Bug 1703443 - pt 15. Move more CCGCScheduler implementation into the .cpp file r=smaug

Differential Revision: https://phabricator.services.mozilla.com/D118698
This commit is contained in:
Paul Bone 2021-07-09 07:14:15 +00:00
Родитель ae50acaba7
Коммит d38a251c59
2 изменённых файлов: 329 добавлений и 330 удалений

Просмотреть файл

@ -357,4 +357,322 @@ void CCGCScheduler::KillAllTimersAndRunners() {
KillGCRunner();
}
js::SliceBudget CCGCScheduler::ComputeCCSliceBudget(
TimeStamp aDeadline, TimeStamp aCCBeginTime, TimeStamp aPrevSliceEndTime,
TimeStamp aNow, bool* aPreferShorterSlices) const {
*aPreferShorterSlices =
aDeadline.IsNull() || (aDeadline - aNow) < kICCSliceBudget;
TimeDuration baseBudget =
aDeadline.IsNull() ? kICCSliceBudget : aDeadline - aNow;
if (aCCBeginTime.IsNull()) {
// If no CC is in progress, use the standard slice time.
return js::SliceBudget(js::TimeBudget(baseBudget),
kNumCCNodesBetweenTimeChecks);
}
// Only run a limited slice if we're within the max running time.
MOZ_ASSERT(aNow >= aCCBeginTime);
TimeDuration runningTime = aNow - aCCBeginTime;
if (runningTime >= kMaxICCDuration) {
return js::SliceBudget::unlimited();
}
const TimeDuration maxSlice =
TimeDuration::FromMilliseconds(MainThreadIdlePeriod::GetLongIdlePeriod());
// Try to make up for a delay in running this slice.
MOZ_ASSERT(aNow >= aPrevSliceEndTime);
double sliceDelayMultiplier =
(aNow - aPrevSliceEndTime) / kICCIntersliceDelay;
TimeDuration delaySliceBudget =
std::min(baseBudget.MultDouble(sliceDelayMultiplier), maxSlice);
// Increase slice budgets up to |maxSlice| as we approach
// half way through the ICC, to avoid large sync CCs.
double percentToHalfDone =
std::min(2.0 * (runningTime / kMaxICCDuration), 1.0);
TimeDuration laterSliceBudget = maxSlice.MultDouble(percentToHalfDone);
// Note: We may have already overshot the deadline, in which case
// baseBudget will be negative and we will end up returning
// laterSliceBudget.
return js::SliceBudget(js::TimeBudget(std::max(
{delaySliceBudget, laterSliceBudget, baseBudget})),
kNumCCNodesBetweenTimeChecks);
}
TimeDuration CCGCScheduler::ComputeInterSliceGCBudget(TimeStamp aDeadline,
TimeStamp aNow) const {
// We use longer budgets when the CC has been locked out but the CC has
// tried to run since that means we may have a significant amount of
// garbage to collect and it's better to GC in several longer slices than
// in a very long one.
TimeDuration budget =
aDeadline.IsNull() ? mActiveIntersliceGCBudget * 2 : aDeadline - aNow;
if (!mCCBlockStart) {
return budget;
}
TimeDuration blockedTime = aNow - mCCBlockStart;
TimeDuration maxSliceGCBudget = mActiveIntersliceGCBudget * 10;
double percentOfBlockedTime =
std::min(blockedTime / kMaxCCLockedoutTime, 1.0);
return std::max(budget, maxSliceGCBudget.MultDouble(percentOfBlockedTime));
}
bool CCGCScheduler::ShouldScheduleCC(TimeStamp aNow,
uint32_t aSuspectedCCObjects) const {
if (!mHasRunGC) {
return false;
}
// Don't run consecutive CCs too often.
if (mCleanupsSinceLastGC && !mLastCCEndTime.IsNull()) {
if (aNow - mLastCCEndTime < kCCDelay) {
return false;
}
}
// If GC hasn't run recently and forget skippable only cycle was run,
// don't start a new cycle too soon.
