Only sanitizer builds require a native llvm-symbolizer executable.
Ideally, we'd build llvm-symbolizer from scratch, which would be faster,
but for now, let's go the easy route and just extract it from the
corresponding native clang builds.
We don't actually do anything with the llvm-symbolizer executable on
android builds, so we don't install it in $FINAL_TARGET, avoilding
the dependency on android builds (plus, we actually don't have an
android-native llvm-symbolizer, so even if it were already shipped, it
would be the wrong file).
Differential Revision: https://phabricator.services.mozilla.com/D101076
Only sanitizer builds require a native llvm-symbolizer executable.
Ideally, we'd build llvm-symbolizer from scratch, which would be faster,
but for now, let's go the easy route and just extract it from the
corresponding native clang builds.
We don't actually do anything with the llvm-symbolizer executable on
android builds, so we don't install it in $FINAL_TARGET, avoilding
the dependency on android builds (plus, we actually don't have an
android-native llvm-symbolizer, so even if it were already shipped, it
would be the wrong file).
Differential Revision: https://phabricator.services.mozilla.com/D101076
The remaining uses all need adjustements to in-tree mozconfigs, so they
all need to be done at once.
However, to make things slightly more intelligible, we do this in two
steps. This is step 1: we modify the use_toolchain transform to take care of
the transformation, while keeping the task definitions intact, so that
we only deal with mozconfig and build script adjustements here.
Differential Revision: https://phabricator.services.mozilla.com/D41890
Last attempt, a few years ago, blatantly failed because nautilus (the
GNOME file manager) can't start PIE executables, which look like shared
libraries, and that it thus considers not being executables.
Downstreams don't actually have the problem, because users won't be
launching Firefox from a file manager, but for mozilla.org builds, it is
a problem because users would download, then extract, and then likely
try to run the Firefox executable from a file manager.
So for mozilla.org builds, we still need to find a way around the
nautilus problem.
A .desktop file could be a solution, but .desktop files have not
actually been designed for this use case, which leads to:
- having to use an awful one-liner shell wrapper to derive the path
to the executable from that of the .desktop file,
- not even being able to associate an icon,
- the .desktop file not being copiable to a location where .desktop
files would normally go, because it would then fail to find the
executable.
Another possibility is to go back to using a shell wrapper, but that's
not entirely appealing.
What we chose here is similar, where we have a small `firefox` wrapper
that launches the real `firefox-bin` (which is still leftover from those
old times where we had a shell wrapper, for reasons).
The small `firefox` wrapper is a minimalist C executable that just
finds the path to the `firefox-bin` executable and executes it with the
same args it was called with. The wrapper is only enabled when the
MOZ_NO_PIE_COMPAT environment variable is set, which we only take into
account on Linux. The variable is only really meant to be used for
mozilla.org builds, for the nautilus problem. Downstreams will just pick
the default, which is changed to build PIE.
On other platforms, PIE was already enabled by default, so we just
remove the --enable-pie configure flag.
Differential Revision: https://phabricator.services.mozilla.com/D5109
Bug 1487330 made mozconfig.asan use mozconfig.linux, but while that
worked out fine, it turns out that we do have mac builds using
e.g. mozconfig.asan, and that those can break when doing linux-specific
changes to mozconfig.linux.
--HG--
rename : build/unix/mozconfig.linux => build/unix/mozconfig.unix
Those mozconfigs do things in common that are already in
mozconfig.linux. Let's just use that.
This will make the build have the binutils toolchain in PATH rather than
passing it to CC/CXX, which is better because it also makes the build
use tools such as ar, ranlib, objcopy from the binutils toolchain,
rather than the old system ones.
Differential Revision: https://phabricator.services.mozilla.com/D4649
Those mozconfigs do things in common that are already in
mozconfig.linux. Let's just use that.
This will make the build have the binutils toolchain in PATH rather than
passing it to CC/CXX, which is better because it also makes the build
use tools such as ar, ranlib, objcopy from the binutils toolchain,
rather than the old system ones.
Differential Revision: https://phabricator.services.mozilla.com/D4649
Something similar was done in bug 1278718 for ASan builds, because of
indirect dependencies on libstdc++ being picked by the linker and
leading to linkage failure with the older binutils from the CentOS 6
image we use to do desktop builds.
Build slaves on automation are based on Centos 6, which doesn't have a
recent enough version of libstdc++ for our new requirements. But since
we're building with a recent GCC or clang with its own libstdc++, we do
have such a libstdc++ available somewhere, and the compiler picks it
when invoking the linker.
Problems start happening when we execute some of the built programs
during the build, like host tools (e.g. nsinstall), or target programs
(xpcshell, during packaging). In that case, we need the compiler's
libstdc++ to be used. Which required adding the GCC or clang library
directory to LD_LIBRARY_PATH.
Unconveniently enough, the clang 3.5 tooltool package we're using for
ASAN builds until we can update to at least 3.8 (bug 1278718) doesn't
contain libstdc++.so. So for those builds, pull the GCC package from
tooltool as well, and pick libstdc++ from there.