зеркало из https://github.com/mozilla/gecko-dev.git
servo: Merge #18086 - stylo: Bug 1362896 - Implement ComputeSquaredDistance for TransformList (from BorisChiou:stylo/transform/distance); r=nox,birtles
We implement ComputeSquaredDistance for TransformList. --- - [X] `./mach build -d` does not report any errors - [X] `./mach test-tidy` does not report any errors - [X] These changes fix [Bug 1362896](https://bugzilla.mozilla.org/show_bug.cgi?id=1362896). - [X] These changes do not require tests because Gecko has related tests. Source-Repo: https://github.com/servo/servo Source-Revision: 494dcd7e52df4e80565e7fea6213a24d4bdae785 --HG-- extra : subtree_source : https%3A//hg.mozilla.org/projects/converted-servo-linear extra : subtree_revision : f1542ad7d7ebc5f1374797ccca27d394c6990169
This commit is contained in:
Родитель
ee774b8c7a
Коммит
def8d4dc24
|
@ -8,7 +8,7 @@
|
|||
|
||||
use app_units::Au;
|
||||
use cssparser::Parser;
|
||||
use euclid::{Point2D, Size2D};
|
||||
use euclid::{Point2D, Point3D, Size2D};
|
||||
#[cfg(feature = "gecko")] use gecko_bindings::bindings::RawServoAnimationValueMap;
|
||||
#[cfg(feature = "gecko")] use gecko_bindings::structs::RawGeckoGfxMatrix4x4;
|
||||
#[cfg(feature = "gecko")] use gecko_bindings::structs::nsCSSPropertyID;
|
||||
|
@ -1505,21 +1505,25 @@ fn rotate_to_matrix(x: f32, y: f32, z: f32, a: Angle) -> ComputedMatrix {
|
|||
}
|
||||
|
||||
/// A 2d matrix for interpolation.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
#[allow(missing_docs)]
|
||||
// FIXME: We use custom derive for ComputeSquaredDistance. However, If possible, we should convert
|
||||
// the InnerMatrix2D into types with physical meaning. This custom derive computes the squared
|
||||
// distance from each matrix item, and this makes the result different from that in Gecko if we
|
||||
// have skew factor in the ComputedMatrix.
|
||||
pub struct InnerMatrix2D {
|
||||
pub m11: CSSFloat, pub m12: CSSFloat,
|
||||
pub m21: CSSFloat, pub m22: CSSFloat,
|
||||
}
|
||||
|
||||
/// A 2d translation function.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct Translate2D(f32, f32);
|
||||
|
||||
/// A 2d scale function.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct Scale2D(f32, f32);
|
||||
|
||||
|
@ -1614,6 +1618,20 @@ impl Animatable for MatrixDecomposed2D {
|
|||
}
|
||||
}
|
||||
|
||||
impl ComputeSquaredDistance for MatrixDecomposed2D {
|
||||
#[inline]
|
||||
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
||||
// Use Radian to compute the distance.
|
||||
const RAD_PER_DEG: f64 = ::std::f64::consts::PI / 180.0;
|
||||
let angle1 = self.angle as f64 * RAD_PER_DEG;
|
||||
let angle2 = other.angle as f64 * RAD_PER_DEG;
|
||||
Ok(self.translate.compute_squared_distance(&other.translate)? +
|
||||
self.scale.compute_squared_distance(&other.scale)? +
|
||||
angle1.compute_squared_distance(&angle2)? +
|
||||
self.matrix.compute_squared_distance(&other.matrix)?)
|
||||
}
|
||||
}
|
||||
|
||||
impl Animatable for ComputedMatrix {
|
||||
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
|
||||
if self.is_3d() || other.is_3d() {
|
||||
|
@ -1638,6 +1656,21 @@ impl Animatable for ComputedMatrix {
|
|||
}
|
||||
}
|
||||
|
||||
impl ComputeSquaredDistance for ComputedMatrix {
|
||||
#[inline]
|
||||
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
||||
if self.is_3d() || other.is_3d() {
|
||||
let from = decompose_3d_matrix(*self)?;
|
||||
let to = decompose_3d_matrix(*other)?;
|
||||
from.compute_squared_distance(&to)
|
||||
} else {
|
||||
let from = MatrixDecomposed2D::from(*self);
|
||||
let to = MatrixDecomposed2D::from(*other);
|
||||
from.compute_squared_distance(&to)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ComputedMatrix> for MatrixDecomposed2D {
|
||||
/// Decompose a 2D matrix.