if ((mCleanupsSinceLastGC > kMajorForgetSkippableCalls) &&
!mLastForgetSkippableCycleEndTime.IsNull()) {
if (aNow - mLastForgetSkippableCycleEndTime <
kTimeBetweenForgetSkippableCycles) {
return false;
}
}
return IsCCNeeded(aNow, aSuspectedCCObjects);
}
CCRunnerStep CCGCScheduler::AdvanceCCRunner(TimeStamp aDeadline, TimeStamp aNow,
uint32_t aSuspectedCCObjects) {
struct StateDescriptor {
// When in this state, should we first check to see if we still have
// enough reason to CC?
bool mCanAbortCC;
// If we do decide to abort the CC, should we still try to forget
// skippables one more time?
bool mTryFinalForgetSkippable;
};
// The state descriptors for Inactive and Canceled will never actually be
// used. We will never call this function while Inactive, and Canceled is
// handled specially at the beginning.
constexpr StateDescriptor stateDescriptors[] = {
{false, false}, /* CCRunnerState::Inactive */
{false, false}, /* CCRunnerState::ReducePurple */
{true, true}, /* CCRunnerState::CleanupChildless */
{true, false}, /* CCRunnerState::CleanupContentUnbinder */
{false, false}, /* CCRunnerState::CleanupDeferred */
{false, false}, /* CCRunnerState::StartCycleCollection */
{false, false}, /* CCRunnerState::CycleCollecting */
{false, false}}; /* CCRunnerState::Canceled */
static_assert(
ArrayLength(stateDescriptors) == size_t(CCRunnerState::NumStates),
"need one state descriptor per state");
const StateDescriptor& desc = stateDescriptors[int(mCCRunnerState)];
// Make sure we initialized the state machine.
MOZ_ASSERT(mCCRunnerState != CCRunnerState::Inactive);
if (mDidShutdown) {
return {CCRunnerAction::StopRunning, Yield};
}
if (mCCRunnerState == CCRunnerState::Canceled) {
// When we cancel a cycle, there may have been a final ForgetSkippable.
return {CCRunnerAction::StopRunning, Yield};
}
if (InIncrementalGC()) {
if (mCCBlockStart.IsNull()) {
BlockCC(aNow);
// If we have reached the CycleCollecting state, then ignore CC timer
// fires while incremental GC is running. (Running ICC during an IGC
// would cause us to synchronously finish the GC, which is bad.)
//
// If we have not yet started cycle collecting, then reset our state so
// that we run forgetSkippable often enough before CC. Because of reduced
// mCCDelay, forgetSkippable will be called just a few times.
//
// The kMaxCCLockedoutTime limit guarantees that we end up calling
// forgetSkippable and CycleCollectNow eventually.
if (mCCRunnerState != CCRunnerState::CycleCollecting) {
mCCRunnerState = CCRunnerState::ReducePurple;
mCCRunnerEarlyFireCount = 0;
mCCDelay = kCCDelay / int64_t(3);
}
return {CCRunnerAction::None, Yield};
}
if (GetCCBlockedTime(aNow) < kMaxCCLockedoutTime) {
return {CCRunnerAction::None, Yield};
}
// Locked out for too long, so proceed and finish the incremental GC
// synchronously.
}
// For states that aren't just continuations of previous states, check
// whether a CC is still needed (after doing various things to reduce the
// purple buffer).
if (desc.mCanAbortCC && !IsCCNeeded(aNow, aSuspectedCCObjects)) {
// If we don't pass the threshold for wanting to cycle collect, stop now
// (after possibly doing a final ForgetSkippable).
mCCRunnerState = CCRunnerState::Canceled;
NoteForgetSkippableOnlyCycle(aNow);
// Preserve the previous code's idea of when to check whether a
// ForgetSkippable should be fired.
if (desc.mTryFinalForgetSkippable &&
ShouldForgetSkippable(aSuspectedCCObjects)) {
// The Canceled state will make us StopRunning after this action is
// performed (see conditional at top of function).
return {CCRunnerAction::ForgetSkippable, Yield, KeepChildless};
}
return {CCRunnerAction::StopRunning, Yield};
}
switch (mCCRunnerState) {
// ReducePurple: a GC ran (or we otherwise decided to try CC'ing). Wait
// for some amount of time (kCCDelay, or less if incremental GC blocked
// this CC) while firing regular ForgetSkippable actions before continuing
// on.
