(Path is actually r=froydnj.)
Bug 1400459 devirtualized nsIAtom so that it is no longer a subclass of
nsISupports. This means that nsAtom is now a better name for it than nsIAtom.
MozReview-Commit-ID: 91U22X2NydP
--HG--
rename : xpcom/ds/nsIAtom.h => xpcom/ds/nsAtom.h
extra : rebase_source : ac3e904a21b8b48e74534fff964f1623ee937c67
Replace it with NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION, because it
has been the same for a while.
MozReview-Commit-ID: 5agRGFyUry1
--HG--
extra : rebase_source : 5388c56b2f6905c6ef969150f0c5b77bf247624d
This allows sending and receiving arbitrarily (we limit to 1 GiB atm) sized
messages while not relying on the deprecated PPID fragmentation/reassembly
mode. The code already supports the ndata extension but it's not activated,
yet. Without the SCTP ndata extension, a large data channel message will
monopolise the SCTP association. While this is a problem, it is a temporary
solution until the extension is being activated. Keep in mind that every
application that uses data channels currently does fragmentation/reassembly on
application-level and it's unlikely that this will change until the popular
implementations (libwebrtc) implement EOR as well. Moreover, until the WebRTC
API specifies an API that hands over partial messages, doing application-level
fragmentation/reassembly is still useful for very large messages (sadly).
We fall back to PPID-based fragmentation/reassembly mode IFF a=max-message-size
is not set in the SDP and the negotiated amount of SCTP inbound streams is
exactly 256. Other implementations should avoid using this combination (to be
precise, other implementations should send a=max-message-size).
It also changes behaviour of RTCDataChannel.send which now raises TypeError in
case the message is too large for the other peer to receive. This is a
necessity to ensure that implementations that do not look at the EOR flag when
receiving are always able to receive our messages. Even if these
implementations do not set a=max-message-size, we use a safe default value (64
KiB, dictated by the spec) that every implementation should be able to receive,
with or without EOR support.
* Due to the use of explicit EOR, this required some major refactoring of all
send-related and deferred sending functions (which is now a lot less
complex). There's now only one place where `usrsctp_sendv` is being used.
* All data channel messages and DCEP messages will be sent without copying them
first. Only in case this fails (e.g. usrsctp's buffer is full), the message
will be copied and added to a buffer queue.
* Queued data channel messages will now be re-sent fairly (round-robin).
* Maximum message size and the PPID-based fragmentation are configurable using
about:config (media.peerconnection.sctp.force_ppid_fragmentation and
media.peerconnection.sctp.force_maximum_message_size).
* Enable interleaving of incoming messages for different streams (preparation
for SCTP ndata, has no effect until it is enabled).
* Enable interleaving of outgoing messages (disabled if SCTP ndata has not been
negotiated).
* Add pending messages flag to reduce performance impact from frequent calls to
SendDeferredMessages.
* Handle partial delivery events (for cases where a partially delivered message
is being aborted).
* Close a data channel/the connection in case the message is too large to be
handled (this is only applied in cases where the remote peer ignores our
announced local maximum message size).
* Various size_t to uint32_t conversions (message length) and back should be
safe now.
* Remove aUsingDtls/mUsingDtls from DataChannelConnection.
* Set maximum message size in SDP and in the data channel stack.
* Replace implicit NS_ENSURE_*'s with explicit NS_WARN_IF's.
* Add SetMaxMessageSize method for late-applying those signalling parameters
when a data channel has been created before the remote SDP was available.
* Limit remote maximum message size and add a GetMaxMessageSize method for a
future implementation of RTCSctpTransport.maxMessageSize.
MozReview-Commit-ID: FlmZrpC5zVI
--HG--
extra : rebase_source : 54e1b838c788a3abbded4fb32fe7c2788f8a9bc0
The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
--HG--
rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.