зеркало из https://github.com/mozilla/gecko-dev.git
Bug 1532470: Part 1 - Add ability to specify desired memory range when reserving memory; r=handyman
In order to support 4-byte patches on ARM64, we need to be able to reserve trampoline space within +/- 128 MB of the beginning of a function. These changes allow us to make such reservations using OS APIs when available. Differential Revision: https://phabricator.services.mozilla.com/D32190 --HG-- extra : moz-landing-system : lando
This commit is contained in:
Родитель
55094bccfc
Коммит
cd4141632b
|
@ -8,12 +8,28 @@
|
|||
#define mozilla_interceptor_MMPolicies_h
|
||||
|
||||
#include "mozilla/Assertions.h"
|
||||
#include "mozilla/DynamicallyLinkedFunctionPtr.h"
|
||||
#include "mozilla/MathAlgorithms.h"
|
||||
#include "mozilla/Maybe.h"
|
||||
#include "mozilla/Span.h"
|
||||
#include "mozilla/TypedEnumBits.h"
|
||||
#include "mozilla/Types.h"
|
||||
#include "mozilla/WindowsMapRemoteView.h"
|
||||
|
||||
#include <windows.h>
|
||||
|
||||
#if (NTDDI_VERSION < NTDDI_WIN10_RS4)
|
||||
PVOID WINAPI VirtualAlloc2(HANDLE Process, PVOID BaseAddress, SIZE_T Size,
|
||||
ULONG AllocationType, ULONG PageProtection,
|
||||
MEM_EXTENDED_PARAMETER* ExtendedParameters,
|
||||
ULONG ParameterCount);
|
||||
PVOID WINAPI MapViewOfFile3(HANDLE FileMapping, HANDLE Process,
|
||||
PVOID BaseAddress, ULONG64 Offset, SIZE_T ViewSize,
|
||||
ULONG AllocationType, ULONG PageProtection,
|
||||
MEM_EXTENDED_PARAMETER* ExtendedParameters,
|
||||
ULONG ParameterCount);
|
||||
#endif // (NTDDI_VERSION < NTDDI_WIN10_RS4)
|
||||
|
||||
// _CRT_RAND_S is not defined everywhere, but we need it.
|
||||
#if !defined(_CRT_RAND_S)
|
||||
extern "C" errno_t rand_s(unsigned int* randomValue);
|
||||
|
@ -22,14 +38,22 @@ extern "C" errno_t rand_s(unsigned int* randomValue);
|
|||
namespace mozilla {
|
||||
namespace interceptor {
|
||||
|
||||
enum class ReservationFlags : uint32_t {
|
||||
eDefault = 0,
|
||||
eForceFirst2GB = 1,
|
||||
};
|
||||
class MOZ_TRIVIAL_CTOR_DTOR MMPolicyBase {
|
||||
protected:
|
||||
static uintptr_t AlignDown(const uintptr_t aUnaligned,
|
||||
const uintptr_t aAlignTo) {
|
||||
MOZ_ASSERT(IsPowerOfTwo(aAlignTo));
|
||||
#pragma warning(suppress : 4146)
|
||||
return aUnaligned & (-aAlignTo);
|
||||
}
|
||||
|
||||
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ReservationFlags)
|
||||
static uintptr_t AlignUp(const uintptr_t aUnaligned,
|
||||
const uintptr_t aAlignTo) {
|
||||
MOZ_ASSERT(IsPowerOfTwo(aAlignTo));
|
||||
#pragma warning(suppress : 4146)
|
||||
return aUnaligned + ((-aUnaligned) & (aAlignTo - 1));
|
||||
}
|
||||
|
||||
class MMPolicyBase {
|
||||
public:
|
||||
static DWORD ComputeAllocationSize(const uint32_t aRequestedSize) {
|
||||
MOZ_ASSERT(aRequestedSize);
|
||||
|
@ -65,45 +89,149 @@ class MMPolicyBase {
|
|||
return kPageSize;
|
||||
}
|
||||
|
||||
#if defined(_M_X64)
|
||||
static uintptr_t GetMaxUserModeAddress() {
|
||||
static const uintptr_t kMaxUserModeAddr = []() -> uintptr_t {
|
||||
SYSTEM_INFO sysInfo;
|
||||
::GetSystemInfo(&sysInfo);
|
||||
return reinterpret_cast<uintptr_t>(sysInfo.lpMaximumApplicationAddress);
|
||||
}();
|
||||
|
||||
return kMaxUserModeAddr;
|
||||
}
|
||||
|
||||
static const uint8_t* GetLowerBound(const Span<const uint8_t>& aBounds) {
|
||||
return &(*aBounds.cbegin());
|
||||
}
|
||||
|
||||
static const uint8_t* GetUpperBoundIncl(const Span<const uint8_t>& aBounds) {
|
||||
// We return an upper bound that is inclusive.