case CCRunnerState::ReducePurple:
++mCCRunnerEarlyFireCount;
if (IsLastEarlyCCTimer(mCCRunnerEarlyFireCount)) {
mCCRunnerState = CCRunnerState::CleanupChildless;
}
if (ShouldForgetSkippable(aSuspectedCCObjects)) {
return {CCRunnerAction::ForgetSkippable, Yield, KeepChildless};
}
if (aDeadline.IsNull()) {
return {CCRunnerAction::None, Yield};
}
// If we're called during idle time, try to find some work to do by
// advancing to the next state, effectively bypassing some possible forget
// skippable calls.
mCCRunnerState = CCRunnerState::CleanupChildless;
// Continue on to CleanupChildless, but only after checking IsCCNeeded
// again.
return {CCRunnerAction::None, Continue};
// CleanupChildless: do a stronger ForgetSkippable that removes nodes with
// no children in the cycle collector graph. This state is split into 3
// parts; the other Cleanup* actions will happen within the same callback
// (unless the ForgetSkippable shrinks the purple buffer enough for the CC
// to be skipped entirely.)
case CCRunnerState::CleanupChildless:
mCCRunnerState = CCRunnerState::CleanupContentUnbinder;
return {CCRunnerAction::ForgetSkippable, Yield, RemoveChildless};
// CleanupContentUnbinder: continuing cleanup, clear out the content
// unbinder.
case CCRunnerState::CleanupContentUnbinder:
if (aDeadline.IsNull()) {
// Non-idle (waiting) callbacks skip the rest of the cleanup, but still
// wait for another fire before the actual CC.
mCCRunnerState = CCRunnerState::StartCycleCollection;
return {CCRunnerAction::None, Yield};
}
// Running in an idle callback.
// The deadline passed, so go straight to CC in the next slice.
if (aNow >= aDeadline) {
mCCRunnerState = CCRunnerState::StartCycleCollection;
return {CCRunnerAction::None, Yield};
}
mCCRunnerState = CCRunnerState::CleanupDeferred;
return {CCRunnerAction::CleanupContentUnbinder, Continue};
// CleanupDeferred: continuing cleanup, do deferred deletion.
case CCRunnerState::CleanupDeferred:
MOZ_ASSERT(!aDeadline.IsNull(),
"Should only be in CleanupDeferred state when idle");
// Our efforts to avoid a CC have failed. Let the timer fire once more
// to trigger a CC.
mCCRunnerState = CCRunnerState::StartCycleCollection;
if (aNow >= aDeadline) {
// The deadline passed, go straight to CC in the next slice.
return {CCRunnerAction::None, Yield};
}
return {CCRunnerAction::CleanupDeferred, Yield};
// StartCycleCollection: start actually doing cycle collection slices.
case CCRunnerState::StartCycleCollection:
// We are in the final timer fire and still meet the conditions for
// triggering a CC. Let RunCycleCollectorSlice finish the current IGC if
// any, because that will allow us to include the GC time in the CC pause.
mCCRunnerState = CCRunnerState::CycleCollecting;
[[fallthrough]];
// CycleCollecting: continue running slices until done.
case CCRunnerState::CycleCollecting:
return {CCRunnerAction::CycleCollect, Yield};
default:
MOZ_CRASH("Unexpected CCRunner state");
};
}
GCRunnerStep CCGCScheduler::GetNextGCRunnerAction(TimeStamp aDeadline) {
MOZ_ASSERT(mMajorGCReason != JS::GCReason::NO_REASON);
if (InIncrementalGC()) {
return {GCRunnerAction::GCSlice, mMajorGCReason};
}
if (mReadyForMajorGC) {
return {GCRunnerAction::StartMajorGC, mMajorGCReason};
}
return {GCRunnerAction::WaitToMajorGC, mMajorGCReason};
}
js::SliceBudget CCGCScheduler::ComputeForgetSkippableBudget(
TimeStamp aStartTimeStamp, TimeStamp aDeadline) {
if (mForgetSkippableFrequencyStartTime.IsNull()) {
mForgetSkippableFrequencyStartTime = aStartTimeStamp;
} else if (aStartTimeStamp - mForgetSkippableFrequencyStartTime >
kOneMinute) {
TimeStamp startPlusMinute = mForgetSkippableFrequencyStartTime + kOneMinute;
// If we had forget skippables only at the beginning of the interval, we
// still want to use the whole time, minute or more, for frequency
// calculation. mLastForgetSkippableEndTime is needed if forget skippable
// takes enough time to push the interval to be over a minute.
