And with some tidying some comments and removing stray #include "gfxPrefs.h"
Differential Revision: https://phabricator.services.mozilla.com/D31468
--HG--
extra : moz-landing-system : lando
And with some tidying some comments and removing stray #include "gfxPrefs.h"
Differential Revision: https://phabricator.services.mozilla.com/D31468
--HG--
extra : moz-landing-system : lando
And with some tidying some comments and removing stray #include "gfxPrefs.h"
Differential Revision: https://phabricator.services.mozilla.com/D31468
--HG--
extra : moz-landing-system : lando
If a vector image has an image container, it is unlikely the caller will
call VectorImage::Draw (and thus Show indirectly) to display the image.
As such, WebRender was missing subsequent invalidations and not
regenerating the rasterized surface as expected. Thus we now resume
honoring the invalidations if we updated the image container.
Differential Revision: https://phabricator.services.mozilla.com/D15667
This patch makes ImageContainer create a SharedSurfacesAnimation object
when it detects that we are using shared surfaces and are producing full
frames.
Differential Revision: https://phabricator.services.mozilla.com/D7505
If FLAG_HIGH_QUALITY_SCALING is used, we should use
SurfaceCache::LookupBestMatch just like how it is done in RasterImage.
This may provide an alternative size at which we should rasterize the
SVG instead of the requested size. Since SurfaceCache imposes a maximum
size for which it will permit rasterized SVGs, we should also bypass the
cache entirely if we are well above that and simply draw directly to the
draw target in such cases.
With WebRender, it is somewhat more complicated. We will now return
NOT_SUPPORTED if the size is too big, and this should trigger fallback
to blob images. This should only produce drawing commands for the
relevant region and save us the high cost of rasterized a very large
surface on the main thread, which at the same time, looking as crisp as
a user would expect.
If FLAG_HIGH_QUALITY_SCALING is used, we should use
SurfaceCache::LookupBestMatch just like how it is done in RasterImage.
This may provide an alternative size at which we should rasterize the
SVG instead of the requested size. Since SurfaceCache imposes a maximum
size for which it will permit rasterized SVGs, we should also bypass the
cache entirely if we are well above that and simply draw directly to the
draw target in such cases.
With WebRender, it is somewhat more complicated. We will now return
NOT_SUPPORTED if the size is too big, and this should trigger fallback
to blob images. This should only produce drawing commands for the
relevant region and save us the high cost of rasterized a very large
surface on the main thread, which at the same time, looking as crisp as
a user would expect.
In addition to the image container, the draw result can also be useful
for callers to know whether or not the surface(s) in the container are
fully decoded or not. This is used in subsequent parts to avoid
flickering in some cases.
When FLAG_HIGH_QUALITY_SCALING is used, we need to make sure we continue
using that flag when we update the container. We should also use it for
comparing whether or not an existing image container is equivalent.
Exposure of this functionality comes in a later patch in the set.
Experimental testing with WebRender and image layers enabled suggests
most of the time we are not using more than one image container per
image, hence why mImageContainers has room for one container without a
malloc.
RasterImage::GetCurrentImage can only return a subset of the DrawResult
values, and the original RasterImage::GetImageContainer implementation
relied upon this behavior. Now we handle them all to ensure that when
other image implementations reuse it, they may return any valid
DrawResult and get the expected results.
As part of the move, we add a IntSize parameter to
ImageResource::GetCurrentImage. This is because we don't have access to
the image's size (yet) from ImageResource, but additionally because we
will need this anyways when we support multiple image containers at
different sizes.
The only change to the moved implementation is that we no longer have
access to RasterImage::mHasSize and RasterImage::mSize. Thus we rely
upon imgIContainer::IsImageContainerAvailable to perform these checks.
This state will eventually be used by VectorImage when it supports image
containers. For now, it is harmless beyond using slightly more memory
for SVGs.
All the SizeOf{In,Ex}cludingThis() functions take a MallocSizeOf function
which measures memory blocks. This patch introduces a new type, SizeOfState,
which includes a MallocSizeOf function *and* a table of already-measured
pointers, called SeenPtrs. This gives us a general mechanism to measure
graph-like data structures, by recording which nodes have already been
measured. (This approach is used in a number of existing reporters, but not in
a uniform fashion.)
The patch also converts the window memory reporting to use SizeOfState in a lot
of places, all the way through to the measurement of Elements. This is a
precursor for bug 1383977 which will measure Stylo elements, which involve
Arcs.
The patch also converts the existing mAlreadyMeasuredOrphanTrees table in the
OrphanReporter to use the new mechanism.
--HG--
extra : rebase_source : 2c23285f8b6c3b667560a9d14014efc4633aed51
The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
--HG--
rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h