|
||||
/// https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix
|
||||
|
@ -1762,12 +1795,12 @@ impl From<ComputedMatrix> for RawGeckoGfxMatrix4x4 {
|
|||
}
|
||||
|
||||
/// A 3d translation.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct Translate3D(f32, f32, f32);
|
||||
|
||||
/// A 3d scale function.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct Scale3D(f32, f32, f32);
|
||||
|
||||
|
@ -1777,17 +1810,17 @@ pub struct Scale3D(f32, f32, f32);
|
|||
pub struct Skew(f32, f32, f32);
|
||||
|
||||
/// A 3d perspective transformation.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct Perspective(f32, f32, f32, f32);
|
||||
|
||||
/// A quaternion used to represent a rotation.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct Quaternion(f32, f32, f32, f32);
|
||||
pub struct Quaternion(f64, f64, f64, f64);
|
||||
|
||||
/// A decomposed 3d matrix.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct MatrixDecomposed3D {
|
||||
/// A translation function.
|
||||
|
@ -1802,6 +1835,78 @@ pub struct MatrixDecomposed3D {
|
|||
pub quaternion: Quaternion,
|
||||
}
|
||||
|
||||
/// A wrapper of Point3D to represent the direction vector (rotate axis) for Rotate3D.
|
||||
#[derive(Clone, Copy, Debug, PartialEq)]
|
||||
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
|
||||
pub struct DirectionVector(Point3D<f64>);
|
||||
|
||||
impl Quaternion {
|
||||
/// Return a quaternion from a unit direction vector and angle (unit: radian).
|
||||
#[inline]
|
||||
fn from_direction_and_angle(vector: &DirectionVector, angle: f64) -> Self {
|
||||
debug_assert!((vector.length() - 1.).abs() < 0.0001f64,
|
||||
"Only accept an unit direction vector to create a quaternion");
|
||||
// Reference:
|
||||
// https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
||||
//
|
||||
// if the direction axis is (x, y, z) = xi + yj + zk,
|
||||
// and the angle is |theta|, this formula can be done using
|
||||
// an extension of Euler's formula:
|
||||
// q = cos(theta/2) + (xi + yj + zk)(sin(theta/2))
|
||||
// = cos(theta/2) +
|
||||
// x*sin(theta/2)i + y*sin(theta/2)j + z*sin(theta/2)k
|
||||
Quaternion(vector.0.x * (angle / 2.).sin(),
|
||||
vector.0.y * (angle / 2.).sin(),
|
||||
vector.0.z * (angle / 2.).sin(),
|
||||
(angle / 2.).cos())
|
||||
}
|
||||
|
||||
/// Calculate the dot product.
|
||||
#[inline]
|
||||
fn dot(&self, other: &Self) -> f64 {
|
||||
self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3
|
||||
}
|
||||
}
|
||||
|
||||
impl ComputeSquaredDistance for Quaternion {
|
||||
#[inline]
|
||||
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
||||
// Use quaternion vectors to get the angle difference. Both q1 and q2 are unit vectors,
|
||||
// so we can get their angle difference by:
|
||||
// cos(theta/2) = (q1 dot q2) / (|q1| * |q2|) = q1 dot q2.
|
||||
let distance = self.dot(other).max(-1.0).min(1.0).acos() * 2.0;
|
||||
Ok(SquaredDistance::Value(distance * distance))
|
||||
}
|
||||
}
|
||||
|
||||
impl DirectionVector {
|
||||
/// Create a DirectionVector.
|
||||
#[inline]
|
||||
fn new(x: f64, y: f64, z: f64) -> Self {
|
||||
DirectionVector(Point3D::new(x, y, z))
|
||||
}
|
||||
|
||||
/// Return the normalized direction vector.
|
||||
#[inline]
|
||||
fn normalize(&mut self) -> bool {
|
||||
let len = self.length();
|
||||
if len > 0. {
|
||||
self.0.x = self.0.x / len;
|
||||
self.0.y = self.0.y / len;
|
||||
self.0.z = self.0.z / len;
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the length of this vector.