TimeStamp endPoint = std::max(startPlusMinute, mLastForgetSkippableEndTime);
// Duration in minutes.
double duration =
(endPoint - mForgetSkippableFrequencyStartTime).ToSeconds() / 60;
uint32_t frequencyPerMinute = uint32_t(mForgetSkippableCounter / duration);
Telemetry::Accumulate(Telemetry::FORGET_SKIPPABLE_FREQUENCY,
frequencyPerMinute);
mForgetSkippableCounter = 0;
mForgetSkippableFrequencyStartTime = aStartTimeStamp;
}
++mForgetSkippableCounter;
TimeDuration budgetTime =
aDeadline ? (aDeadline - aStartTimeStamp) : kForgetSkippableSliceDuration;
return js::SliceBudget(budgetTime);
}
} // namespace mozilla

Просмотреть файл

@ -300,14 +300,14 @@ class CCGCScheduler {
// Return a budget along with a boolean saying whether to prefer to run short
// slices and stop rather than continuing to the next phase of cycle
// collection.
inline js::SliceBudget ComputeCCSliceBudget(TimeStamp aDeadline,
TimeStamp aCCBeginTime,
TimeStamp aPrevSliceEndTime,
TimeStamp aNow,
bool* aPreferShorterSlices) const;
js::SliceBudget ComputeCCSliceBudget(TimeStamp aDeadline,
TimeStamp aCCBeginTime,
TimeStamp aPrevSliceEndTime,
TimeStamp aNow,
bool* aPreferShorterSlices) const;
inline TimeDuration ComputeInterSliceGCBudget(TimeStamp aDeadline,
TimeStamp aNow) const;
TimeDuration ComputeInterSliceGCBudget(TimeStamp aDeadline,
TimeStamp aNow) const;
bool ShouldForgetSkippable(uint32_t aSuspectedCCObjects) const {
// Only do a forget skippable if there are more than a few new objects
@ -329,8 +329,7 @@ class CCGCScheduler {
aNow - mLastCCEndTime > kCCForced);
}
inline bool ShouldScheduleCC(TimeStamp aNow,
uint32_t aSuspectedCCObjects) const;
bool ShouldScheduleCC(TimeStamp aNow, uint32_t aSuspectedCCObjects) const;
// If we collected a substantial amount of cycles, poke the GC since more
// objects might be unreachable now.
@ -383,10 +382,10 @@ class CCGCScheduler {
void DeactivateCCRunner() { mCCRunnerState = CCRunnerState::Inactive; }
inline GCRunnerStep GetNextGCRunnerAction(TimeStamp aDeadline);
GCRunnerStep GetNextGCRunnerAction(TimeStamp aDeadline);
inline CCRunnerStep AdvanceCCRunner(TimeStamp aDeadline, TimeStamp aNow,
uint32_t aSuspectedCCObjects);
CCRunnerStep AdvanceCCRunner(TimeStamp aDeadline, TimeStamp aNow,
uint32_t aSuspectedCCObjects);
// aStartTimeStamp : when the ForgetSkippable timer fired. This may be some
// time ago, if an incremental GC needed to be finished.
@ -452,322 +451,4 @@ class CCGCScheduler {
TimeDuration mActiveIntersliceGCBudget = TimeDuration::FromMilliseconds(5);
};
js::SliceBudget CCGCScheduler::ComputeCCSliceBudget(
TimeStamp aDeadline, TimeStamp aCCBeginTime, TimeStamp aPrevSliceEndTime,
TimeStamp aNow, bool* aPreferShorterSlices) const {
*aPreferShorterSlices =
aDeadline.IsNull() || (aDeadline - aNow) < kICCSliceBudget;
TimeDuration baseBudget =
aDeadline.IsNull() ? kICCSliceBudget : aDeadline - aNow;
if (aCCBeginTime.IsNull()) {
// If no CC is in progress, use the standard slice time.
return js::SliceBudget(js::TimeBudget(baseBudget),
kNumCCNodesBetweenTimeChecks);
}
// Only run a limited slice if we're within the max running time.
