We can perform the same function as RecyclingSourceSurface by checking
the ref count of the underlying surface directly. We need to ensure
WebRender is explicitly aware that it is a recycled surface, but that is
easily achieved by changing the type of the surface. This avoids
unnecessary heap allocations, particularly in the case where many
elements on the same page refer to the same animation (and thus
duplicating RecyclingSourceSurface objects).
Differential Revision: https://phabricator.services.mozilla.com/D77513
We are seeing some crash reports with RecyclingSourceSurface containing
null pointers in the signature. The proto signature doesn't make any
sense however. Let's use NotNull to reassure ourselves that there isn't
something going wrong when we create RecyclingSourceSurface.
Differential Revision: https://phabricator.services.mozilla.com/D64066
--HG--
extra : moz-landing-system : lando
This patch adds reporting the surface types used by the image frame in a
bit mask (such if it is a CAPTURE including a DATA_SHARED, the mask will
be 1 << CAPTURE | 1 << DATA_SHARED), as well as an estimated size
included in the report as decoded-unknown for when we do not know if the
surface is on the heap or the non-heap specifically. This is the default
implementation for a SourceSurface as well, so we should no longer have
the case where surfaces appear empty despite being in the cache. It also
makes requests being validated as always notable for reporting purposes.
Differential Revision: https://phabricator.services.mozilla.com/D61458
--HG--
extra : moz-landing-system : lando
This dumps more information about the surface cache. Each surface has a
flag indicating whether or not it has finished decoding; incomplete
surfaces are now marked as such in the cache reports. We now also have
counters for various insertion errors, as well as the composition of the
cache (total vs locked images, total vs locked surfaces).
Differential Revision: https://phabricator.services.mozilla.com/D60450
--HG--
extra : moz-landing-system : lando
When one uses SourceSurfaceRawData to wrap a data pointer, it will
perform a copy of said data if GuaranteePersistence is called. This is
done for DrawTargetCapture, which is used with OMTP. Prior to this
patch, image surfaces would be wrapped by a SourceSurfaceRawData when
using the basic compositor on any non-Linux platform (since Linux does
not support volatile memory). This means every time imgFrame::Draw is
called with OMTP, a copy of the image will be made. Images don't need
this property since the data is already going to persist, so this patch
adds a new class SourceSurfaceMappedData, which takes a ScopedMap
keeping the underlying surface open and readable.
Differential Revision: https://phabricator.services.mozilla.com/D58199
--HG--
extra : moz-landing-system : lando
And with some tidying some comments and removing stray #include "gfxPrefs.h"
Differential Revision: https://phabricator.services.mozilla.com/D31468
--HG--
extra : moz-landing-system : lando
gfxPrefs Live preferences are almost identical to StaticPrefs.
We leave aside for now those that set a custom change callback as this feature isn't yet supported in StaticPrefs.
Differential Revision: https://phabricator.services.mozilla.com/D31256
--HG--
extra : moz-landing-system : lando
And with some tidying some comments and removing stray #include "gfxPrefs.h"
Differential Revision: https://phabricator.services.mozilla.com/D31468
--HG--
extra : moz-landing-system : lando
gfxPrefs Live preferences are almost identical to StaticPrefs.
We leave aside for now those that set a custom change callback as this feature isn't yet supported in StaticPrefs.
Differential Revision: https://phabricator.services.mozilla.com/D31256
--HG--
extra : moz-landing-system : lando
And with some tidying some comments and removing stray #include "gfxPrefs.h"
Differential Revision: https://phabricator.services.mozilla.com/D31468
--HG--
extra : moz-landing-system : lando
gfxPrefs Live preferences are almost identical to StaticPrefs.
We leave aside for now those that set a custom change callback as this feature isn't yet supported in StaticPrefs.
Differential Revision: https://phabricator.services.mozilla.com/D31256
--HG--
extra : moz-landing-system : lando
Given the crash resolved in part 1, it is possible for the blob
rasterizer in the compositor process to still be using surfaces after
the animation has advanced to the next frame. With recycling this can be
problematic as the recycled surface will be reused for a future frame.
In an ideal world, the blob recording would use the animation's image
key instead, but the rasterizer doesn't have easy access to the mapping
table. As such, for any frames used in a blob recording, we now
explicitly mark them as non-recyclable and we will be forced to allocate
a new frame instead.
Differential Revision: https://phabricator.services.mozilla.com/D16192
Beyond the necessary reinitialization methods, we need to protect
ourselves from recycling a frame that some other entity in the browser
is still using. Generally speaking the animated surface will only be
used in imgFrame::Draw since we don't layerize animated images, which
will be safe. However with OMTP or blob recordings, we could retain a
reference to the surface outside the current stack context. Additional
if something calls RasterImage::GetImageContainer(AtSize) or
RasterImage::GetFrame(AtSize), it may also have a reference to the
surface for an indetermine period of time.
As such, if an imgFrame is a candidate for recycling, it will wrap
imgFrame::mLockedSurface in a RecyclingSourceSurface. Its job is to
track how many consumers there are still of the surface, so that after
we advance the animation, the decoder will know if there are still
outstanding consumers.
If the surface is still in use, it will block for a finite period of
time (the refresh interval) before giving up on reclaiming the surface,
and will allocate a new surface. The old surface can then remain in
circulation for as long as necessary without further blocking the
animation progression, since we stop recycling that surface/imgFrame.
Differential Revision: https://phabricator.services.mozilla.com/D7511
Since imgFrame::Draw will limit the drawing to only look at pixels that
we have written to and posted an invalidation for, there is no need to
hold the monitor while doing so. By taking the most expensive operation
outside the lock, we will minimize our chances of hitting contention
with the decoder thread.
A later part in this series will require that a surface be freed outside
the lock because it may end up reacquiring it. In addition to the
contention win, this change should facilitate that.
Differential Revision: https://phabricator.services.mozilla.com/D7510
At present, surface providers roll up all of their individual surfaces
into a single reporting unit. Specifically this means animated image
frames are all reported as a block. This patch removes that
consolidation and reports every frame as its own SurfaceMemoryReport.
This is important because each frame may have its own external image ID,
and we want to cross reference that with what we expect from the GPU
shared surfaces cache.
At present, surface providers roll up all of their individual surfaces
into a single reporting unit. Specifically this means animated image
frames are all reported as a block. This patch removes that
consolidation and reports every frame as its own SurfaceMemoryReport.
This is important because each frame may have its own external image ID,
and we want to cross reference that with what we expect from the GPU
shared surfaces cache.
DecoderFlags::BLEND_ANIMATION will cause the decoder to inject the
BlendAnimationFilter from the previous patch into the SurfacePipe filter
chain. All frames produced by this decoder will be complete, and
should be equivalent to the result outputted by FrameAnimator.
DecoderFlags::BLEND_ANIMATION will cause the decoder to inject the
BlendAnimationFilter from the previous patch into the SurfacePipe filter
chain. All frames produced by this decoder will be complete, and
should be equivalent to the result outputted by FrameAnimator.