} else {
selectSimd128(mask, onTrue, onFalse, temp, output);
}
}

Просмотреть файл

@ -690,130 +690,6 @@ class MacroAssemblerX86Shared : public Assembler {
vshufps(mask, srcCopy, srcCopy, dest);
}
// Unused SIMD methods, defined in MacroAssemble-x86-shared-SIMD-unused.cpp.
// Don't use these without moving them out of that file and moving the
// declaration into the list above.
void checkedConvertFloat32x4ToInt32x4(FloatRegister src, FloatRegister dest,
Register temp, Label* oolCheck,
Label* rejoin);
void oolConvertFloat32x4ToInt32x4(FloatRegister src, Register temp,
Label* rejoin, Label* onConversionError);
void checkedConvertFloat32x4ToUint32x4(FloatRegister src, FloatRegister dest,
Register temp, FloatRegister tempF,
Label* failed);
void createInt32x4(Register lane0, Register lane1, Register lane2,
Register lane3, FloatRegister dest);
void createFloat32x4(FloatRegister lane0, FloatRegister lane1,
FloatRegister lane2, FloatRegister lane3,
FloatRegister temp, FloatRegister output);
void reinterpretSimd(bool isIntegerLaneType, FloatRegister input,
FloatRegister output);
void extractLaneSimdBool(FloatRegister input, Register output,
unsigned numLanes, unsigned lane);
void allTrueSimdBool(FloatRegister input, Register output);
void anyTrueSimdBool(FloatRegister input, Register output);
void swizzleInt32x4(FloatRegister input, FloatRegister output,
unsigned lanes[4]);
void swizzleFloat32x4(FloatRegister input, FloatRegister output,
unsigned lanes[4]);
void oldSwizzleInt8x16(FloatRegister input, FloatRegister output,
const mozilla::Maybe<Register>& temp,
int8_t lanes[16]);
void shuffleX4(FloatRegister lhs, Operand rhs, FloatRegister out,
const mozilla::Maybe<FloatRegister>& maybeTemp,
unsigned lanes[4]);
void minNumFloat32x4(FloatRegister lhs, Operand rhs, FloatRegister temp,
FloatRegister output);
void maxNumFloat32x4(FloatRegister lhs, Operand rhs, FloatRegister temp,
FloatRegister output);
// Unused inline methods ditto.
void bitwiseAndSimdInt(FloatRegister lhs, const Operand& rhs,
FloatRegister dest) {
vpand(rhs, lhs, dest);
}
void bitwiseOrSimdInt(FloatRegister lhs, const Operand& rhs,
FloatRegister dest) {
vpor(rhs, lhs, dest);
}
void bitwiseOrFloat32x4(FloatRegister lhs, const Operand& rhs,
FloatRegister dest) {
vorps(rhs, lhs, dest);
}
void bitwiseAndNotFloat32x4(FloatRegister lhs, const Operand& rhs,
FloatRegister dest) {
vandnps(rhs, lhs, dest);
}
FloatRegister reusedInputAlignedInt32x4(const Operand& src,
FloatRegister dest) {
MOZ_ASSERT(dest.isSimd128());
if (HasAVX() && src.kind() == Operand::FPREG) {
return FloatRegister::FromCode(src.fpu());
}
loadAlignedSimd128Int(src, dest);
return dest;
}
void packedAddInt8(const Operand& src, FloatRegister dest) {
vpaddb(src, dest, dest);
}
void packedSubInt8(const Operand& src, FloatRegister dest) {
vpsubb(src, dest, dest);
}
void packedAddInt16(const Operand& src, FloatRegister dest) {
vpaddw(src, dest, dest);
}
void packedSubInt16(const Operand& src, FloatRegister dest) {
vpsubw(src, dest, dest);
}
void packedAddInt32(const Operand& src, FloatRegister dest) {
vpaddd(src, dest, dest);
}
void packedSubInt32(const Operand& src, FloatRegister dest) {
vpsubd(src, dest, dest);
}
void packedRcpApproximationFloat32x4(const Operand& src, FloatRegister dest) {
// This function is an approximation of the result, this might need
// fix up if the spec requires a given precision for this operation.
// TODO See also bug 1068028.
vrcpps(src, dest);
}
void packedRcpSqrtApproximationFloat32x4(const Operand& src,
FloatRegister dest) {
// TODO See comment above. See also bug 1068028.
vrsqrtps(src, dest);
}
FloatRegister reusedInputAlignedSimd128Float(const Operand& src,
FloatRegister dest) {
MOZ_ASSERT(dest.isSimd128());
if (HasAVX() && src.kind() == Operand::FPREG) {
return FloatRegister::FromCode(src.fpu());
}
loadAlignedSimd128Float(src, dest);
return dest;
}
void packedAddFloat32(const Operand& src, FloatRegister dest) {
vaddps(src, dest, dest);
}
void packedSubFloat32(const Operand& src, FloatRegister dest) {
vsubps(src, dest, dest);
}
void packedMulFloat32(const Operand& src, FloatRegister dest) {
vmulps(src, dest, dest);
}
void packedDivFloat32(const Operand& src, FloatRegister dest) {
vdivps(src, dest, dest);
}
void shuffleMix(uint32_t mask, const Operand& src, FloatRegister dest) {
// Note this uses vshufps, which is a cross-domain penalty on CPU where it
// applies, but that's the way clang and gcc do it.
vshufps(mask, src, dest, dest);
}
void selectX4(FloatRegister mask, FloatRegister onTrue, FloatRegister onFalse,
FloatRegister temp, FloatRegister output);
// End unused SIMD.
void moveFloatAsDouble(Register src, FloatRegister dest) {
vmovd(src, dest);
vcvtss2sd(dest, dest, dest);