MOZ_ASSERT(aNow >= aCCBeginTime);
TimeDuration runningTime = aNow - aCCBeginTime;
if (runningTime >= kMaxICCDuration) {
return js::SliceBudget::unlimited();
}
const TimeDuration maxSlice =
TimeDuration::FromMilliseconds(MainThreadIdlePeriod::GetLongIdlePeriod());
// Try to make up for a delay in running this slice.
MOZ_ASSERT(aNow >= aPrevSliceEndTime);
double sliceDelayMultiplier =
(aNow - aPrevSliceEndTime) / kICCIntersliceDelay;
TimeDuration delaySliceBudget =
std::min(baseBudget.MultDouble(sliceDelayMultiplier), maxSlice);
// Increase slice budgets up to |maxSlice| as we approach
// half way through the ICC, to avoid large sync CCs.
double percentToHalfDone =
std::min(2.0 * (runningTime / kMaxICCDuration), 1.0);
TimeDuration laterSliceBudget = maxSlice.MultDouble(percentToHalfDone);
// Note: We may have already overshot the deadline, in which case
// baseBudget will be negative and we will end up returning
// laterSliceBudget.
return js::SliceBudget(js::TimeBudget(std::max(
{delaySliceBudget, laterSliceBudget, baseBudget})),
kNumCCNodesBetweenTimeChecks);
}
inline TimeDuration CCGCScheduler::ComputeInterSliceGCBudget(
TimeStamp aDeadline, TimeStamp aNow) const {
// We use longer budgets when the CC has been locked out but the CC has
// tried to run since that means we may have a significant amount of
// garbage to collect and it's better to GC in several longer slices than
// in a very long one.
TimeDuration budget =
aDeadline.IsNull() ? mActiveIntersliceGCBudget * 2 : aDeadline - aNow;
if (!mCCBlockStart) {
return budget;
}
TimeDuration blockedTime = aNow - mCCBlockStart;
TimeDuration maxSliceGCBudget = mActiveIntersliceGCBudget * 10;
double percentOfBlockedTime =
std::min(blockedTime / kMaxCCLockedoutTime, 1.0);
return std::max(budget, maxSliceGCBudget.MultDouble(percentOfBlockedTime));
}
bool CCGCScheduler::ShouldScheduleCC(TimeStamp aNow,
uint32_t aSuspectedCCObjects) const {
if (!mHasRunGC) {
return false;
}
// Don't run consecutive CCs too often.
if (mCleanupsSinceLastGC && !mLastCCEndTime.IsNull()) {
if (aNow - mLastCCEndTime < kCCDelay) {
return false;
}
}
// If GC hasn't run recently and forget skippable only cycle was run,
// don't start a new cycle too soon.
if ((mCleanupsSinceLastGC > kMajorForgetSkippableCalls) &&
!mLastForgetSkippableCycleEndTime.IsNull()) {
if (aNow - mLastForgetSkippableCycleEndTime <
kTimeBetweenForgetSkippableCycles) {
return false;
}
}
return IsCCNeeded(aNow, aSuspectedCCObjects);
}
CCRunnerStep CCGCScheduler::AdvanceCCRunner(TimeStamp aDeadline, TimeStamp aNow,
uint32_t aSuspectedCCObjects) {
struct StateDescriptor {
// When in this state, should we first check to see if we still have
// enough reason to CC?
bool mCanAbortCC;
// If we do decide to abort the CC, should we still try to forget
// skippables one more time?
bool mTryFinalForgetSkippable;
};
// The state descriptors for Inactive and Canceled will never actually be
// used. We will never call this function while Inactive, and Canceled is
// handled specially at the beginning.
constexpr StateDescriptor stateDescriptors[] = {
{false, false}, /* CCRunnerState::Inactive */
{false, false}, /* CCRunnerState::ReducePurple */
{true, true}, /* CCRunnerState::CleanupChildless */
{true, false}, /* CCRunnerState::CleanupContentUnbinder */
{false, false}, /* CCRunnerState::CleanupDeferred */
{false, false}, /* CCRunnerState::StartCycleCollection */
{false, false}, /* CCRunnerState::CycleCollecting */
{false, false}}; /* CCRunnerState::Canceled */
static_assert(
ArrayLength(stateDescriptors) == size_t(CCRunnerState::NumStates),
"need one state descriptor per state");
const StateDescriptor& desc = stateDescriptors[int(mCCRunnerState)];
// Make sure we initialized the state machine.