|
||||
return &(*(aBounds.cend() - 1));
|
||||
}
|
||||
|
||||
static const uint8_t* GetUpperBoundExcl(const Span<const uint8_t>& aBounds) {
|
||||
// We return an upper bound that is exclusive by adding 1 to the inclusive
|
||||
// upper bound.
|
||||
return GetUpperBoundIncl(aBounds) + 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* It is convenient for us to provide address range information based on a
|
||||
* "pivot" and a distance from that pivot, as branch instructions operate
|
||||
* within a range of the program counter. OTOH, to actually manage the
|
||||
* regions of memory, it is easier to think about them in terms of their
|
||||
* lower and upper bounds. This function converts from the former format to
|
||||
* the latter format.
|
||||
*/
|
||||
static Maybe<Span<const uint8_t>> SpanFromPivotAndDistance(
|
||||
const uint32_t aSize, const uintptr_t aPivotAddr,
|
||||
const uint32_t aMaxDistanceFromPivot) {
|
||||
if (!aPivotAddr || !aMaxDistanceFromPivot) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
// We don't allow regions below 1MB so that we're not allocating near any
|
||||
// sensitive areas in our address space.
|
||||
const uintptr_t kMinAllowableAddress = 0x100000;
|
||||
|
||||
const uintptr_t kGranularity(GetAllocGranularity());
|
||||
|
||||
// We subtract the max distance from the pivot to determine our lower bound.
|
||||
CheckedInt<uintptr_t> lowerBound(aPivotAddr);
|
||||
lowerBound -= aMaxDistanceFromPivot;
|
||||
if (lowerBound.isValid()) {
|
||||
// In this case, the subtraction has not underflowed, but we still want
|
||||
// the lower bound to be at least kMinAllowableAddress.
|
||||
lowerBound = std::max(lowerBound.value(), kMinAllowableAddress);
|
||||
} else {
|
||||
// In this case, we underflowed. Forcibly set the lower bound to
|
||||
// kMinAllowableAddress.
|
||||
lowerBound = CheckedInt<uintptr_t>(kMinAllowableAddress);
|
||||
}
|
||||
|
||||
// Align up to the next unit of allocation granularity when necessary.
|
||||
lowerBound = AlignUp(lowerBound.value(), kGranularity);
|
||||
MOZ_ASSERT(lowerBound.isValid());
|
||||
if (!lowerBound.isValid()) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
// We must ensure that our region is below the maximum allowable user-mode
|
||||
// address, or our reservation will fail.
|
||||
const uintptr_t kMaxUserModeAddr = GetMaxUserModeAddress();
|
||||
|
||||
// We add the max distance from the pivot to determine our upper bound.
|
||||
CheckedInt<uintptr_t> upperBound(aPivotAddr);
|
||||
upperBound += aMaxDistanceFromPivot;
|
||||
if (upperBound.isValid()) {
|
||||
// In this case, the addition has not overflowed, but we still want
|
||||
// the upper bound to be at most kMaxUserModeAddr.
|
||||
upperBound = std::min(upperBound.value(), kMaxUserModeAddr);
|
||||
} else {
|
||||
// In this case, we overflowed. Forcibly set the upper bound to
|
||||
// kMaxUserModeAddr.
|
||||
upperBound = CheckedInt<uintptr_t>(kMaxUserModeAddr);
|
||||
}
|
||||
|
||||
// Subtract the desired allocation size so that any chunk allocated in the
|
||||
// region will be reachable.
|
||||
upperBound -= aSize;
|
||||
if (!upperBound.isValid()) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
// Align down to the next unit of allocation granularity when necessary.
|
||||
upperBound = AlignDown(upperBound.value(), kGranularity);
|
||||
if (!upperBound.isValid()) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
MOZ_ASSERT(lowerBound.value() < upperBound.value());
|
||||
if (lowerBound.value() >= upperBound.value()) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
// Return the result as a Span
|
||||
return Some(MakeSpan(reinterpret_cast<const uint8_t*>(lowerBound.value()),
|
||||
upperBound.value() - lowerBound.value()));
|
||||
}
|
||||
|
||||
/**
|
||||
* This function locates a virtual memory region of |aDesiredBytesLen| that
|
||||
* resides in the lowest 2GB of address space. We do this by scanning the
|
||||
* resides in the interval [aRangeMin, aRangeMax). We do this by scanning the
|
||||
* virtual memory space for a block of unallocated memory that is sufficiently
|
||||
* large. We must stay below the 2GB mark because a 10-byte patch uses movsxd
|
||||
* (ie, sign extension) to expand the pointer to 64-bits, so bit 31 of the
|
||||
* found region must be 0.