|
||||
#[inline]
|
||||
fn length(&self) -> f64 {
|
||||
self.0.to_array().iter().fold(0f64, |sum, v| sum + v * v).sqrt()
|
||||
}
|
||||
}
|
||||
|
||||
/// Decompose a 3D matrix.
|
||||
/// https://drafts.csswg.org/css-transforms/#decomposing-a-3d-matrix
|
||||
fn decompose_3d_matrix(mut matrix: ComputedMatrix) -> Result<MatrixDecomposed3D, ()> {
|
||||
|
@ -1922,10 +2027,10 @@ fn decompose_3d_matrix(mut matrix: ComputedMatrix) -> Result<MatrixDecomposed3D,
|
|||
|
||||
// Now, get the rotations out
|
||||
let mut quaternion = Quaternion (
|
||||
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0)).sqrt(),
|
||||
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0)).sqrt(),
|
||||
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0)).sqrt(),
|
||||
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0)).sqrt()
|
||||
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
|
||||
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
|
||||
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
|
||||
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0) as f64).sqrt()
|
||||
);
|
||||
|
||||
if row[2][1] > row[1][2] {
|
||||
|
@ -2000,6 +2105,17 @@ impl Animatable for Skew {
|
|||
}
|
||||
}
|
||||
|
||||
impl ComputeSquaredDistance for Skew {
|
||||
// We have to use atan() to convert the skew factors into skew angles, so implement
|
||||
// ComputeSquaredDistance manually.
|
||||
#[inline]
|
||||
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
||||
Ok(self.0.atan().compute_squared_distance(&other.0.atan())? +
|
||||
self.1.atan().compute_squared_distance(&other.1.atan())? +
|
||||
self.2.atan().compute_squared_distance(&other.2.atan())?)
|
||||
}
|
||||
}
|
||||
|
||||
impl Animatable for Perspective {
|
||||
fn add_weighted(&self, other: &Self, self_portion: f64, other_portion: f64) -> Result<Self, ()> {
|
||||
Ok(Perspective(
|
||||
|
@ -2042,7 +2158,7 @@ impl Animatable for MatrixDecomposed3D {
|
|||
// Determine the scale factor.
|
||||
let mut theta = clamped_w.acos();
|
||||
let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
|
||||
theta *= self_portion as f32;
|
||||
theta *= self_portion;
|
||||
scale *= theta.sin();
|
||||
|
||||
// Scale the self matrix by self_portion.
|
||||
|
@ -2076,12 +2192,12 @@ impl Animatable for MatrixDecomposed3D {
|
|||
}
|
||||
|
||||
let theta = product.acos();
|
||||
let w = (other_portion as f32 * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
|
||||
let w = (other_portion * theta).sin() * 1.0 / (1.0 - product * product).sqrt();
|
||||
|
||||
let mut a = *self;
|
||||
let mut b = *other;
|
||||
% for i in range(4):
|
||||
a.quaternion.${i} *= (other_portion as f32 * theta).cos() - product * w;
|
||||
a.quaternion.${i} *= (other_portion * theta).cos() - product * w;
|
||||
b.quaternion.${i} *= w;
|
||||
sum.quaternion.${i} = a.quaternion.${i} + b.quaternion.${i};
|
||||
% endfor
|
||||
|
@ -2118,15 +2234,15 @@ impl From<MatrixDecomposed3D> for ComputedMatrix {
|
|||
// Construct a composite rotation matrix from the quaternion values
|
||||
// rotationMatrix is a identity 4x4 matrix initially
|
||||
let mut rotation_matrix = ComputedMatrix::identity();
|
||||
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z);
|
||||
rotation_matrix.m12 = 2.0 * (x * y + z * w);
|
||||
rotation_matrix.m13 = 2.0 * (x * z - y * w);
|
||||
rotation_matrix.m21 = 2.0 * (x * y - z * w);
|
||||
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z);
|
||||
rotation_matrix.m23 = 2.0 * (y * z + x * w);
|
||||
rotation_matrix.m31 = 2.0 * (x * z + y * w);
|
||||
rotation_matrix.m32 = 2.0 * (y * z - x * w);
|
||||
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y);
|
||||
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z) as f32;
|
||||
rotation_matrix.m12 = 2.0 * (x * y + z * w) as f32;
|
||||
rotation_matrix.m13 = 2.0 * (x * z - y * w) as f32;
|
||||
rotation_matrix.m21 = 2.0 * (x * y - z * w) as f32;
|
||||
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z) as f32;
|
||||
rotation_matrix.m23 = 2.0 * (y * z + x * w) as f32;
|
||||
rotation_matrix.m31 = 2.0 * (x * z + y * w) as f32;
|
||||
rotation_matrix.m32 = 2.0 * (y * z - x * w) as f32;
|
||||
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y) as f32;
|
||||
|
||||
matrix = multiply(rotation_matrix, matrix);
|
||||
|
||||
|
@ -2370,11 +2486,131 @@ impl Animatable for TransformList {
|
|||
}
|
||||
}
|
||||
|
||||
/// A helper function to retrieve the pixel length and percentage value.
