The Decode call may result in synchronously creating the surface, but we only check again if the surface is there for FLAG_SYNC_DECODE, not FLAG_SYNC_DECODE_IF_FAST.
All of the decoding we do during painting is of the type FLAG_SYNC_DECODE_IF_FAST, which means it would be useless to do that decoding synchronously during painting because the paint doesn't benefit from the result of that decoding.
Looking at the history of this code it looks like https://hg.mozilla.org/mozilla-central/rev/435df926eb10 (part 6 of bug 1119774) was where this bug was introduced. Before that changeset we always did another LookupFrameInternal call after the Decode (called WantDecodedFrames back then). But that changeset changed it to only be done for standard sync decodes, not "sync decode if fast".
nsThreadManager::get() can return a reference. This lets us remove some
redundant assertions.
nsThreadArray elements can be NotNull<>s.
--HG--
extra : rebase_source : fd49010167101bc15f7f6d01bf95fd63b81d60fb
This patch makes most Run() declarations in subclasses of nsIRunnable have the
same form: |NS_IMETHOD Run() override|.
As a result of these changes, I had to add |override| to a couple of other
functions to satisfy clang's -Winconsistent-missing-override warning.
--HG--
extra : rebase_source : 815d0018b0b13329bb5698c410f500dddcc3ee12
The decoding loop in Decoder::Decode only pauses to report progress when it runs out of bytes to decode. So for long animated images where the network is keeping up with decoding it will be a relatively long time until we deliver the first frame complete notification and corresponding invalidation. In most cases this shouldn't be too expensive as it is just dispatching a runnable to the main thread from the decoding thread.
The decoding loop in Decoder::Decode only pauses to report progress when it runs out of bytes to decode. So for long animated images where the network is keeping up with decoding it will be a relatively long time until we deliver the first frame complete notification and corresponding invalidation. In most cases this shouldn't be too expensive as it is just dispatching a runnable to the main thread from the decoding thread.
The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
--HG--
rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h