/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsTArray.h" #include "nsCellMap.h" #include "nsTableFrame.h" #include "nsTableCellFrame.h" #include "nsTableRowFrame.h" #include "nsTableRowGroupFrame.h" #include using namespace mozilla; static void SetDamageArea(int32_t aStartCol, int32_t aStartRow, int32_t aColCount, int32_t aRowCount, TableArea& aDamageArea) { NS_ASSERTION(aStartCol >= 0, "negative col index"); NS_ASSERTION(aStartRow >= 0, "negative row index"); NS_ASSERTION(aColCount >= 0, "negative col count"); NS_ASSERTION(aRowCount >= 0, "negative row count"); aDamageArea.StartCol() = aStartCol; aDamageArea.StartRow() = aStartRow; aDamageArea.ColCount() = aColCount; aDamageArea.RowCount() = aRowCount; } // Empty static array used for SafeElementAt() calls on mRows. static nsCellMap::CellDataArray * sEmptyRow; // CellData CellData::CellData(nsTableCellFrame* aOrigCell) { MOZ_COUNT_CTOR(CellData); static_assert(sizeof(mOrigCell) == sizeof(mBits), "mOrigCell and mBits must be the same size"); mOrigCell = aOrigCell; } CellData::~CellData() { MOZ_COUNT_DTOR(CellData); } BCCellData::BCCellData(nsTableCellFrame* aOrigCell) :CellData(aOrigCell) { MOZ_COUNT_CTOR(BCCellData); } BCCellData::~BCCellData() { MOZ_COUNT_DTOR(BCCellData); } // nsTableCellMap nsTableCellMap::nsTableCellMap(nsTableFrame& aTableFrame, bool aBorderCollapse) :mTableFrame(aTableFrame), mFirstMap(nullptr), mBCInfo(nullptr) { MOZ_COUNT_CTOR(nsTableCellMap); nsTableFrame::RowGroupArray orderedRowGroups; aTableFrame.OrderRowGroups(orderedRowGroups); nsTableRowGroupFrame* prior = nullptr; for (uint32_t rgX = 0; rgX < orderedRowGroups.Length(); rgX++) { nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgX]; InsertGroupCellMap(rgFrame, prior); prior = rgFrame; } if (aBorderCollapse) { mBCInfo = new BCInfo(); } } nsTableCellMap::~nsTableCellMap() { MOZ_COUNT_DTOR(nsTableCellMap); nsCellMap* cellMap = mFirstMap; while (cellMap) { nsCellMap* next = cellMap->GetNextSibling(); delete cellMap; cellMap = next; } if (mBCInfo) { DeleteIEndBEndBorders(); delete mBCInfo; } } // Get the bcData holding the border segments of the iEnd edge of the table BCData* nsTableCellMap::GetIEndMostBorder(int32_t aRowIndex) { if (!mBCInfo) ABORT1(nullptr); int32_t numRows = mBCInfo->mIEndBorders.Length(); if (aRowIndex < numRows) { return &mBCInfo->mIEndBorders.ElementAt(aRowIndex); } mBCInfo->mIEndBorders.SetLength(aRowIndex+1); return &mBCInfo->mIEndBorders.ElementAt(aRowIndex); } // Get the bcData holding the border segments of the bEnd edge of the table BCData* nsTableCellMap::GetBEndMostBorder(int32_t aColIndex) { if (!mBCInfo) ABORT1(nullptr); int32_t numCols = mBCInfo->mBEndBorders.Length(); if (aColIndex < numCols) { return &mBCInfo->mBEndBorders.ElementAt(aColIndex); } mBCInfo->mBEndBorders.SetLength(aColIndex+1); return &mBCInfo->mBEndBorders.ElementAt(aColIndex); } // delete the borders corresponding to the iEnd and bEnd edges of the table void nsTableCellMap::DeleteIEndBEndBorders() { if (mBCInfo) { mBCInfo->mBEndBorders.Clear(); mBCInfo->mIEndBorders.Clear(); } } void nsTableCellMap::InsertGroupCellMap(nsCellMap* aPrevMap, nsCellMap& aNewMap) { nsCellMap* next; if (aPrevMap) { next = aPrevMap->GetNextSibling(); aPrevMap->SetNextSibling(&aNewMap); } else { next = mFirstMap; mFirstMap = &aNewMap; } aNewMap.SetNextSibling(next); } void nsTableCellMap::InsertGroupCellMap(nsTableRowGroupFrame* aNewGroup, nsTableRowGroupFrame*& aPrevGroup) { nsCellMap* newMap = new nsCellMap(aNewGroup, mBCInfo != nullptr); nsCellMap* prevMap = nullptr; nsCellMap* lastMap = mFirstMap; if (aPrevGroup) { nsCellMap* map = mFirstMap; while (map) { lastMap = map; if (map->GetRowGroup() == aPrevGroup) { prevMap = map; break; } map = map->GetNextSibling(); } } if (!prevMap) { if (aPrevGroup) { prevMap = lastMap; aPrevGroup = (prevMap) ? prevMap->GetRowGroup() : nullptr; } else { aPrevGroup = nullptr; } } InsertGroupCellMap(prevMap, *newMap); } void nsTableCellMap::RemoveGroupCellMap(nsTableRowGroupFrame* aGroup) { nsCellMap* map = mFirstMap; nsCellMap* prior = nullptr; while (map) { if (map->GetRowGroup() == aGroup) { nsCellMap* next = map->GetNextSibling(); if (mFirstMap == map) { mFirstMap = next; } else { prior->SetNextSibling(next); } delete map; break; } prior = map; map = map->GetNextSibling(); } } static nsCellMap* FindMapFor(const nsTableRowGroupFrame* aRowGroup, nsCellMap* aStart, const nsCellMap* aEnd) { for (nsCellMap* map = aStart; map != aEnd; map = map->GetNextSibling()) { if (aRowGroup == map->GetRowGroup()) { return map; } } return nullptr; } nsCellMap* nsTableCellMap::GetMapFor(const nsTableRowGroupFrame* aRowGroup, nsCellMap* aStartHint) const { MOZ_ASSERT(aRowGroup, "Must have a rowgroup"); NS_ASSERTION(!aRowGroup->GetPrevInFlow(), "GetMapFor called with continuation"); if (aStartHint) { nsCellMap* map = FindMapFor(aRowGroup, aStartHint, nullptr); if (map) { return map; } } nsCellMap* map = FindMapFor(aRowGroup, mFirstMap, aStartHint); if (map) { return map; } // if aRowGroup is a repeated header or footer find the header or footer it was repeated from if (aRowGroup->IsRepeatable()) { nsTableFrame* fifTable = static_cast(mTableFrame.FirstInFlow()); const nsStyleDisplay* display = aRowGroup->StyleDisplay(); nsTableRowGroupFrame* rgOrig = (StyleDisplay::TableHeaderGroup == display->mDisplay) ? fifTable->GetTHead() : fifTable->GetTFoot(); // find the row group cell map using the original header/footer if (rgOrig && rgOrig != aRowGroup) { return GetMapFor(rgOrig, aStartHint); } } return nullptr; } void nsTableCellMap::Synchronize(nsTableFrame* aTableFrame) { nsTableFrame::RowGroupArray orderedRowGroups; AutoTArray maps; aTableFrame->OrderRowGroups(orderedRowGroups); if (!orderedRowGroups.Length()) { return; } // XXXbz this fails if orderedRowGroups is missing some row groups // (due to OOM when appending to the array, e.g. -- we leak maps in // that case). // Scope |map| outside the loop so we can use it as a hint. nsCellMap* map = nullptr; for (uint32_t rgX = 0; rgX < orderedRowGroups.Length(); rgX++) { nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgX]; map = GetMapFor(static_cast(rgFrame->FirstInFlow()), map); if (map) { if (!maps.AppendElement(map)) { delete map; map = nullptr; NS_WARNING("Could not AppendElement"); break; } } } if (maps.IsEmpty()) { MOZ_ASSERT(!mFirstMap); return; } int32_t mapIndex = maps.Length() - 1; // Might end up -1 nsCellMap* nextMap = maps.ElementAt(mapIndex); nextMap->SetNextSibling(nullptr); for (mapIndex-- ; mapIndex >= 0; mapIndex--) { nsCellMap* map = maps.ElementAt(mapIndex); map->SetNextSibling(nextMap); nextMap = map; } mFirstMap = nextMap; } bool nsTableCellMap::HasMoreThanOneCell(int32_t