Whenever a cache entry is accessed during a document load, eTLD+1 of the top level document is added to the entry's metadata. Number of accessing sites is also stored in cache index. So we know how many copies of each entry would we have if we did a first party isolation without data deduplication. The telemetry is sent every time we write 2GB to the cache and then the data is reset. Telemetry report ID is an identifier of the telemetry cycle and it's used to invalidate eTLD+1 hashes in all cache entries.
Differential Revision: https://phabricator.services.mozilla.com/D26425
--HG--
extra : moz-landing-system : lando
We should not be declaring forward declarations for nsString classes directly,
instead we should use nsStringFwd.h. This will make changing the underlying
types easier.
--HG--
extra : rebase_source : b2c7554e8632f078167ff2f609392e63a136c299
CachePerfStats gathers performance data for single open, read and write operations as well as the whole cache entry opening. It maintains long term and short term average. The long term average filters out excessive values and it represents and average time for a given operation when the cache is not busy. The short term average represents the current cache speed. By comparing these two stats we know pretty quickly that the cache is getting slower and then we race the cache with network immediately without a delay. Otherwise the delay is based on the average cache entry open time.
All the instances are converted as follows.
- nsSubstring --> nsAString
- nsCSubstring --> nsACString
--HG--
extra : rebase_source : cfd2238c52e3cb4d13e3bd5ddb80ba6584ab6d91
CachePerfStats gathers performance data for single open, read and write operations as well as the whole cache entry opening. It maintains long term and short term average. The long term average filters out excessive values and it represents and average time for a given operation when the cache is not busy. The short term average represents the current cache speed. By comparing these two stats we know pretty quickly that the cache is getting slower and then we race the cache with network immediately without a delay. Otherwise the delay is based on the average cache entry open time.
CachePerfStats gathers performance data for single open, read and write operations as well as the whole cache entry opening. It maintains long term and short term average. The long term average filters out excessive values and it represents and average time for a given operation when the cache is not busy. The short term average represents the current cache speed. By comparing these two stats we know pretty quickly that the cache is getting slower and then we race the cache with network immediately without a delay. Otherwise the delay is based on the average cache entry open time.
The bulk of this commit was generated by running:
run-clang-tidy.py \
-checks='-*,llvm-namespace-comment' \
-header-filter=^/.../mozilla-central/.* \
-fix