When blending full frames off the main thread, FrameAnimator no longer
requires access to the raw data of the frame to advance the animation.
Now we only request a RawAccessFrameRef for the current/next frames when
we have discovered that we need to do blending on the main thread.
In addition to avoiding the mutex overhead of RawAccessFrameRef, this
will also facilitate potentially optimizing the surfaces for the
DrawTarget for individual animated image frames.
Differential Revision: https://phabricator.services.mozilla.com/D7506
At present, surface providers roll up all of their individual surfaces
into a single reporting unit. Specifically this means animated image
frames are all reported as a block. This patch removes that
consolidation and reports every frame as its own SurfaceMemoryReport.
This is important because each frame may have its own external image ID,
and we want to cross reference that with what we expect from the GPU
shared surfaces cache.
At present, surface providers roll up all of their individual surfaces
into a single reporting unit. Specifically this means animated image
frames are all reported as a block. This patch removes that
consolidation and reports every frame as its own SurfaceMemoryReport.
This is important because each frame may have its own external image ID,
and we want to cross reference that with what we expect from the GPU
shared surfaces cache.
This was done automatically replacing:
s/mozilla::Move/std::move/
s/ Move(/ std::move(/
s/(Move(/(std::move(/
Removing the 'using mozilla::Move;' lines.
And then with a few manual fixups, see the bug for the split series..
MozReview-Commit-ID: Jxze3adipUh
DrawableSurface only exposes DrawableFrameRef to its users. This is
sufficient for the drawing related code in general, but FrameAnimator
really needs RawAccessFrameRef to the underlying pixel data (which may
be paletted). While one can get a RawAccessFrameRef from a
DrawableFrameRef, it requires yet another lock of the imgFrame's mutex.
We can avoid this extra lock if we just allow the callers to get the
right data type in the first place.
Note that AnimationSurfaceProvider will override these methods to give a
proper implementation in a later patch in this series. For now, they are
mostly stubbed, using the default implementation from ISurfaceProvider.
They focus on the main operations we perform on an animation:
1) Progressing through the animation, e.g. advancing a frame. If we
don't decode the whole animation up front, we need to know at the
decoder level where we are in the display of the animation.
2) Restarting an animation from the beginning. This is a specialized
case of the above, where we want to skip explicitly advancing through
the remaining frames and instead restart at the beginning. The decoder
may have already discarded the earliest frames and must start redecoding
them.
3) Knowing whether or not the decoder is still active, e.g. can we be
missing frames.
The shared memory handle reporting has been generalized to be an
external handle reporting. This is used for both shared memory, and for
volatile memory (on Android.) This will allow us to have a better sense
of just how many handles are being used by images on Android.
Additionally we were not properly reporting forced heap allocated
memory, if we were putting animated frames on the heap. This is because
we used SourceSurfaceAlignedRawData without implementing
AddSizeOfExcludingThis.