When people write:
array.AppendElement(nsDependentString(...));
(resp. nsDependentCString), it's not clear whether they expect the newly
constructed dependent string to live in the array, or whether they're
just making a nsString-like holder whose contents can be freely copied
into the array's newly-created nsString. Sometimes the latter is what
you prefer, and sometimes the former. In all cases, however, the latter
behavior is what you get.
Let's try to make that behavior more explicit by pre-constructing
nsString elements and then using Assign to show that copying is taking
place. This patch involves no functional change in behavior (it ought
to be epsilon faster due to using AppendElements, rather than repeatedly
calling AppendElement).
The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
--HG--
rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.