HSTS priming changes the order of mixed-content blocking and HSTS
upgrades, and adds a priming request to check if a mixed-content load is
accesible over HTTPS and the server supports upgrading via the
Strict-Transport-Security header.
Every call site that uses AsyncOpen2 passes through the mixed-content
blocker, and has a LoadInfo. If the mixed-content blocker marks the load as
needing HSTS priming, nsHttpChannel will build and send an HSTS priming
request on the same URI with the scheme upgraded to HTTPS. If the server
allows the upgrade, then channel performs an internal redirect to the HTTPS URI,
otherwise use the result of mixed-content blocker to allow or block the
load.
nsISiteSecurityService adds an optional boolean out parameter to
determine if the HSTS state is already cached for negative assertions.
If the host has been probed within the previous 24 hours, no HSTS
priming check will be sent.
MozReview-Commit-ID: ES1JruCtDdX
--HG--
extra : rebase_source : 2ac6c93c49f2862fc0b9e595eb0598cd1ea4bedf
This function is an infallible alternative to nsIURI::GetSpec(). It's useful
when it's appropriate to handle a GetSpec() failure with a failure string, e.g.
for log/warning/error messages. It allows code like this:
nsAutoCString spec;
uri->GetSpec(spec);
printf("uri: %s", spec.get());
to be changed to this:
printf("uri: %s", uri->GetSpecOrDefault().get());
This introduces a slight behavioural change. Previously, if GetSpec() failed,
an empty string would be used here. Now, "[nsIURI::GetSpec failed]" will be
produced instead. In most cases this failure string will make for a clearer
log/warning/error message than the empty string.
* * *
Bug 1297961 (part 1b) - More GetSpecOrDefault() additions. r=hurley.
I will fold this into part 1 before landing.
--HG--
extra : rebase_source : ddc19a5624354ac098be019ca13cc24b99b80ddc
This patch removes checking of all the callback calls in memory reporter
CollectReport() functions, because it's not useful.
The patch also does some associated clean-up.
- Replaces some uses of nsIMemoryReporterCallback with the preferred
nsIHandleReportCallback typedef.
- Replaces aCallback/aCb/aClosure with aHandleRepor/aData for CollectReports()
parameter names, for consistency.
- Adds MOZ_MUST_USE/[must_use] in a few places in nsIMemoryReporter.idl.
- Uses the MOZ_COLLECT_REPORT macro in all suitable places.
Overall the patch reduces code size by ~300 lines and reduces the size of
libxul by about 37 KiB on my Linux64 builds.
--HG--
extra : rebase_source : e94323614bd10463a0c5134a7276238a7ca1cf23
(In some cases, I've left "ImageLogging.h" being included before the corresponding .h file, because I ran across a warning comment saying that it needs to be included before any IPDL-generated files & anything that includes prlog.h; and it seems possible that Foo.cpp's corresponding Foo.h file could include such headers now or in the future.)
MozReview-Commit-ID: HPvUVj8YuKc
If the image load is from the same document that cached the image we are required to use the cached version. Otherwise we should be free to ignore the cached version.
This ID will be null for non-controlled documents and also for image cache
entries for which a document is not available, and it will be the numerical
value of the document pointer for controlled documents.
This effectively makes sure that a controlled document doesn't share its
image cache entries with anything else.
mTouchedTime is not appropriate for this as it is updated when an image
load re-uses the same imgRequest, especially as it has one second
granularity. A timestamp that is updated every time the backing file is
re-read should work better.
A millisecond granularity timestamp would be preferable, and would be
achievable on most or all supported platforms. But some older
filesystems have timestamp granularity of a second or worse, notably
ext3 and FAT32 (and even ext4 filesytems created with inode_size < 256
bytes, e.g. with 'mke2fs -t small' - see
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Inode_Timestamps
for details.)
The bulk of this commit was generated with a script, executed at the top
level of a typical source code checkout. The only non-machine-generated
part was modifying MFBT's moz.build to reflect the new naming.
CLOSED TREE makes big refactorings like this a piece of cake.
# The main substitution.
find . -name '*.cpp' -o -name '*.cc' -o -name '*.h' -o -name '*.mm' -o -name '*.idl'| \
xargs perl -p -i -e '
s/nsRefPtr\.h/RefPtr\.h/g; # handle includes
s/nsRefPtr ?</RefPtr</g; # handle declarations and variables
'
# Handle a special friend declaration in gfx/layers/AtomicRefCountedWithFinalize.h.
perl -p -i -e 's/::nsRefPtr;/::RefPtr;/' gfx/layers/AtomicRefCountedWithFinalize.h
# Handle nsRefPtr.h itself, a couple places that define constructors
# from nsRefPtr, and code generators specially. We do this here, rather
# than indiscriminantly s/nsRefPtr/RefPtr/, because that would rename
# things like nsRefPtrHashtable.
perl -p -i -e 's/nsRefPtr/RefPtr/g' \
mfbt/nsRefPtr.h \
xpcom/glue/nsCOMPtr.h \
xpcom/base/OwningNonNull.h \
ipc/ipdl/ipdl/lower.py \
ipc/ipdl/ipdl/builtin.py \
dom/bindings/Codegen.py \
python/lldbutils/lldbutils/utils.py
# In our indiscriminate substitution above, we renamed
# nsRefPtrGetterAddRefs, the class behind getter_AddRefs. Fix that up.
find . -name '*.cpp' -o -name '*.h' -o -name '*.idl' | \
xargs perl -p -i -e 's/nsRefPtrGetterAddRefs/RefPtrGetterAddRefs/g'
if [ -d .git ]; then
git mv mfbt/nsRefPtr.h mfbt/RefPtr.h
else
hg mv mfbt/nsRefPtr.h mfbt/RefPtr.h
fi
--HG--
rename : mfbt/nsRefPtr.h => mfbt/RefPtr.h
There are many sub-classes of nsExpirationTracker. In order to distinguish them
nicely in the logging of timer firings, it's necessary to manually name each
one. (This wouldn't be necessary if there was a way to stringify template
parameters, but there isn't.)
--HG--
extra : rebase_source : 89b99e9dbb2a806bd21145d04a5e023794643b61
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.
This is straightforward mapping of PR_LOG levels to their LogLevel
counterparts:
PR_LOG_ERROR -> LogLevel::Error
PR_LOG_WARNING -> LogLevel::Warning
PR_LOG_WARN -> LogLevel::Warning
PR_LOG_INFO -> LogLevel::Info
PR_LOG_DEBUG -> LogLevel::Debug
PR_LOG_NOTICE -> LogLevel::Debug
PR_LOG_VERBOSE -> LogLevel::Verbose
Instances of PRLogModuleLevel were mapped to a fully qualified
mozilla::LogLevel, instances of PR_LOG levels in #defines were mapped to a
fully qualified mozilla::LogLevel::* level, and all other instances were
mapped to us a shorter format of LogLevel::*.
Bustage for usage of the non-fully qualified LogLevel were fixed by adding
|using mozilla::LogLevel;| where appropriate.