The lack of clarity over which functions initiate observing and which don't
is a headache since it makes it hard to reason about what's going on. This
rename makes it explicit in the function names.
Differential Revision: https://phabricator.services.mozilla.com/D7187
--HG--
extra : rebase_source : 1f2f86423a9bee7843533c09b3ea78416b233bcd
extra : amend_source : a89125d6a3b7b75a4056c4d600de74a5386ac4ff
If FLAG_HIGH_QUALITY_SCALING is used, we should use
SurfaceCache::LookupBestMatch just like how it is done in RasterImage.
This may provide an alternative size at which we should rasterize the
SVG instead of the requested size. Since SurfaceCache imposes a maximum
size for which it will permit rasterized SVGs, we should also bypass the
cache entirely if we are well above that and simply draw directly to the
draw target in such cases.
With WebRender, it is somewhat more complicated. We will now return
NOT_SUPPORTED if the size is too big, and this should trigger fallback
to blob images. This should only produce drawing commands for the
relevant region and save us the high cost of rasterized a very large
surface on the main thread, which at the same time, looking as crisp as
a user would expect.
If FLAG_HIGH_QUALITY_SCALING is used, we should use
SurfaceCache::LookupBestMatch just like how it is done in RasterImage.
This may provide an alternative size at which we should rasterize the
SVG instead of the requested size. Since SurfaceCache imposes a maximum
size for which it will permit rasterized SVGs, we should also bypass the
cache entirely if we are well above that and simply draw directly to the
draw target in such cases.
With WebRender, it is somewhat more complicated. We will now return
NOT_SUPPORTED if the size is too big, and this should trigger fallback
to blob images. This should only produce drawing commands for the
relevant region and save us the high cost of rasterized a very large
surface on the main thread, which at the same time, looking as crisp as
a user would expect.
In addition to the image container, the draw result can also be useful
for callers to know whether or not the surface(s) in the container are
fully decoded or not. This is used in subsequent parts to avoid
flickering in some cases.
This was done automatically replacing:
s/mozilla::Move/std::move/
s/ Move(/ std::move(/
s/(Move(/(std::move(/
Removing the 'using mozilla::Move;' lines.
And then with a few manual fixups, see the bug for the split series..
MozReview-Commit-ID: Jxze3adipUh
Move the initialization of SharedSurfacesParent from the compositor
thread creation to mirror the other WebRender-specific components, such
as the render thread creation. Now it will only be created if WebRender
is in use. Also prevent shared surfaces from being used by the image
frame allocator, even if image.mem.shared is set -- there is no purpose
in allowing this at present. It was causing startup crashes for users
who requested image.mem.shared and/or WebRender via gfx.webrender.all
but did not actually get WebRender at all. Surfaces would get allocated
in the shared memory, try to register themselves with the WR render
thread, and then crash since that thread was never created.
This is important because it ensures we release the shared memory handle
(although not the data itself) for the underlying surface buffer when it
turns out we will probably never need to share it. If we do need to
share the surface data with the GPU process, it will reallocate a handle
if necessary, and close it when it is finished. On some platforms we
only have a finite number of handles, so if we don't need them, we
should close them.
This is largely trivial because the meat of the implementation is
located in ImageResource and we already added GetFrameInternal.
Interestingly VectorImage::IsUnlocked does not actually check if the
image is locked, but instead only checks for animation consumers. This
is consistent with its historical behavior on when to issue an unlocked
draw event.
Note that we do not implement the original GetImageContainer and
IsImageContainerAvailable APIs. This is because the former does not
accept an SVG context and it would be best to discourage its use in old
code lest we get incorrect/unexpected results.
No functional change aside from the implementation from
VectorImage::GetFrameAtSize being repurposed for GetFrameInternal and
returning an additional error code with the surface.
Creating a DrawTarget can be an expensive operation. This is especially
true in this case because checking for a cached already decoded version
of the VectorImage is expected to be fast. Currently VectorImage::Draw
is the typical path to render these images, but in the future, getting
the frames directly or indirectly (through an ImageContainer) will
become more common.
This adds IsImageContainerAvailableAtSize and GetImageContainerAtSize to
the imgIContainer interface, as well as stubbing it for all of the
classes which implement it. The real implementations will follow for the
more complicated classes (RasterImage, VectorImage).
The core of this change is in gfxContext.*:
- change gfxContext::CurrentMatrix() and gfxContext::SetMatrix() to
return and take a Matrix respectively, instead of converting to
and from a gfxMatrix (which uses doubles). These functions therefore
will now match the native representation of the transform in gfxContext.
- add two new functions CurrentMatrixDouble() and SetMatrixDouble() that
do what the old CurrentMatrix() and SetMatrix() used to do, i.e.
convert between the float matrix and the double matrix.
The rest of the change is just updating the call sites to avoid round-
tripping between floats and doubles where possible. Call sites that are
hard to fix are migrated to the new XXXDouble functions which preserves
the existing behaviour.
MozReview-Commit-ID: 5sbBpLUus3U
Most cases where the pointer is stored into an already-declared variable can
trivially be changed to MakeNotNull<T*>, as the NotNull raw pointer will end
up in a smart pointer.
In RAII cases, the target type can be specified (e.g.:
`MakeNotNull<RefPtr<imgFrame>>)`), in which case the variable type may just be
`auto`, similar to the common use of MakeUnique.
Except when the target type is a base pointer, in which case it must be
specified in the declaration.
MozReview-Commit-ID: BYaSsvMhiDi
--HG--
extra : rebase_source : 8fe6f2aeaff5f515b7af2276c439004fa3a1f3ab
This patch does the following.
- Moves nsWindowSizes from nsWindowMemoryReporter.h to its own file,
nsWindowSizes.h, so it can be included more widely without exposing
nsWindowMemoryReporter.
- Merges nsArenaMemoryStats.h (which defines nsTabSizes and nsArenaMemoryStats)
into nsWindowSizes.h.
- Renames nsArenaMemoryStats as nsArenaSizes, and nsWindowSizes::mArenaStats as
nsWindowSizes::mArenaSizes. This is the more usual naming scheme for such
types.
- Renames FRAME_ID_STAT_FIELD as NS_ARENA_SIZES_FIELD.
- Passes nsWindowSizes to PresShell::AddSizeOfIncludingThis() and
nsPresArena::AddSizeOfExcludingThis(), instead of a bunch of smaller things.
One nice consequence is that the odd nsArenaMemoryStats::mOther field is no
longer necessary, because we can update nsWindowSizes::mLayoutPresShellSize
directly in nsPresArena::AddSizeOfExcludingThis().
- Adds |const| to a few methods.
MozReview-Commit-ID: EpgFWKFqy7Y