|
||||
* large.
|
||||
*/
|
||||
static PVOID FindLowRegion(HANDLE aProcess, const size_t aDesiredBytesLen) {
|
||||
const DWORD granularity = GetAllocGranularity();
|
||||
|
||||
MOZ_ASSERT(aDesiredBytesLen / granularity > 0);
|
||||
static PVOID FindRegion(HANDLE aProcess, const size_t aDesiredBytesLen,
|
||||
const uint8_t* aRangeMin, const uint8_t* aRangeMax) {
|
||||
const DWORD kGranularity = GetAllocGranularity();
|
||||
MOZ_ASSERT(aDesiredBytesLen >= kGranularity);
|
||||
if (!aDesiredBytesLen) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
MOZ_ASSERT(aRangeMin < aRangeMax);
|
||||
if (aRangeMin >= aRangeMax) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Generate a randomized base address that falls within the interval
|
||||
// [1MiB, 2GiB - aDesiredBytesLen]
|
||||
// [aRangeMin, aRangeMax - aDesiredBytesLen]
|
||||
unsigned int rnd = 0;
|
||||
rand_s(&rnd);
|
||||
|
||||
// Reduce rnd to a value that falls within the acceptable range
|
||||
const uint64_t kMinAddress = 0x0000000000100000ULL;
|
||||
const uint64_t kMaxAddress = 0x0000000080000000ULL;
|
||||
uint64_t maxOffset =
|
||||
(kMaxAddress - kMinAddress - aDesiredBytesLen) / granularity;
|
||||
uint64_t offset = (uint64_t(rnd) % maxOffset) * granularity;
|
||||
uintptr_t maxOffset =
|
||||
(aRangeMax - aRangeMin - aDesiredBytesLen) / kGranularity;
|
||||
uintptr_t offset = (uintptr_t(rnd) % maxOffset) * kGranularity;
|
||||
|
||||
// Start searching at this address
|
||||
char* address = reinterpret_cast<char*>(kMinAddress) + offset;
|
||||
const uint8_t* address = aRangeMin + offset;
|
||||
// The max address needs to incorporate the desired length
|
||||
char* const kMaxPtr =
|
||||
reinterpret_cast<char*>(kMaxAddress) - aDesiredBytesLen;
|
||||
const uint8_t* const kMaxPtr = aRangeMax - aDesiredBytesLen;
|
||||
|
||||
MOZ_DIAGNOSTIC_ASSERT(address <= kMaxPtr);
|
||||
|
||||
MEMORY_BASIC_INFORMATION mbi = {};
|
||||
MEMORY_BASIC_INFORMATION mbi;
|
||||
SIZE_T len = sizeof(mbi);
|
||||
|
||||
// Scan the range for a free chunk that is at least as large as
|
||||
|
@ -114,55 +242,83 @@ class MMPolicyBase {
|
|||
return mbi.BaseAddress;
|
||||
}
|
||||
|
||||
address = reinterpret_cast<char*>(mbi.BaseAddress) + mbi.RegionSize;
|
||||
address =
|
||||
reinterpret_cast<const uint8_t*>(mbi.BaseAddress) + mbi.RegionSize;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#endif // defined(_M_X64)
|
||||
|
||||
template <typename ReserveFnT>
|
||||
/**
|
||||
* This function reserves a |aSize| block of virtual memory.
|
||||
*
|
||||
* When |aBounds| is Nothing, it just calls |aReserveFn| and lets Windows
|
||||
* choose the base address.
|
||||
*
|
||||
* Otherwise, it tries to call |aReserveRangeFn| to reserve the memory within
|
||||
* the bounds provided by |aBounds|. It is advantageous to use this function
|
||||
* because the OS's VM manager has better information as to which base
|
||||
* addresses are the best to use.
|
||||
*
|
||||
* If |aReserveRangeFn| retuns Nothing, this means that the platform support
|
||||
* is not available. In that case, we fall back to manually computing a region
|
||||
* to use for reserving the memory by calling |FindRegion|.