aRowIndex) const { int32_t rowIndex = aRowIndex; nsCellMap* map = mFirstMap; while (map) { if (map->GetRowCount() > rowIndex) { return map->HasMoreThanOneCell(rowIndex); } rowIndex -= map->GetRowCount(); map = map->GetNextSibling(); } return false; } int32_t nsTableCellMap::GetNumCellsOriginatingInRow(int32_t aRowIndex) const { int32_t rowIndex = aRowIndex; nsCellMap* map = mFirstMap; while (map) { if (map->GetRowCount() > rowIndex) { return map->GetNumCellsOriginatingInRow(rowIndex); } rowIndex -= map->GetRowCount(); map = map->GetNextSibling(); } return 0; } int32_t nsTableCellMap::GetEffectiveRowSpan(int32_t aRowIndex, int32_t aColIndex) const { int32_t rowIndex = aRowIndex; nsCellMap* map = mFirstMap; while (map) { if (map->GetRowCount() > rowIndex) { return map->GetRowSpan(rowIndex, aColIndex, true); } rowIndex -= map->GetRowCount(); map = map->GetNextSibling(); } NS_NOTREACHED("Bogus row index?"); return 0; } int32_t nsTableCellMap::GetEffectiveColSpan(int32_t aRowIndex, int32_t aColIndex) const { int32_t rowIndex = aRowIndex; nsCellMap* map = mFirstMap; while (map) { if (map->GetRowCount() > rowIndex) { return map->GetEffectiveColSpan(*this, rowIndex, aColIndex); } rowIndex -= map->GetRowCount(); map = map->GetNextSibling(); } NS_NOTREACHED("Bogus row index?"); return 0; } nsTableCellFrame* nsTableCellMap::GetCellFrame(int32_t aRowIndex, int32_t aColIndex, CellData& aData, bool aUseRowIfOverlap) const { int32_t rowIndex = aRowIndex; nsCellMap* map = mFirstMap; while (map) { if (map->GetRowCount() > rowIndex) { return map->GetCellFrame(rowIndex, aColIndex, aData, aUseRowIfOverlap); } rowIndex -= map->GetRowCount(); map = map->GetNextSibling(); } return nullptr; } nsColInfo* nsTableCellMap::GetColInfoAt(int32_t aColIndex) { int32_t numColsToAdd = aColIndex + 1 - mCols.Length(); if (numColsToAdd > 0) { AddColsAtEnd(numColsToAdd); // XXX this could fail to add cols in theory } return &mCols.ElementAt(aColIndex); } int32_t nsTableCellMap::GetRowCount() const { int32_t numRows = 0; nsCellMap* map = mFirstMap; while (map) { numRows += map->GetRowCount(); map = map->GetNextSibling(); } return numRows; } CellData* nsTableCellMap::GetDataAt(int32_t aRowIndex, int32_t aColIndex) const { int32_t rowIndex = aRowIndex; nsCellMap* map = mFirstMap; while (map) { if (map->GetRowCount() > rowIndex) { return map->GetDataAt(rowIndex, aColIndex); } rowIndex -= map->GetRowCount(); map = map->GetNextSibling(); } return nullptr; } void nsTableCellMap::AddColsAtEnd(uint32_t aNumCols) { if (!mCols.AppendElements(aNumCols)) { NS_WARNING("Could not AppendElement"); } if (mBCInfo) { if (!mBCInfo->mBEndBorders.AppendElements(aNumCols)) { NS_WARNING("Could not AppendElement"); } } } void nsTableCellMap::RemoveColsAtEnd() { // Remove the cols at the end which don't have originating cells or cells spanning // into them. Only do this if the col was created as eColAnonymousCell int32_t numCols = GetColCount(); int32_t lastGoodColIndex = mTableFrame.GetIndexOfLastRealCol(); for (int32_t colX = numCols - 1; (colX >= 0) && (colX > lastGoodColIndex); colX--) { nsColInfo& colInfo = mCols.ElementAt(colX); if ((colInfo.mNumCellsOrig <= 0) && (colInfo.mNumCellsSpan <= 0)) { mCols.RemoveElementAt(colX); if (mBCInfo) { int32_t count = mBCInfo->mBEndBorders.Length(); if (colX < count) { mBCInfo->mBEndBorders.RemoveElementAt(colX); } } } else break; // only remove until we encounter the 1st valid one } } void nsTableCellMap::ClearCols() { mCols.Clear(); if (mBCInfo) mBCInfo->mBEndBorders.Clear(); } void nsTableCellMap::InsertRows(nsTableRowGroupFrame* aParent, nsTArray& aRows, int32_t aFirstRowIndex, bool aConsiderSpans, TableArea& aDamageArea) { int32_t numNewRows = aRows.Length(); if ((numNewRows <= 0) || (aFirstRowIndex < 0)) ABORT0(); int32_t rowIndex = aFirstRowIndex; int32_t rgStartRowIndex = 0; nsCellMap* cellMap = mFirstMap; while (cellMap) { nsTableRowGroupFrame* rg = cellMap->GetRowGroup(); if (rg == aParent) { cellMap->InsertRows(*this, aRows, rowIndex, aConsiderSpans, rgStartRowIndex, aDamageArea); #ifdef DEBUG_TABLE_CELLMAP Dump("after InsertRows"); #endif if (mBCInfo) { int32_t count = mBCInfo->mIEndBorders.Length(); if (aFirstRowIndex < count) { for (int32_t rowX = aFirstRowIndex; rowX < aFirstRowIndex + numNewRows; rowX++) { mBCInfo->mIEndBorders.InsertElementAt(rowX); } } else { GetIEndMostBorder(aFirstRowIndex); // this will create missing entries for (int32_t rowX = aFirstRowIndex + 1; rowX < aFirstRowIndex + numNewRows; rowX++) { mBCInfo->mIEndBorders.AppendElement(); } } } return; } int32_t rowCount = cellMap->GetRowCount(); rgStartRowIndex += rowCount; rowIndex -= rowCount; cellMap = cellMap->GetNextSibling(); } NS_ERROR("Attempt to insert row into wrong map."); } void nsTableCellMap::RemoveRows(int32_t aFirstRowIndex, int32_t aNumRowsToRemove, bool aConsiderSpans, TableArea& aDamageArea) { int32_t rowIndex = aFirstRowIndex; int32_t rgStartRowIndex = 0; nsCellMap* cellMap = mFirstMap; while (cellMap) { int32_t rowCount = cellMap->GetRowCount(); if (rowCount > rowIndex) { cellMap->RemoveRows(*this, rowIndex, aNumRowsToRemove, aConsiderSpans, rgStartRowIndex, aDamageArea); if (mBCInfo) { for (int32_t rowX = aFirstRowIndex + aNumRowsToRemove - 1; rowX >= aFirstRowIndex; rowX--) { if (uint32_t(rowX) < mBCInfo->mIEndBorders.Length()) { mBCInfo->mIEndBorders.RemoveElementAt(rowX); } } } break; } rgStartRowIndex += rowCount; rowIndex -= rowCount; cellMap = cellMap->GetNextSibling(); } #ifdef DEBUG_TABLE_CELLMAP Dump("after RemoveRows"); #endif } CellData* nsTableCellMap::AppendCell(nsTableCellFrame& aCellFrame, int32_t aRowIndex, bool aRebuildIfNecessary, TableArea& aDamageArea) { MOZ_ASSERT(&aCellFrame == aCellFrame.FirstInFlow(), "invalid call on continuing frame"); nsIFrame* rgFrame = aCellFrame.GetParent(); // get the row if (!rgFrame) return 0; rgFrame = rgFrame->GetParent(); // get the row group if (!rgFrame) return 0; CellData* result = nullptr; int32_t rowIndex = aRowIndex; int32_t rgStartRowIndex = 0; nsCellMap* cellMap = mFirstMap; while (cellMap) { if (cellMap->GetRowGroup() == rgFrame) { result = cellMap->AppendCell(*this, &aCellFrame, rowIndex, aRebuildIfNecessary, rgStartRowIndex, aDamageArea); break; } int32_t rowCount = cellMap->GetRowCount(); rgStartRowIndex += rowCount; rowIndex -= rowCount; cellMap = cellMap->GetNextSibling(); } #ifdef DEBUG_TABLE_CELLMAP Dump("after AppendCell"); #endif return result; } void nsTableCellMap::InsertCells(nsTArray& aCellFrames, int32_t aRowIndex, int32_t aColIndexBefore, TableArea& aDamageArea) { int32_t rowIndex = aRowIndex; int32_t rgStartRowIndex = 0; nsCellMap* cellMap = mFirstMap; while (cellMap) { int32_t rowCount = cellMap->GetRowCount(); if (rowCount > rowIndex) { cellMap->InsertCells(*this, aCellFrames, rowIndex, aColIndexBefore, rgStartRowIndex, aDamageArea); break; } rgStartRowIndex += rowCount; rowIndex -= rowCount; cellMap = cellMap->GetNextSibling(); } #ifdef DEBUG_TABLE_CELLMAP Dump("after InsertCells"); #endif } void nsTableCellMap::RemoveCell(nsTableCellFrame* aCellFrame, int32_t aRowIndex, TableArea& aDamageArea) { if (!aCellFrame) ABORT0(); MOZ_ASSERT(aCellFrame == aCellFrame->FirstInFlow(), "invalid call on continuing frame"); int32_t rowIndex = aRowIndex; int32_t rgStartRowIndex = 0; nsCellMap* cellMap = mFirstMap; while (cellMap) { int32_t rowCount = cellMap->GetRowCount(); if (rowCount > rowIndex) { cellMap->RemoveCell(*this, aCellFrame, rowIndex, rgStartRowIndex, aDamageArea); #ifdef DEBUG_TABLE_CELLMAP Dump("after RemoveCell"); #endif return; } rgStartRowIndex += rowCount; rowIndex -= rowCount; cellMap = cellMap->GetNextSibling(); } // if we reach this point - the cell did not get removed, the caller of this routine // will delete the cell and the cellmap will probably hold a reference to // the deleted cell which will cause a subsequent crash when this cell is // referenced later NS_ERROR("nsTableCellMap::RemoveCell - could not remove cell"); } void nsTableCellMap::RebuildConsideringCells(nsCellMap* aCellMap, nsTArray* aCellFrames, int32_t aRowIndex, int32_t aColIndex, bool aInsert, TableArea& aDamageArea) { int32_t numOrigCols = GetColCount(); ClearCols(); nsCellMap* cellMap = mFirstMap; int32_t rowCount = 0; while (cellMap) { if (cellMap == aCellMap) { cellMap->RebuildConsideringCells(*this, numOrigCols, aCellFrames, aRowIndex, aColIndex, aInsert); } else { cellMap->RebuildConsideringCells(*this, numOrigCols, nullptr, -1, 0, false); } rowCount += cellMap->GetRowCount(); cellMap = cellMap->GetNextSibling(); } SetDamageArea(0, 0, GetColCount(), rowCount, aDamageArea); } void nsTableCellMap::RebuildConsideringRows(nsCellMap* aCellMap, int32_t aStartRowIndex, nsTArray* aRowsToInsert, int32_t aNumRowsToRemove, TableArea& aDamageArea) { MOZ_ASSERT(!aRowsToInsert || aNumRowsToRemove == 0, "Can't handle both removing and inserting rows at once"); int32_t numOrigCols = GetColCount(); ClearCols(); nsCellMap* cellMap = mFirstMap; int32_t rowCount = 0; while (cellMap) { if (cellMap == aCellMap) { cellMap->RebuildConsideringRows(*this, aStartRowIndex, aRowsToInsert, aNumRowsToRemove); } else { cellMap->RebuildConsideringCells(*this, numOrigCols, nullptr, -1, 0, false); } rowCount += cellMap->GetRowCount(); cellMap = cellMap->GetNextSibling(); } SetDamageArea(0, 0, GetColCount(), rowCount, aDamageArea); } int32_t nsTableCellMap::GetNumCellsOriginatingInCol(int32_t aColIndex) const { int32_t colCount = mCols.Length(); if ((aColIndex >= 0) && (aColIndex < colCount)) { return mCols.ElementAt(aColIndex).mNumCellsOrig; } else { NS_ERROR("nsCellMap::GetNumCellsOriginatingInCol - bad col index"); return 0; } } #ifdef DEBUG void nsTableCellMap::Dump(char* aString) const { if (aString) printf("%s \n", aString); printf("***** START TABLE CELL MAP DUMP ***** %p\n", (void*)this); // output col info int32_t colCount = mCols.Length(); printf ("cols array orig/span-> %p", (void*)this); for (int32_t colX = 0; colX < colCount; colX++) { const nsColInfo& colInfo = mCols.ElementAt(colX); printf ("%d=%d/%d ", colX, colInfo.mNumCellsOrig, colInfo.mNumCellsSpan); } printf(" cols in cache %d\n", int(mTableFrame.GetColCache().Length())); nsCellMap* cellMap = mFirstMap; while (cellMap) { cellMap->Dump(nullptr != mBCInfo); cellMap = cellMap->GetNextSibling(); } if (nullptr != mBCInfo) { printf("***** block-end borders *****\n"); nscoord size; BCBorderOwner owner; LogicalSide side; bool segStart; bool bevel; int32_t colIndex; int32_t numCols = mBCInfo->mBEndBorders.Length(); for (int32_t i = 0; i <= 2; i++) { printf("\n "); for (colIndex = 0; colIndex < numCols; colIndex++) { BCData& cd = mBCInfo->mBEndBorders.ElementAt(colIndex); if (0 == i) { size = cd.GetBStartEdge(owner, segStart); printf("t=%d%X%d ", int32_t(size), owner, segStart); } else if (1 == i) { size = cd.GetIStartEdge(owner, segStart); printf("l=%d%X%d ", int32_t(size), owner, segStart); } else { size = cd.GetCorner(side, bevel); printf("c=%d%X%d ", int32_t(size), side, bevel); } } BCData& cd = mBCInfo->mBEndIEndCorner; if (0 == i) { size = cd.GetBStartEdge(owner, segStart); printf("t=%d%X%d ", int32_t(size), owner, segStart); } else if (1 == i) { size = cd.GetIStartEdge(owner, segStart); printf("l=%d%X%d ", int32_t(size), owner, segStart); } else { size = cd.GetCorner(side, bevel); printf("c=%d%X%d ", int32_t(size), side, bevel); } } printf("\n"); } printf("***** END TABLE CELL MAP DUMP *****\n"); } #endif nsTableCellFrame* nsTableCellMap::GetCellInfoAt(int32_t aRowIndex, int32_t aColIndex, bool* aOriginates, int32_t* aColSpan) const { int32_t rowIndex = aRowIndex; nsCellMap* cellMap = mFirstMap; while (cellMap) { if (cellMap->GetRowCount() > rowIndex) { return cellMap->GetCellInfoAt(*this, rowIndex, aColIndex, aOriginates, aColSpan); } rowIndex -= cellMap->GetRowCount(); cellMap = cellMap->GetNextSibling(); } return nullptr; } int32_t nsTableCellMap::GetIndexByRowAndColumn(int32_t aRow, int32_t aColumn) const { int32_t index = 0; int32_t colCount = mCols.Length(); int32_t rowIndex = aRow; nsCellMap* cellMap = mFirstMap; while (cellMap) { int32_t rowCount = cellMap->GetRowCount(); if (rowIndex >= rowCount) { // If the rowCount is less than the rowIndex, this means that the index is // not within the current map. If so, get the index of the last cell in // the last row. rowIndex -= rowCount; int32_t cellMapIdx = cellMap->GetHighestIndex(colCount); if (cellMapIdx != -1) index += cellMapIdx + 1; } else { // Index is in valid range for this cellmap, so get the index of rowIndex // and aColumn. int32_t cellMapIdx = cellMap->GetIndexByRowAndColumn(colCount, rowIndex, aColumn); if (cellMapIdx == -1) return -1; // no cell at the given row and column. index += cellMapIdx; return index; // no need to look through further maps here } cellMap = cellMap->GetNextSibling(); } return -1; } void nsTableCellMap::GetRowAndColumnByIndex(int32_t aIndex, int32_t *aRow, int32_t *aColumn) const { *aRow = -1; *aColumn = -1; int32_t colCount = mCols.Length(); int32_t previousRows = 0; int32_t index = aIndex; nsCellMap* cellMap = mFirstMap; while (cellMap) { int32_t rowCount = cellMap->GetRowCount(); // Determine the highest possible index in this map to see // if wanted index is in here. int32_t cellMapIdx = cellMap->GetHighestIndex(colCount); if (cellMapIdx == -1) { // The index is not within this map, increase the total row index // accordingly. previousRows += rowCount; } else { if (index > cellMapIdx) { // The index is not within this map, so decrease it by the cellMapIdx // determined index and increase the total row index accordingly. index -= cellMapIdx + 1; previousRows += rowCount; } else { cellMap->GetRowAndColumnByIndex(colCount, index, aRow, aColumn); // If there were previous indexes, take them into account. *aRow += previousRows; return; // no need to look any further. } } cellMap = cellMap->GetNextSibling(); } } bool nsTableCellMap::RowIsSpannedInto(int32_t aRowIndex, int32_t aNumEffCols) const { int32_t rowIndex = aRowIndex; nsCellMap* cellMap = mFirstMap; while (cellMap) { if (cellMap->GetRowCount() > rowIndex) { return cellMap->RowIsSpannedInto(rowIndex, aNumEffCols); } rowIndex -= cellMap->GetRowCount(); cellMap = cellMap->GetNextSibling(); } return false; } bool nsTableCellMap::RowHasSpanningCells(int32_t aRowIndex, int32_t aNumEffCols) const { int32_t rowIndex = aRowIndex; nsCellMap* cellMap = mFirstMap; while (cellMap) { if (cellMap->GetRowCount() > rowIndex) { return cellMap->RowHasSpanningCells(rowIndex, aNumEffCols); } rowIndex -= cellMap->GetRowCount(); cellMap = cellMap->GetNextSibling(); } return false; } // FIXME: The only value callers pass for aSide is eLogicalSideBEnd. // Consider removing support for the other three values. void nsTableCellMap::ResetBStartStart(LogicalSide aSide, nsCellMap& aCellMap, uint32_t aRowGroupStart, uint32_t aRowIndex, uint32_t aColIndex, bool aIsBEndIEnd) { if (!mBCInfo || aIsBEndIEnd) ABORT0(); BCCellData* cellData; BCData* bcData = nullptr; switch(aSide) { case eLogicalSideBEnd: aRowIndex++; MOZ_FALLTHROUGH; case eLogicalSideBStart: cellData = (BCCellData*)aCellMap.GetDataAt(aRowIndex - aRowGroupStart, aColIndex); if (cellData) { bcData = &cellData->mData; } else { NS_ASSERTION(aSide == eLogicalSideBEnd, "program error"); // try the next row group nsCellMap* cellMap = aCellMap.GetNextSibling(); if (cellMap) { cellData = (BCCellData*)cellMap->GetDataAt(0, aColIndex); if (cellData) { bcData = &cellData->mData; } else { bcData = GetBEndMostBorder(aColIndex); } } } break; case eLogicalSideIEnd: aColIndex++; MOZ_FALLTHROUGH; case eLogicalSideIStart: cellData = (BCCellData*)aCellMap.GetDataAt(aRowIndex - aRowGroupStart, aColIndex); if (cellData) { bcData = &cellData->mData; } else { NS_ASSERTION(aSide == eLogicalSideIEnd, "program error"); bcData = GetIEndMostBorder(aRowIndex); } break; } if (bcData) { bcData->SetBStartStart(false); } } // store the aSide border segment at coord = (aRowIndex, aColIndex). For bStart/iStart, store // the info at coord. For bEnd/iStart store it at the adjacent location so that it is // bStart/iStart at that location. If the new location is at the iEnd or bEnd edge of the // table, then store it one of the special arrays (iEnd-most borders, bEnd-most borders). void nsTableCellMap::SetBCBorderEdge(LogicalSide aSide, nsCellMap& aCellMap, uint32_t aCellMapStart, uint32_t aRowIndex, uint32_t aColIndex, uint32_t aLength, BCBorderOwner aOwner, nscoord aSize, bool aChanged) { if (!mBCInfo) ABORT0(); BCCellData* cellData; int32_t lastIndex, xIndex, yIndex; int32_t xPos = aColIndex; int32_t yPos = aRowIndex; int32_t rgYPos = aRowIndex - aCellMapStart; bool changed; switch(aSide) { case eLogicalSideBEnd: rgYPos++; yPos++; MOZ_FALLTHROUGH; case eLogicalSideBStart: lastIndex = xPos + aLength - 1; for (xIndex = xPos; xIndex <= lastIndex; xIndex++) { changed = aChanged && (xIndex == xPos); BCData* bcData = nullptr; cellData = (BCCellData*)aCellMap.GetDataAt(rgYPos, xIndex); if (!cellData) { int32_t numRgRows = aCellMap.GetRowCount(); if (yPos < numRgRows) { // add a dead cell data TableArea damageArea; cellData = (BCCellData*)aCellMap.AppendCell(*this, nullptr, rgYPos, false, 0, damageArea); if (!cellData) ABORT0(); } else { NS_ASSERTION(aSide == eLogicalSideBEnd, "program error"); // try the next non empty row group nsCellMap* cellMap = aCellMap.GetNextSibling(); while (cellMap && (0 == cellMap->GetRowCount())) { cellMap = cellMap->GetNextSibling(); } if (cellMap) { cellData = (BCCellData*)cellMap->GetDataAt(0, xIndex); if (!cellData) { // add a dead cell TableArea damageArea; cellData = (BCCellData*)cellMap->AppendCell(*this, nullptr, 0, false, 0, damageArea); } } else { // must be at the end of the table bcData = GetBEndMostBorder(xIndex); } } } if (!bcData && cellData) { bcData = &cellData->mData; } if (bcData) { bcData->SetBStartEdge(aOwner, aSize, changed); } else NS_ERROR("Cellmap: BStart edge not found"); } break; case eLogicalSideIEnd: xPos++; MOZ_FALLTHROUGH; case eLogicalSideIStart: // since bStart, bEnd borders were set, there should already be a cellData entry lastIndex = rgYPos + aLength - 1; for (yIndex = rgYPos; yIndex <= lastIndex; yIndex++) { changed = aChanged && (yIndex == rgYPos); cellData = (BCCellData*)aCellMap.GetDataAt(yIndex, xPos); if (cellData) { cellData->mData.SetIStartEdge(aOwner, aSize, changed); } else { NS_ASSERTION(aSide == eLogicalSideIEnd, "program error"); BCData* bcData = GetIEndMostBorder(yIndex + aCellMapStart); if (bcData) { bcData->SetIStartEdge(aOwner, aSize, changed); } else NS_ERROR("Cellmap: IStart edge not found"); } } break; } } // store corner info (aOwner, aSubSize, aBevel). For aCorner = eBStartIStart, store the info at // (aRowIndex, aColIndex). For eBStartIEnd, store it in the entry to the iEnd-wards where // it would be BStartIStart. For eBEndIEnd, store it in the entry to the bEnd-wards. etc. void nsTableCellMap::SetBCBorderCorner(LogicalCorner aCorner, nsCellMap& aCellMap, uint32_t aCellMapStart, uint32_t aRowIndex, uint32_t aColIndex, LogicalSide aOwner, nscoord aSubSize, bool aBevel, bool aIsBEndIEnd) { if (!mBCInfo) ABORT0(); if (aIsBEndIEnd) { mBCInfo->mBEndIEndCorner.SetCorner(aSubSize, aOwner, aBevel); return; } int32_t xPos = aColIndex; int32_t yPos = aRowIndex; int32_t rgYPos = aRowIndex - aCellMapStart; if (eLogicalCornerBStartIEnd == aCorner) { xPos++; } else if (eLogicalCornerBEndIEnd == aCorner) { xPos++; rgYPos++; yPos++; } else if (eLogicalCornerBEndIStart == aCorner) { rgYPos++; yPos++; } BCCellData* cellData = nullptr; BCData* bcData = nullptr; if (GetColCount() <= xPos) { NS_ASSERTION(xPos == GetColCount(), "program error"); // at the iEnd edge of the table as we checked the corner before NS_ASSERTION(!aIsBEndIEnd, "should be handled before"); bcData = GetIEndMostBorder(yPos); } else { cellData = (BCCellData*)aCellMap.GetDataAt(rgYPos, xPos); if (!cellData) { int32_t numRgRows = aCellMap.GetRowCount(); if (yPos < numRgRows) { // add a dead cell data TableArea damageArea; cellData = (BCCellData*)aCellMap.AppendCell(*this, nullptr, rgYPos, false, 0, damageArea); } else { // try the next non