|
||||
fn extract_pixel_calc_value(lop: &LengthOrPercentage) -> (f64, CSSFloat) {
|
||||
match lop {
|
||||
&LengthOrPercentage::Length(au) => (au.to_f64_px(), 0.),
|
||||
&LengthOrPercentage::Percentage(percent) => (0., percent.0),
|
||||
&LengthOrPercentage::Calc(calc) => (calc.length().to_f64_px(), calc.percentage())
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute the squared distance of two transform lists.
|
||||
// This might not be the most useful definition of distance. It might be better, for example,
|
||||
// to trace the distance travelled by a point as its transform is interpolated between the two
|
||||
// lists. That, however, proves to be quite complicated so we take a simple approach for now.
|
||||
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1318591#c0.
|
||||
fn compute_transform_lists_squared_distance(from_list: &[TransformOperation],
|
||||
to_list: &[TransformOperation])
|
||||
-> Result<SquaredDistance, ()> {
|
||||
let zero_distance = SquaredDistance::Value(0.);
|
||||
let squared_distance = from_list.iter().zip(to_list.iter()).map(|(from, to)| {
|
||||
match (from, to) {
|
||||
(&TransformOperation::Matrix(from),
|
||||
&TransformOperation::Matrix(to)) => {
|
||||
from.compute_squared_distance(&to).unwrap_or(zero_distance)
|
||||
}
|
||||
(&TransformOperation::Skew(fx, fy),
|
||||
&TransformOperation::Skew(tx, ty)) => {
|
||||
fx.compute_squared_distance(&tx).unwrap_or(zero_distance) +
|
||||
fy.compute_squared_distance(&ty).unwrap_or(zero_distance)
|
||||
}
|
||||
(&TransformOperation::Translate(fx, fy, fz),
|
||||
&TransformOperation::Translate(tx, ty, tz)) => {
|
||||
// We don't want to require doing layout in order to calculate the result, so
|
||||
// drop the percentage part. However, dropping percentage makes us impossible to
|
||||
// compute the distance for the percentage-percentage case, but Gecko uses the
|
||||
// same formula, so it's fine for now.
|
||||
// Note: We use pixel value to compute the distance for translate, so we have to
|
||||
// convert Au into px.
|
||||
let diff_x = fx.add_weighted(&tx, 1., -1.).unwrap_or(LengthOrPercentage::zero());
|
||||
let diff_y = fy.add_weighted(&ty, 1., -1.).unwrap_or(LengthOrPercentage::zero());
|
||||
let (diff_x_length, _) = extract_pixel_calc_value(&diff_x);
|
||||
let (diff_y_length, _) = extract_pixel_calc_value(&diff_y);
|
||||
SquaredDistance::Value(diff_x_length * diff_x_length) +
|
||||
SquaredDistance::Value(diff_y_length * diff_y_length) +
|
||||
fz.to_f64_px().compute_squared_distance(&tz.to_f64_px()).unwrap_or(zero_distance)
|
||||
}
|
||||
(&TransformOperation::Scale(fx, fy, fz),
|
||||
&TransformOperation::Scale(tx, ty, tz)) => {
|
||||
fx.compute_squared_distance(&tx).unwrap_or(zero_distance) +
|
||||
fy.compute_squared_distance(&ty).unwrap_or(zero_distance) +
|
||||
fz.compute_squared_distance(&tz).unwrap_or(zero_distance)
|
||||
}
|
||||
(&TransformOperation::Rotate(fx, fy, fz, fa),
|
||||
&TransformOperation::Rotate(tx, ty, tz, ta)) => {
|
||||
// A direction vector that cannot be normalized, such as [0,0,0], will cause the
|
||||
// rotation to not be applied. i.e. Use an identity matrix or rotate3d(0, 0, 1, 0).