|
||||
*/
|
||||
template <typename ReserveFnT, typename ReserveRangeFnT>
|
||||
static PVOID Reserve(HANDLE aProcess, const uint32_t aSize,
|
||||
const ReserveFnT& aReserveFn,
|
||||
const ReservationFlags aFlags) {
|
||||
#if defined(_M_X64)
|
||||
if (aFlags & ReservationFlags::eForceFirst2GB) {
|
||||
size_t curAttempt = 0;
|
||||
const size_t kMaxAttempts = 8;
|
||||
const ReserveRangeFnT& aReserveRangeFn,
|
||||
const Maybe<Span<const uint8_t>>& aBounds) {
|
||||
if (!aBounds) {
|
||||
// No restrictions, let the OS choose the base address
|
||||
return aReserveFn(aProcess, nullptr, aSize);
|
||||
}
|
||||
|
||||
// We loop here because |FindLowRegion| may return a base address that
|
||||
// is reserved elsewhere before we have had a chance to reserve it
|
||||
// ourselves.
|
||||
while (curAttempt < kMaxAttempts) {
|
||||
PVOID base = FindLowRegion(aProcess, aSize);
|
||||
if (!base) {
|
||||
return nullptr;
|
||||
}
|
||||
const uint8_t* lowerBound = GetLowerBound(aBounds.ref());
|
||||
const uint8_t* upperBoundExcl = GetUpperBoundExcl(aBounds.ref());
|
||||
|
||||
PVOID result = aReserveFn(aProcess, base, aSize);
|
||||
if (result) {
|
||||
return result;
|
||||
}
|
||||
Maybe<PVOID> result =
|
||||
aReserveRangeFn(aProcess, aSize, lowerBound, upperBoundExcl);
|
||||
if (result) {
|
||||
return result.value();
|
||||
}
|
||||
|
||||
++curAttempt;
|
||||
// aReserveRangeFn is not available on this machine. We'll do a manual
|
||||
// search.
|
||||
|
||||
size_t curAttempt = 0;
|
||||
const size_t kMaxAttempts = 8;
|
||||
|
||||
// We loop here because |FindRegion| may return a base address that
|
||||
// is reserved elsewhere before we have had a chance to reserve it
|
||||
// ourselves.
|
||||
while (curAttempt < kMaxAttempts) {
|
||||
PVOID base = FindRegion(aProcess, aSize, lowerBound, upperBoundExcl);
|
||||
if (!base) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// If we run out of attempts, we fall through to the default case where
|
||||
// the system chooses any base address it wants. In that case, the hook
|
||||
// will be set on a best-effort basis.
|
||||
result = Some(aReserveFn(aProcess, base, aSize));
|
||||
if (result.value()) {
|
||||
return result.value();
|
||||
}
|
||||
|
||||
++curAttempt;
|
||||
}
|
||||
#endif // defined(_M_X64)
|
||||
|
||||
// If we run out of attempts, we fall through to the default case where
|
||||
// the system chooses any base address it wants. In that case, the hook
|
||||
// will be set on a best-effort basis.
|
||||
|
||||
return aReserveFn(aProcess, nullptr, aSize);
|
||||
}
|
||||
};
|
||||
|
||||
class MMPolicyInProcess : public MMPolicyBase {
|
||||
class MOZ_TRIVIAL_CTOR_DTOR MMPolicyInProcess : public MMPolicyBase {
|
||||
public:
|
||||
typedef MMPolicyInProcess MMPolicyT;
|
||||
|
||||
explicit MMPolicyInProcess()
|
||||
constexpr MMPolicyInProcess()
|
||||
: mBase(nullptr), mReservationSize(0), mCommitOffset(0) {}
|
||||
|
||||
MMPolicyInProcess(const MMPolicyInProcess&) = delete;
|
||||
|
@ -186,9 +342,6 @@ class MMPolicyInProcess : public MMPolicyBase {
|
|||
return *this;
|
||||
}
|
||||
|
||||
// We always leak mBase
|
||||
~MMPolicyInProcess() = default;
|
||||
|
||||
explicit operator bool() const { return !!mBase; }
|
||||
|
||||
/**
|
||||
|
@ -262,7 +415,8 @@ class MMPolicyInProcess : public MMPolicyBase {
|
|||
/**
|
||||