MOZ_ASSERT(mCCRunnerState != CCRunnerState::Inactive);
if (mDidShutdown) {
return {CCRunnerAction::StopRunning, Yield};
}
if (mCCRunnerState == CCRunnerState::Canceled) {
// When we cancel a cycle, there may have been a final ForgetSkippable.
return {CCRunnerAction::StopRunning, Yield};
}
if (InIncrementalGC()) {
if (mCCBlockStart.IsNull()) {
BlockCC(aNow);
// If we have reached the CycleCollecting state, then ignore CC timer
// fires while incremental GC is running. (Running ICC during an IGC
// would cause us to synchronously finish the GC, which is bad.)
//
// If we have not yet started cycle collecting, then reset our state so
// that we run forgetSkippable often enough before CC. Because of reduced
// mCCDelay, forgetSkippable will be called just a few times.
//
// The kMaxCCLockedoutTime limit guarantees that we end up calling
// forgetSkippable and CycleCollectNow eventually.
if (mCCRunnerState != CCRunnerState::CycleCollecting) {
mCCRunnerState = CCRunnerState::ReducePurple;
mCCRunnerEarlyFireCount = 0;
mCCDelay = kCCDelay / int64_t(3);
}
return {CCRunnerAction::None, Yield};
}
if (GetCCBlockedTime(aNow) < kMaxCCLockedoutTime) {
return {CCRunnerAction::None, Yield};
}
// Locked out for too long, so proceed and finish the incremental GC
// synchronously.
}
// For states that aren't just continuations of previous states, check
// whether a CC is still needed (after doing various things to reduce the
// purple buffer).
if (desc.mCanAbortCC && !IsCCNeeded(aNow, aSuspectedCCObjects)) {
// If we don't pass the threshold for wanting to cycle collect, stop now
// (after possibly doing a final ForgetSkippable).
mCCRunnerState = CCRunnerState::Canceled;
NoteForgetSkippableOnlyCycle(aNow);
// Preserve the previous code's idea of when to check whether a
// ForgetSkippable should be fired.
if (desc.mTryFinalForgetSkippable &&
ShouldForgetSkippable(aSuspectedCCObjects)) {
// The Canceled state will make us StopRunning after this action is
// performed (see conditional at top of function).
return {CCRunnerAction::ForgetSkippable, Yield, KeepChildless};
}
return {CCRunnerAction::StopRunning, Yield};
}
switch (mCCRunnerState) {
// ReducePurple: a GC ran (or we otherwise decided to try CC'ing). Wait
// for some amount of time (kCCDelay, or less if incremental GC blocked
// this CC) while firing regular ForgetSkippable actions before continuing
// on.
case CCRunnerState::ReducePurple:
++mCCRunnerEarlyFireCount;
if (IsLastEarlyCCTimer(mCCRunnerEarlyFireCount)) {
mCCRunnerState = CCRunnerState::CleanupChildless;
}
if (ShouldForgetSkippable(aSuspectedCCObjects)) {
return {CCRunnerAction::ForgetSkippable, Yield, KeepChildless};
}
if (aDeadline.IsNull()) {
return {CCRunnerAction::None, Yield};
}
// If we're called during idle time, try to find some work to do by
// advancing to the next state, effectively bypassing some possible forget
// skippable calls.
mCCRunnerState = CCRunnerState::CleanupChildless;
// Continue on to CleanupChildless, but only after checking IsCCNeeded
// again.
return {CCRunnerAction::None, Continue};
// CleanupChildless: do a stronger ForgetSkippable that removes nodes with
// no children in the cycle collector graph. This state is split into 3
// parts; the other Cleanup* actions will happen within the same callback
// (unless the ForgetSkippable shrinks the purple buffer enough for the CC
// to be skipped entirely.)
case CCRunnerState::CleanupChildless:
mCCRunnerState = CCRunnerState::CleanupContentUnbinder;
return {CCRunnerAction::ForgetSkippable, Yield, RemoveChildless};
// CleanupContentUnbinder: continuing cleanup, clear out the content
// unbinder.
case CCRunnerState::CleanupContentUnbinder:
if (aDeadline.IsNull()) {
// Non-idle (waiting) callbacks skip the rest of the cleanup, but still
// wait for another fire before the actual CC.
mCCRunnerState = CCRunnerState::StartCycleCollection;
return {CCRunnerAction::None, Yield};
}
// Running in an idle callback.