|
||||
let get_normalized_vector_and_angle = |x: f32, y: f32, z: f32, angle: Angle|
|
||||
-> (DirectionVector, Angle) {
|
||||
let mut vector = DirectionVector::new(x as f64, y as f64, z as f64);
|
||||
if vector.normalize() {
|
||||
(vector, angle)
|
||||
} else {
|
||||
(DirectionVector::new(0., 0., 1.), Angle::zero())
|
||||
}
|
||||
};
|
||||
|
||||
let (vector1, angle1) = get_normalized_vector_and_angle(fx, fy, fz, fa);
|
||||
let (vector2, angle2) = get_normalized_vector_and_angle(tx, ty, tz, ta);
|
||||
if vector1 == vector2 {
|
||||
angle1.compute_squared_distance(&angle2).unwrap_or(zero_distance)
|
||||
} else {
|
||||
let q1 = Quaternion::from_direction_and_angle(&vector1, angle1.radians64());
|
||||
let q2 = Quaternion::from_direction_and_angle(&vector2, angle2.radians64());
|
||||
q1.compute_squared_distance(&q2).unwrap_or(zero_distance)
|
||||
}
|
||||
}
|
||||
(&TransformOperation::Perspective(fd),
|
||||
&TransformOperation::Perspective(td)) => {
|
||||
let mut fd_matrix = ComputedMatrix::identity();
|
||||
let mut td_matrix = ComputedMatrix::identity();
|
||||
if fd.0 > 0 {
|
||||
fd_matrix.m34 = -1. / fd.to_f32_px();
|
||||
}
|
||||
|
||||
if td.0 > 0 {
|
||||
td_matrix.m34 = -1. / td.to_f32_px();
|
||||
}
|
||||
fd_matrix.compute_squared_distance(&td_matrix).unwrap_or(zero_distance)
|
||||
}
|
||||
(&TransformOperation::Perspective(p), &TransformOperation::Matrix(m)) |
|
||||
(&TransformOperation::Matrix(m), &TransformOperation::Perspective(p)) => {
|
||||
let mut p_matrix = ComputedMatrix::identity();
|
||||
if p.0 > 0 {
|
||||
p_matrix.m34 = -1. / p.to_f32_px();
|
||||
}
|
||||
p_matrix.compute_squared_distance(&m).unwrap_or(zero_distance)
|
||||
}
|
||||
_ => {
|
||||
// We don't support computation of distance for InterpolateMatrix and
|
||||
// AccumulateMatrix.
|
||||
zero_distance
|
||||
}
|
||||
}
|
||||
}).sum();
|
||||
|
||||
Ok(squared_distance)
|
||||
}
|
||||
|
||||
impl ComputeSquaredDistance for TransformList {
|
||||
#[inline]
|
||||
fn compute_squared_distance(&self, _other: &Self) -> Result<SquaredDistance, ()> {
|
||||
// FIXME: This should be implemented.
|
||||
Err(())
|
||||
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
|
||||
match (self.0.as_ref(), other.0.as_ref()) {
|
||||
(Some(from_list), Some(to_list)) => {
|
||||
if can_interpolate_list(from_list, to_list) {
|
||||
compute_transform_lists_squared_distance(from_list, to_list)
|
||||
} else {
|
||||
// Bug 1390039: we don't handle mismatch transform lists for now.
|
||||
Err(())
|
||||
}
|
||||
},
|
||||
(Some(list), None) | (None, Some(list)) => {
|
||||
let none = build_identity_transform_list(list);
|
||||
compute_transform_lists_squared_distance(list, &none)
|
||||
}
|
||||
_ => Ok(SquaredDistance::Value(0.))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -78,7 +78,8 @@ impl ComputeSquaredDistance for CalcLengthOrPercentage {
|
|||
// FIXME(nox): This looks incorrect to me, to add a distance between lengths
|
||||
// with a distance between percentages.
|
||||
Ok(
|
||||
self.unclamped_length().compute_squared_distance(&other.unclamped_length())? +
|
||||
self.unclamped_length().to_f64_px().compute_squared_distance(
|
||||
&other.unclamped_length().to_f64_px())? +
|
||||
self.percentage().compute_squared_distance(&other.percentage())?,
|
||||
)
|
||||
}
|
||||
|
|
Загрузка…
Ссылка в новой задаче