* @return the effective number of bytes reserved, or 0 on failure
|
||||
*/
|
||||
uint32_t Reserve(const uint32_t aSize, const ReservationFlags aFlags) {
|
||||
uint32_t Reserve(const uint32_t aSize,
|
||||
const Maybe<Span<const uint8_t>>& aBounds) {
|
||||
if (!aSize) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -278,8 +432,31 @@ class MMPolicyInProcess : public MMPolicyBase {
|
|||
return ::VirtualAlloc(aBase, aSize, MEM_RESERVE, PAGE_NOACCESS);
|
||||
};
|
||||
|
||||
mBase = static_cast<uint8_t*>(MMPolicyBase::Reserve(
|
||||
::GetCurrentProcess(), mReservationSize, reserveFn, aFlags));
|
||||
auto reserveWithinRangeFn =
|
||||
[](HANDLE aProcess, uint32_t aSize, const uint8_t* aRangeMin,
|
||||
const uint8_t* aRangeMaxExcl) -> Maybe<PVOID> {
|
||||
static const DynamicallyLinkedFunctionPtr<decltype(&::VirtualAlloc2)>
|
||||
pVirtualAlloc2(L"kernelbase.dll", "VirtualAlloc2");
|
||||
if (!pVirtualAlloc2) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
// NB: MEM_ADDRESS_REQUIREMENTS::HighestEndingAddress is *inclusive*
|
||||
MEM_ADDRESS_REQUIREMENTS memReq = {
|
||||
const_cast<uint8_t*>(aRangeMin),
|
||||
const_cast<uint8_t*>(aRangeMaxExcl - 1)};
|
||||
|
||||
MEM_EXTENDED_PARAMETER memParam = {};
|
||||
memParam.Type = MemExtendedParameterAddressRequirements;
|
||||
memParam.Pointer = &memReq;
|
||||
|
||||
return Some(pVirtualAlloc2(aProcess, nullptr, aSize, MEM_RESERVE,
|
||||
PAGE_NOACCESS, &memParam, 1));
|
||||
};
|
||||
|
||||
mBase = static_cast<uint8_t*>(
|
||||
MMPolicyBase::Reserve(::GetCurrentProcess(), mReservationSize,
|
||||
reserveFn, reserveWithinRangeFn, aBounds));
|
||||
|
||||
if (!mBase) {
|
||||
return 0;
|
||||
|
@ -471,7 +648,8 @@ class MMPolicyOutOfProcess : public MMPolicyBase {
|
|||
/**
|
||||
* @return the effective number of bytes reserved, or 0 on failure
|
||||
*/
|
||||
uint32_t Reserve(const uint32_t aSize, const ReservationFlags aFlags) {
|
||||
uint32_t Reserve(const uint32_t aSize,
|
||||
const Maybe<Span<const uint8_t>>& aBounds) {
|
||||
if (!aSize || !mProcess) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -502,8 +680,31 @@ class MMPolicyOutOfProcess : public MMPolicyBase {
|
|||
PAGE_EXECUTE_READ);
|
||||
};
|
||||
|
||||
mRemoteView =
|
||||
MMPolicyBase::Reserve(mProcess, mReservationSize, reserveFn, aFlags);
|
||||
auto reserveWithinRangeFn =
|
||||
[mapping = mMapping](HANDLE aProcess, uint32_t aSize,
|
||||
const uint8_t* aRangeMin,
|
||||
const uint8_t* aRangeMaxExcl) -> Maybe<PVOID> {
|
||||
static const DynamicallyLinkedFunctionPtr<decltype(&::MapViewOfFile3)>
|
||||
pMapViewOfFile3(L"kernelbase.dll", "MapViewOfFile3");
|
||||
if (!pMapViewOfFile3) {
|
||||
return Nothing();
|
||||
}
|
||||
|
||||
// NB: MEM_ADDRESS_REQUIREMENTS::HighestEndingAddress is *inclusive*
|
||||
MEM_ADDRESS_REQUIREMENTS memReq = {
|
||||
const_cast<uint8_t*>(aRangeMin),
|
||||
const_cast<uint8_t*>(aRangeMaxExcl - 1)};
|
||||
|
||||
MEM_EXTENDED_PARAMETER memParam = {};
|
||||
memParam.Type = MemExtendedParameterAddressRequirements;
|
||||
memParam.Pointer = &memReq;
|
||||
|
||||
return Some(pMapViewOfFile3(mapping, aProcess, nullptr, 0, aSize, 0,
|
||||
PAGE_EXECUTE_READ, &memParam, 1));
|
||||
};
|
||||
|
||||
mRemoteView = MMPolicyBase::Reserve(mProcess, mReservationSize, reserveFn,
|
||||
reserveWithinRangeFn, aBounds);
|
||||
if (!mRemoteView) {
|
||||
return 0;
|
||||
}
|
||||
|
|
Загрузка…
Ссылка в новой задаче