This removes the unnecessary setting of c-basic-offset from all
python-mode files.
This was automatically generated using
perl -pi -e 's/; *c-basic-offset: *[0-9]+//'
... on the affected files.
The bulk of these files are moz.build files but there a few others as
well.
MozReview-Commit-ID: 2pPf3DEiZqx
--HG--
extra : rebase_source : 0a7dcac80b924174a2c429b093791148ea6ac204
Something similar was done in bug 1278718 for ASan builds, because of
indirect dependencies on libstdc++ being picked by the linker and
leading to linkage failure with the older binutils from the CentOS 6
image we use to do desktop builds.
Build slaves on automation are based on Centos 6, which doesn't have a
recent enough version of libstdc++ for our new requirements. But since
we're building with a recent GCC or clang with its own libstdc++, we do
have such a libstdc++ available somewhere, and the compiler picks it
when invoking the linker.
Problems start happening when we execute some of the built programs
during the build, like host tools (e.g. nsinstall), or target programs
(xpcshell, during packaging). In that case, we need the compiler's
libstdc++ to be used. Which required adding the GCC or clang library
directory to LD_LIBRARY_PATH.
Unconveniently enough, the clang 3.5 tooltool package we're using for
ASAN builds until we can update to at least 3.8 (bug 1278718) doesn't
contain libstdc++.so. So for those builds, pull the GCC package from
tooltool as well, and pick libstdc++ from there.
We have very few directories where we have SOURCES declared that are not
part of a library or program in some way. In fact, there is only one
where it is legitimate because we only use the object file
(build/unix/elfhack/inject). Others are the result of moz.build control
flow (see e.g. netwerk/standalone), and we end up building more objects
than we need to.
There are other cases where we need objects without actually linking
them anywhere, but there are other sources in the same directory, and a
corresponding Linkable is emitted. And in fact, the only case I knew
about (media/libvpx), doesn't use such objects since bug 1151175.
The unix mozconfig.rust is actually completely generic now that we're
using toolchains built with --enable-rpath in tooltool.
Move the mozconfig.rust fragment up a level to reduce confusion.
Write a mozconfig.rust fragment which makes the rust toolchain
provided by tooltool available for linux builds, similar to
what we do for MacOS X.
Include this in linux64 mozconfigs to enable rust for official
nightly builds of that target. These aren't used outside of automation
builds, so including rust there will verify code on check-in
without requiring developers to install rust.
We must whitelist the mozconfig fragment to pass the consistency
check since we're not ready to let this feature ride the trains
to beta and release.
The tooltool reference is to a custom build of rustc 1.4
with --enable-rpath to avoid having to add the rustc lib
directory to LD_LIBRARY_PATH which somehow conflicts with
the gtk3 build we also install through tooltool.
It is also built with --enable-llvm-static-stdcpp on a
rust-buildbot dist docker image (centos:5 + script updates)
to avoid issues with GLIBCXX and GLIBC symbol versions.
This adds a stages config option, which can be used to select 1, 2, and
3 stage builds. It also marks the default trunk configuration to do 3
stage builds, and defaults to that.
Since CMake generated build systems can run cmake if necessary, this
will make it possible to pick up changes from the source directory if
any and resume as much of the build as possible.
This builds the foundation for removing the need to blow away any of the
work done by the previous runs of the script.
We build gcc after clang, and extract libgcc libraries and libstdc++
headers from gcc and place them in the clang installation directory in a
way that clang favors before it searches the system for libraries and
includes.
Its only purpose is to disable PGO. Where that was not already explicitly done,
or irrelevant (because the directory only contains python), I disabled it in
moz.build.
As part of this move, HOST_NSPR_MDCPUCFG needed to be changed to get the quoting right.
--HG--
extra : commitid : J26MhSiPq9g
extra : rebase_source : 81c5b98371042803741ddace8d01b0097757dff3
When switching between Gtk+3 and Gtk+2, config.cache will contain a PKG_CONFIG
that may not be suitable for the build:
- after a Gtk+2 build, config.cache will point to the system pkg-config, which
doesn't like the pkg-config files in the Gtk+3 tooltool package.
- after a Gtk+3 build, config.cache will point to the Gtk+3 tooltool package's
pkg-config, which is likely not there in a Gtk+2 build.
Setting PKG_CONFIG avoids all config.cache considerations altogether, so set it
appropriately for both cases.