// The deadline passed, so go straight to CC in the next slice.
if (aNow >= aDeadline) {
mCCRunnerState = CCRunnerState::StartCycleCollection;
return {CCRunnerAction::None, Yield};
}
mCCRunnerState = CCRunnerState::CleanupDeferred;
return {CCRunnerAction::CleanupContentUnbinder, Continue};
// CleanupDeferred: continuing cleanup, do deferred deletion.
case CCRunnerState::CleanupDeferred:
MOZ_ASSERT(!aDeadline.IsNull(),
"Should only be in CleanupDeferred state when idle");
// Our efforts to avoid a CC have failed. Let the timer fire once more
// to trigger a CC.
mCCRunnerState = CCRunnerState::StartCycleCollection;
if (aNow >= aDeadline) {
// The deadline passed, go straight to CC in the next slice.
return {CCRunnerAction::None, Yield};
}
return {CCRunnerAction::CleanupDeferred, Yield};
// StartCycleCollection: start actually doing cycle collection slices.
case CCRunnerState::StartCycleCollection:
// We are in the final timer fire and still meet the conditions for
// triggering a CC. Let RunCycleCollectorSlice finish the current IGC if
// any, because that will allow us to include the GC time in the CC pause.
mCCRunnerState = CCRunnerState::CycleCollecting;
[[fallthrough]];
// CycleCollecting: continue running slices until done.
case CCRunnerState::CycleCollecting:
return {CCRunnerAction::CycleCollect, Yield};
default:
MOZ_CRASH("Unexpected CCRunner state");
};
}
GCRunnerStep CCGCScheduler::GetNextGCRunnerAction(TimeStamp aDeadline) {
MOZ_ASSERT(mMajorGCReason != JS::GCReason::NO_REASON);
if (InIncrementalGC()) {
return {GCRunnerAction::GCSlice, mMajorGCReason};
}
if (mReadyForMajorGC) {
return {GCRunnerAction::StartMajorGC, mMajorGCReason};
}
return {GCRunnerAction::WaitToMajorGC, mMajorGCReason};
}
inline js::SliceBudget CCGCScheduler::ComputeForgetSkippableBudget(
TimeStamp aStartTimeStamp, TimeStamp aDeadline) {
if (mForgetSkippableFrequencyStartTime.IsNull()) {
mForgetSkippableFrequencyStartTime = aStartTimeStamp;
} else if (aStartTimeStamp - mForgetSkippableFrequencyStartTime >
kOneMinute) {
TimeStamp startPlusMinute = mForgetSkippableFrequencyStartTime + kOneMinute;
// If we had forget skippables only at the beginning of the interval, we
// still want to use the whole time, minute or more, for frequency
// calculation. mLastForgetSkippableEndTime is needed if forget skippable
// takes enough time to push the interval to be over a minute.
TimeStamp endPoint = std::max(startPlusMinute, mLastForgetSkippableEndTime);
// Duration in minutes.
double duration =
(endPoint - mForgetSkippableFrequencyStartTime).ToSeconds() / 60;
uint32_t frequencyPerMinute = uint32_t(mForgetSkippableCounter / duration);
Telemetry::Accumulate(Telemetry::FORGET_SKIPPABLE_FREQUENCY,
frequencyPerMinute);
mForgetSkippableCounter = 0;
mForgetSkippableFrequencyStartTime = aStartTimeStamp;
}
++mForgetSkippableCounter;
TimeDuration budgetTime =
aDeadline ? (aDeadline - aStartTimeStamp) : kForgetSkippableSliceDuration;
return js::SliceBudget(budgetTime);
}
} // namespace mozilla