empty row group nsCellMap* cellMap = aCellMap.GetNextSibling(); while (cellMap && (0 == cellMap->GetRowCount())) { cellMap = cellMap->GetNextSibling(); } if (cellMap) { cellData = (BCCellData*)cellMap->GetDataAt(0, xPos); if (!cellData) { // add a dead cell TableArea damageArea; cellData = (BCCellData*)cellMap->AppendCell(*this, nullptr, 0, false, 0, damageArea); } } else { // must be at the bEnd of the table bcData = GetBEndMostBorder(xPos); } } } } if (!bcData && cellData) { bcData = &cellData->mData; } if (bcData) { bcData->SetCorner(aSubSize, aOwner, aBevel); } else NS_ERROR("program error: Corner not found"); } nsCellMap::nsCellMap(nsTableRowGroupFrame* aRowGroup, bool aIsBC) : mRows(8), mContentRowCount(0), mRowGroupFrame(aRowGroup), mNextSibling(nullptr), mIsBC(aIsBC), mPresContext(aRowGroup->PresContext()) { MOZ_COUNT_CTOR(nsCellMap); NS_ASSERTION(mPresContext, "Must have prescontext"); } nsCellMap::~nsCellMap() { MOZ_COUNT_DTOR(nsCellMap); uint32_t mapRowCount = mRows.Length(); for (uint32_t rowX = 0; rowX < mapRowCount; rowX++) { CellDataArray &row = mRows[rowX]; uint32_t colCount = row.Length(); for (uint32_t colX = 0; colX < colCount; colX++) { DestroyCellData(row[colX]); } } } /* static */ void nsCellMap::Init() { MOZ_ASSERT(!sEmptyRow, "How did that happen?"); sEmptyRow = new nsCellMap::CellDataArray(); } /* static */ void nsCellMap::Shutdown() { delete sEmptyRow; sEmptyRow = nullptr; } nsTableCellFrame* nsCellMap::GetCellFrame(int32_t aRowIndexIn, int32_t aColIndexIn, CellData& aData, bool aUseRowIfOverlap) const { int32_t rowIndex = aRowIndexIn - aData.GetRowSpanOffset(); int32_t colIndex = aColIndexIn - aData.GetColSpanOffset(); if (aData.IsOverlap()) { if (aUseRowIfOverlap) { colIndex = aColIndexIn; } else { rowIndex = aRowIndexIn; } } CellData* data = mRows.SafeElementAt(rowIndex, *sEmptyRow).SafeElementAt(colIndex); if (data) { return data->GetCellFrame(); } return nullptr; } int32_t nsCellMap::GetHighestIndex(int32_t aColCount) { int32_t index = -1; int32_t rowCount = mRows.Length(); for (int32_t rowIdx = 0; rowIdx < rowCount; rowIdx++) { const CellDataArray& row = mRows[rowIdx]; for (int32_t colIdx = 0; colIdx < aColCount; colIdx++) { CellData* data = row.SafeElementAt(colIdx); // No data means row doesn't have more cells. if (!data) break; if (data->IsOrig()) index++; } } return index; } int32_t nsCellMap::GetIndexByRowAndColumn(int32_t aColCount, int32_t aRow, int32_t aColumn) const { if (uint32_t(aRow) >= mRows.Length()) return -1; int32_t index = -1; int32_t lastColsIdx = aColCount - 1; // Find row index of the cell where row span is started. const CellDataArray& row = mRows[aRow]; CellData* data = row.SafeElementAt(aColumn); int32_t origRow = data ? aRow - data->GetRowSpanOffset() : aRow; // Calculate cell index. for (int32_t rowIdx = 0; rowIdx <= origRow; rowIdx++) { const CellDataArray& row = mRows[rowIdx]; int32_t colCount = (rowIdx == origRow) ? aColumn : lastColsIdx; for (int32_t colIdx = 0; colIdx <= colCount; colIdx++) { data = row.SafeElementAt(colIdx); // No data means row doesn't have more cells. if (!data) break; if (data->IsOrig()) index++; } } // Given row and column don't point to the cell. if (!data) return -1; return index; } void nsCellMap::GetRowAndColumnByIndex(int32_t aColCount, int32_t aIndex, int32_t *aRow, int32_t *aColumn) const { *aRow = -1; *aColumn = -1; int32_t index = aIndex; int32_t rowCount = mRows.Length(); for (int32_t rowIdx = 0; rowIdx < rowCount; rowIdx++) { const CellDataArray& row = mRows[rowIdx]; for (int32_t colIdx = 0; colIdx < aColCount; colIdx++) { CellData* data = row.SafeElementAt(colIdx); // The row doesn't have more cells. if (!data) break; if (data->IsOrig()) index--; if (index < 0) { *aRow = rowIdx; *aColumn = colIdx; return; } } } } bool nsCellMap::Grow(nsTableCellMap& aMap, int32_t aNumRows, int32_t aRowIndex) { NS_ASSERTION(aNumRows >= 1, "Why are we calling this?"); // Get the number of cols we want to use for preallocating the row arrays. int32_t numCols = aMap.GetColCount(); if (numCols == 0) { numCols = 4; } uint32_t startRowIndex = (aRowIndex >= 0) ? aRowIndex : mRows.Length(); NS_ASSERTION(startRowIndex <= mRows.Length(), "Missing grow call inbetween"); return mRows.InsertElementsAt(startRowIndex, aNumRows, numCols) != nullptr; } void nsCellMap::GrowRow(CellDataArray& aRow, int32_t aNumCols) { // Have to have the cast to get the template to do the right thing. aRow.InsertElementsAt(aRow.Length(), aNumCols, (CellData*)nullptr); } void nsCellMap::InsertRows(nsTableCellMap& aMap, nsTArray& aRows, int32_t aFirstRowIndex, bool aConsiderSpans, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { int32_t numCols = aMap.GetColCount(); NS_ASSERTION(aFirstRowIndex >= 0, "nsCellMap::InsertRows called with negative rowIndex"); if (uint32_t(aFirstRowIndex) > mRows.Length()) { // create (aFirstRowIndex - mRows.Length()) empty rows up to aFirstRowIndex int32_t numEmptyRows = aFirstRowIndex - mRows.Length(); if (!Grow(aMap, numEmptyRows)) { return; } } if (!aConsiderSpans) { // update mContentRowCount, since non-empty rows will be added mContentRowCount = std::max(aFirstRowIndex, mContentRowCount); ExpandWithRows(aMap, aRows, aFirstRowIndex, aRgFirstRowIndex, aDamageArea); return; } // if any cells span into or out of the row being inserted, then rebuild bool spansCauseRebuild = CellsSpanInOrOut(aFirstRowIndex, aFirstRowIndex, 0, numCols - 1); // update mContentRowCount, since non-empty rows will be added mContentRowCount = std::max(aFirstRowIndex, mContentRowCount); // if any of the new cells span out of the new rows being added, then rebuild // XXX it would be better to only rebuild the portion of the map that follows the new rows if (!spansCauseRebuild && (uint32_t(aFirstRowIndex) < mRows.Length())) { spansCauseRebuild = CellsSpanOut(aRows); } if (spansCauseRebuild) { aMap.RebuildConsideringRows(this, aFirstRowIndex, &aRows, 0, aDamageArea); } else { ExpandWithRows(aMap, aRows, aFirstRowIndex, aRgFirstRowIndex, aDamageArea); } } void nsCellMap::RemoveRows(nsTableCellMap& aMap, int32_t aFirstRowIndex, int32_t aNumRowsToRemove, bool aConsiderSpans, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { int32_t numRows = mRows.Length(); int32_t numCols = aMap.GetColCount(); if (aFirstRowIndex >= numRows) { // reduce the content based row count based on the function arguments // as they are known to be real rows even if the cell map did not create // rows for them before. mContentRowCount -= aNumRowsToRemove; return; } if (!aConsiderSpans) { ShrinkWithoutRows(aMap, aFirstRowIndex, aNumRowsToRemove, aRgFirstRowIndex, aDamageArea); return; } int32_t endRowIndex = aFirstRowIndex + aNumRowsToRemove - 1; if (endRowIndex >= numRows) { NS_ERROR("nsCellMap::RemoveRows tried to remove too many rows"); endRowIndex = numRows - 1; } bool spansCauseRebuild = CellsSpanInOrOut(aFirstRowIndex, endRowIndex, 0, numCols - 1); if (spansCauseRebuild) { aMap.RebuildConsideringRows(this, aFirstRowIndex, nullptr, aNumRowsToRemove, aDamageArea); } else { ShrinkWithoutRows(aMap, aFirstRowIndex, aNumRowsToRemove, aRgFirstRowIndex, aDamageArea); } } CellData* nsCellMap::AppendCell(nsTableCellMap& aMap, nsTableCellFrame* aCellFrame, int32_t aRowIndex, bool aRebuildIfNecessary, int32_t aRgFirstRowIndex, TableArea& aDamageArea, int32_t* aColToBeginSearch) { NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch"); int32_t origNumMapRows = mRows.Length(); int32_t origNumCols = aMap.GetColCount(); bool zeroRowSpan = false; int32_t rowSpan = (aCellFrame) ? GetRowSpanForNewCell(aCellFrame, aRowIndex, zeroRowSpan) : 1; // add new rows if necessary int32_t endRowIndex = aRowIndex + rowSpan - 1; if (endRowIndex >= origNumMapRows) { // XXXbz handle allocation failures? Grow(aMap, 1 + endRowIndex - origNumMapRows); } // get the first null or dead CellData in the desired row. It will equal origNumCols if there are none CellData* origData = nullptr; int32_t startColIndex = 0; if (aColToBeginSearch) startColIndex = *aColToBeginSearch; for (; startColIndex < origNumCols; startColIndex++) { CellData* data = GetDataAt(aRowIndex, startColIndex); if (!data) break; // The border collapse code relies on having multiple dead cell data entries // in a row. if (data->IsDead() && aCellFrame) { origData = data; break; } } // We found the place to append the cell, when the next cell is appended // the next search does not need to duplicate the search but can start // just at the next cell. if (aColToBeginSearch) *aColToBeginSearch = startColIndex + 1; int32_t colSpan = aCellFrame ? aCellFrame->GetColSpan() : 1; // if the new cell could potentially span into other rows and collide with // originating cells there, we will play it safe and just rebuild the map if (aRebuildIfNecessary && (aRowIndex < mContentRowCount - 1) && (rowSpan > 1)) { AutoTArray newCellArray; newCellArray.AppendElement(aCellFrame); aMap.RebuildConsideringCells(this, &newCellArray, aRowIndex, startColIndex, true, aDamageArea); return origData; } mContentRowCount = std::max(mContentRowCount, aRowIndex + 1); // add new cols to the table map if necessary int32_t endColIndex = startColIndex + colSpan - 1; if (endColIndex >= origNumCols) { NS_ASSERTION(aCellFrame, "dead cells should not require new columns"); aMap.AddColsAtEnd(1 + endColIndex - origNumCols); } // Setup CellData for this cell if (origData) { NS_ASSERTION(origData->IsDead(), "replacing a non dead cell is a memory leak"); if (aCellFrame) { // do nothing to replace a dead cell with a dead cell origData->Init(aCellFrame); // we are replacing a dead cell, increase the number of cells // originating at this column nsColInfo* colInfo = aMap.GetColInfoAt(startColIndex); NS_ASSERTION(colInfo, "access to a non existing column"); if (colInfo) { colInfo->mNumCellsOrig++; } } } else { origData = AllocCellData(aCellFrame); if (!origData) ABORT1(origData); SetDataAt(aMap, *origData, aRowIndex, startColIndex); } if (aRebuildIfNecessary) { //the caller depends on the damageArea // The special case for zeroRowSpan is to adjust for the '2' in // GetRowSpanForNewCell. uint32_t height = std::min(zeroRowSpan ? rowSpan - 1 : rowSpan, GetRowCount() - aRowIndex); SetDamageArea(startColIndex, aRgFirstRowIndex + aRowIndex, 1 + endColIndex - startColIndex, height, aDamageArea); } if (!aCellFrame) { return origData; } // initialize the cell frame aCellFrame->SetColIndex(startColIndex); // Create CellData objects for the rows that this cell spans. Set // their mOrigCell to nullptr and their mSpanData to point to data. for (int32_t rowX = aRowIndex; rowX <= endRowIndex; rowX++) { // The row at rowX will need to have at least endColIndex columns mRows[rowX].SetCapacity(endColIndex); for (int32_t colX = startColIndex; colX <= endColIndex; colX++) { if ((rowX != aRowIndex) || (colX != startColIndex)) { // skip orig cell data done above CellData* cellData = GetDataAt(rowX, colX); if (cellData) { if (cellData->IsOrig()) { NS_ERROR("cannot overlap originating cell"); continue; } if (rowX > aRowIndex) { // row spanning into cell if (cellData->IsRowSpan()) { // do nothing, this can be caused by rowspan which is overlapped // by a another cell with a rowspan and a colspan } else { cellData->SetRowSpanOffset(rowX - aRowIndex); if (zeroRowSpan) { cellData->SetZeroRowSpan(true); } } } if (colX > startColIndex) { // col spanning into cell if (!cellData->IsColSpan()) { if (cellData->IsRowSpan()) { cellData->SetOverlap(true); } cellData->SetColSpanOffset(colX - startColIndex); nsColInfo* colInfo = aMap.GetColInfoAt(colX); colInfo->mNumCellsSpan++; } } } else { cellData = AllocCellData(nullptr); if (!cellData) return origData; if (rowX > aRowIndex) { cellData->SetRowSpanOffset(rowX - aRowIndex); if (zeroRowSpan) { cellData->SetZeroRowSpan(true); } } if (colX > startColIndex) { cellData->SetColSpanOffset(colX - startColIndex); } SetDataAt(aMap, *cellData, rowX, colX); } } } } #ifdef DEBUG_TABLE_CELLMAP printf("appended cell=%p row=%d \n", aCellFrame, aRowIndex); aMap.Dump(); #endif return origData; } bool nsCellMap::CellsSpanOut(nsTArray& aRows) const { int32_t numNewRows = aRows.Length(); for (int32_t rowX = 0; rowX < numNewRows; rowX++) { nsIFrame* rowFrame = (nsIFrame *) aRows.ElementAt(rowX); for (nsIFrame* childFrame : rowFrame->PrincipalChildList()) { nsTableCellFrame *cellFrame = do_QueryFrame(childFrame); if (cellFrame) { bool zeroSpan; int32_t rowSpan = GetRowSpanForNewCell(cellFrame, rowX, zeroSpan); if (zeroSpan || rowX + rowSpan > numNewRows) { return true; } } } } return false; } // return true if any cells have rows spans into or out of the region // defined by the row and col indices or any cells have colspans into the region bool nsCellMap::CellsSpanInOrOut(int32_t aStartRowIndex, int32_t aEndRowIndex, int32_t aStartColIndex, int32_t aEndColIndex) const { /* * this routine will watch the cells adjacent to the region or at the edge * they are marked with *. The routine will verify whether they span in or * are spanned out. * * startCol endCol * r1c1 r1c2 r1c3 r1c4 r1c5 r1rc6 r1c7 * startrow r2c1 r2c2 *r2c3 *r2c4 *r2c5 *r2rc6 r2c7 * endrow r3c1 r3c2 *r3c3 r3c4 r3c5 *r3rc6 r3c7 * r4c1 r4c2 *r4c3 *r4c4 *r4c5 r4rc6 r4c7 * r5c1 r5c2 r5c3 r5c4 r5c5 r5rc6 r5c7 */ int32_t numRows = mRows.Length(); // use the cellmap rows to determine the // current cellmap extent. for (int32_t colX = aStartColIndex; colX <= aEndColIndex; colX++) { CellData* cellData; if (aStartRowIndex > 0) { cellData = GetDataAt(aStartRowIndex, colX); if (cellData && (cellData->IsRowSpan())) { return true; // there is a row span into the region } if ((aStartRowIndex >= mContentRowCount) && (mContentRowCount > 0)) { cellData = GetDataAt(mContentRowCount - 1, colX); if (cellData && cellData->IsZeroRowSpan()) { return true; // When we expand the zerospan it'll span into our row } } } if (aEndRowIndex < numRows - 1) { // is there anything below aEndRowIndex cellData = GetDataAt(aEndRowIndex + 1, colX); if ((cellData) && (cellData->IsRowSpan())) { return true; // there is a row span out of the region } } else { cellData = GetDataAt(aEndRowIndex, colX); if ((cellData) && (cellData->IsRowSpan()) && (mContentRowCount < numRows)) { return true; // this cell might be the cause of a dead row } } } if (aStartColIndex > 0) { for (int32_t rowX = aStartRowIndex; rowX <= aEndRowIndex; rowX++) { CellData* cellData = GetDataAt(rowX, aStartColIndex); if (cellData && (cellData->IsColSpan())) { return true; // there is a col span into the region } cellData = GetDataAt(rowX, aEndColIndex + 1); if (cellData && (cellData->IsColSpan())) { return true; // there is a col span out of the region } } } return false; } void nsCellMap::InsertCells(nsTableCellMap& aMap, nsTArray& aCellFrames, int32_t aRowIndex, int32_t aColIndexBefore, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { if (aCellFrames.Length() == 0) return; NS_ASSERTION(aColIndexBefore >= -1, "index out of range"); int32_t numCols = aMap.GetColCount(); if (aColIndexBefore >= numCols) { NS_ERROR("Inserting instead of appending cells indicates a serious cellmap error"); aColIndexBefore = numCols - 1; } // get the starting col index of the 1st new cells int32_t startColIndex; for (startColIndex = aColIndexBefore + 1; startColIndex < numCols; startColIndex++) { CellData* data = GetDataAt(aRowIndex, startColIndex); if (!data || data->IsOrig() || data->IsDead()) { // // Not a span. Stop. break; } } // record whether inserted cells are going to cause complications due // to existing row spans, col spans or table sizing. bool spansCauseRebuild = false; // check that all cells have the same row span int32_t numNewCells = aCellFrames.Length(); bool zeroRowSpan = false; int32_t rowSpan = 0; for (int32_t cellX = 0; cellX < numNewCells; cellX++) { nsTableCellFrame* cell = aCellFrames.ElementAt(cellX); int32_t rowSpan2 = GetRowSpanForNewCell(cell, aRowIndex, zeroRowSpan); if (rowSpan == 0) { rowSpan = rowSpan2; } else if (rowSpan != rowSpan2) { spansCauseRebuild = true; break; } } // check if the new cells will cause the table to add more rows if (!spansCauseRebuild) { if (mRows.Length() < uint32_t(aRowIndex + rowSpan)) { spansCauseRebuild = true; } } if (!spansCauseRebuild) { spansCauseRebuild = CellsSpanInOrOut(aRowIndex, aRowIndex + rowSpan - 1, startColIndex, numCols - 1); } if (spansCauseRebuild) { aMap.RebuildConsideringCells(this, &aCellFrames, aRowIndex, startColIndex, true, aDamageArea); } else { ExpandWithCells(aMap, aCellFrames, aRowIndex, startColIndex, rowSpan, zeroRowSpan, aRgFirstRowIndex, aDamageArea); } } void nsCellMap::ExpandWithRows(nsTableCellMap& aMap, nsTArray& aRowFrames, int32_t aStartRowIndexIn, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { int32_t startRowIndex = (aStartRowIndexIn >= 0) ? aStartRowIndexIn : 0; NS_ASSERTION(uint32_t(startRowIndex) <= mRows.Length(), "caller should have grown cellmap before"); int32_t numNewRows = aRowFrames.Length(); mContentRowCount += numNewRows; int32_t endRowIndex = startRowIndex + numNewRows - 1; // shift the rows after startRowIndex down and insert empty rows that will // be filled via the AppendCell call below if (!Grow(aMap, numNewRows, startRowIndex)) { return; } int32_t newRowIndex = 0; for (int32_t rowX = startRowIndex; rowX <= endRowIndex; rowX++) { nsTableRowFrame* rFrame = aRowFrames.ElementAt(newRowIndex); // append cells int32_t colIndex = 0; for (nsIFrame* cFrame : rFrame->PrincipalChildList()) { nsTableCellFrame *cellFrame = do_QueryFrame(cFrame); if (cellFrame) { AppendCell(aMap, cellFrame, rowX, false, aRgFirstRowIndex, aDamageArea, &colIndex); } } newRowIndex++; } // mark all following rows damaged, they might contain a previously set // damage area which we can not shift. int32_t firstDamagedRow = aRgFirstRowIndex + startRowIndex; SetDamageArea(0, firstDamagedRow, aMap.GetColCount(), aMap.GetRowCount() - firstDamagedRow, aDamageArea); } void nsCellMap::ExpandWithCells(nsTableCellMap& aMap, nsTArray& aCellFrames, int32_t aRowIndex, int32_t aColIndex, int32_t aRowSpan, // same for all cells bool aRowSpanIsZero, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch"); int32_t endRowIndex = aRowIndex + aRowSpan - 1; int32_t startColIndex = aColIndex; int32_t endColIndex = aColIndex; int32_t numCells = aCellFrames.Length(); int32_t totalColSpan = 0; // add cellData entries for the space taken up by the new cells for (int32_t cellX = 0; cellX < numCells; cellX++) { nsTableCellFrame* cellFrame = aCellFrames.ElementAt(cellX); CellData* origData = AllocCellData(cellFrame); // the originating cell if (!origData) return; // set the starting and ending col index for the new cell int32_t colSpan = cellFrame->GetColSpan(); totalColSpan += colSpan; if (cellX == 0) { endColIndex = aColIndex + colSpan - 1; } else { startColIndex = endColIndex + 1; endColIndex = startColIndex + colSpan - 1; } // add the originating cell data and any cell data corresponding to row/col spans for (int32_t rowX = aRowIndex; rowX <= endRowIndex; rowX++) { CellDataArray& row = mRows[rowX]; // Pre-allocate all the cells we'll need in this array, setting // them to null. // Have to have the cast to get the template to do the right thing. int32_t insertionIndex = row.Length(); if (insertionIndex > startColIndex) { insertionIndex = startColIndex; } if (!row.InsertElementsAt(insertionIndex, endColIndex - insertionIndex + 1, (CellData*)nullptr) && rowX == aRowIndex) { // Failed to insert the slots, and this is the very first row. That // means that we need to clean up |origData| before returning, since // the cellmap doesn't own it yet. DestroyCellData(origData); return; } for (int32_t colX = startColIndex; colX <= endColIndex; colX++) { CellData* data = origData; if ((rowX != aRowIndex) || (colX != startColIndex)) { data = AllocCellData(nullptr); if (!data) return; if (rowX > aRowIndex) { data->SetRowSpanOffset(rowX - aRowIndex); if (aRowSpanIsZero) { data->SetZeroRowSpan(true); } } if (colX > startColIndex) { data->SetColSpanOffset(colX - startColIndex); } } SetDataAt(aMap, *data, rowX, colX); } } cellFrame->SetColIndex(startColIndex); } int32_t damageHeight = std::min(GetRowGroup()->GetRowCount() - aRowIndex, aRowSpan); SetDamageArea(aColIndex, aRgFirstRowIndex + aRowIndex, 1 + endColIndex - aColIndex, damageHeight, aDamageArea); int32_t rowX; // update the row and col info due to shifting for (rowX = aRowIndex; rowX <= endRowIndex; rowX++) { CellDataArray& row = mRows[rowX]; uint32_t numCols = row.Length(); uint32_t colX; for (colX = aColIndex + totalColSpan; colX < numCols; colX++) { CellData* data = row[colX]; if (data) { // increase the origin and span counts beyond the spanned cols if (data->IsOrig()) { // a cell that gets moved needs adjustment as well as it new orignating col data->GetCellFrame()->SetColIndex(colX); nsColInfo* colInfo = aMap.GetColInfoAt(colX); colInfo->mNumCellsOrig++; } if (data->IsColSpan()) { nsColInfo* colInfo = aMap.GetColInfoAt(colX); colInfo->mNumCellsSpan++; } // decrease the origin and span counts within the spanned cols int32_t colX2 = colX - totalColSpan; nsColInfo* colInfo2 = aMap.GetColInfoAt(colX2); if (data->IsOrig()) { // the old originating col of a moved cell needs adjustment colInfo2->mNumCellsOrig--; } if (data->IsColSpan()) { colInfo2->mNumCellsSpan--; } } } } } void nsCellMap::ShrinkWithoutRows(nsTableCellMap& aMap, int32_t aStartRowIndex, int32_t aNumRowsToRemove, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch"); int32_t endRowIndex = aStartRowIndex + aNumRowsToRemove - 1; uint32_t colCount = aMap.GetColCount(); for (int32_t rowX = endRowIndex; rowX >= aStartRowIndex; --rowX) { CellDataArray& row = mRows[rowX]; uint32_t colX; for (colX = 0; colX < colCount; colX++) { CellData* data = row.SafeElementAt(colX); if (data) { // Adjust the column counts. if (data->IsOrig()) { // Decrement the column count. nsColInfo* colInfo = aMap.GetColInfoAt(colX); colInfo->mNumCellsOrig--; } // colspan=0 is only counted as a spanned cell in the 1st col it spans else if (data->IsColSpan()) { nsColInfo* colInfo = aMap.GetColInfoAt(colX); colInfo->mNumCellsSpan--; } } } uint32_t rowLength = row.Length(); // Delete our row information. for (colX = 0; colX < rowLength; colX++) { DestroyCellData(row[colX]); } mRows.RemoveElementAt(rowX); // Decrement our row and next available index counts. mContentRowCount--; } aMap.RemoveColsAtEnd(); // mark all following rows damaged, they might contain a previously set // damage area which we can not shift. int32_t firstDamagedRow = aRgFirstRowIndex + aStartRowIndex; SetDamageArea(0, firstDamagedRow, aMap.GetColCount(), aMap.GetRowCount() - firstDamagedRow, aDamageArea); } int32_t nsCellMap::GetEffectiveColSpan(const nsTableCellMap& aMap, int32_t aRowIndex, int32_t aColIndex) const { int32_t numColsInTable = aMap.GetColCount(); int32_t colSpan = 1; if (uint32_t(aRowIndex) >= mRows.Length()) { return colSpan; } const CellDataArray& row = mRows[aRowIndex]; int32_t colX; CellData* data; int32_t maxCols = numColsInTable; bool hitOverlap = false; // XXX this is not ever being set to true for (colX = aColIndex + 1; colX < maxCols; colX++) { data = row.SafeElementAt(colX); if (data) { // for an overlapping situation get the colspan from the originating cell and // use that as the max number of cols to iterate. Since this is rare, only // pay the price of looking up the cell's colspan here. if (!hitOverlap && data->IsOverlap()) { CellData* origData = row.SafeElementAt(aColIndex); if (origData && origData->IsOrig()) { nsTableCellFrame* cellFrame = origData->GetCellFrame(); if (cellFrame) { // possible change the number of colums to iterate maxCols = std::min(aColIndex + cellFrame->GetColSpan(), maxCols); if (colX >= maxCols) break; } } } if (data->IsColSpan()) { colSpan++; } else { break; } } else break; } return colSpan; } int32_t nsCellMap::GetRowSpanForNewCell(nsTableCellFrame* aCellFrameToAdd, int32_t aRowIndex, bool& aIsZeroRowSpan) const { aIsZeroRowSpan = false; int32_t rowSpan = aCellFrameToAdd->GetRowSpan(); if (0 == rowSpan) { // Use a min value of 2 for a zero rowspan to make computations easier // elsewhere. Zero rowspans are only content dependent! rowSpan = std::max(2, mContentRowCount - aRowIndex); aIsZeroRowSpan = true; } return rowSpan; } bool nsCellMap::HasMoreThanOneCell(int32_t aRowIndex) const { const CellDataArray& row = mRows.SafeElementAt(aRowIndex, *sEmptyRow); uint32_t maxColIndex = row.Length(); uint32_t count = 0; uint32_t colIndex; for (colIndex = 0; colIndex < maxColIndex; colIndex++) { CellData* cellData = row[colIndex]; if (cellData && (cellData->GetCellFrame() || cellData->IsRowSpan())) count++; if (count > 1) return true; } return false; } int32_t nsCellMap::GetNumCellsOriginatingInRow(int32_t aRowIndex) const { const CellDataArray& row = mRows.SafeElementAt(aRowIndex, *sEmptyRow); uint32_t count = 0; uint32_t maxColIndex = row.Length(); uint32_t colIndex; for (colIndex = 0; colIndex < maxColIndex; colIndex++) { CellData* cellData = row[colIndex]; if (cellData && cellData->IsOrig()) count++; } return count; } int32_t nsCellMap::GetRowSpan(int32_t aRowIndex, int32_t aColIndex, bool aGetEffective) const { int32_t rowSpan = 1; int32_t rowCount = (aGetEffective) ? mContentRowCount : mRows.Length(); int32_t rowX; for (rowX = aRowIndex + 1; rowX < rowCount; rowX++) { CellData* data = GetDataAt(rowX, aColIndex); if (data) { if (data->IsRowSpan()) { rowSpan++; } else { break; } } else break; } return rowSpan; } void nsCellMap::ShrinkWithoutCell(nsTableCellMap& aMap, nsTableCellFrame& aCellFrame, int32_t aRowIndex, int32_t aColIndex, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch"); uint32_t colX, rowX; // get the rowspan and colspan from the cell map since the content may have changed uint32_t numCols = aMap.GetColCount(); int32_t rowSpan = GetRowSpan(aRowIndex, aColIndex, true); uint32_t colSpan = GetEffectiveColSpan(aMap, aRowIndex, aColIndex); uint32_t endRowIndex = aRowIndex + rowSpan - 1; uint32_t endColIndex = aColIndex + colSpan - 1; // adjust the col counts due to the deleted cell before removing it for (colX = aColIndex; colX <= endColIndex; colX++) { nsColInfo* colInfo = aMap.GetColInfoAt(colX); if (colX == uint32_t(aColIndex)) { colInfo->mNumCellsOrig--; } else { colInfo->mNumCellsSpan--; } } // remove the deleted cell and cellData entries for it for (rowX = aRowIndex; rowX <= endRowIndex; rowX++) { CellDataArray& row = mRows[rowX]; // endIndexForRow points at the first slot we don't want to clean up. This // makes the aColIndex == 0 case work right with our unsigned int colX. NS_ASSERTION(endColIndex + 1 <= row.Length(), "span beyond the row size!"); uint32_t endIndexForRow = std::min(endColIndex + 1, uint32_t(row.Length())); // Since endIndexForRow <= row.Length(), enough to compare aColIndex to it. if (uint32_t(aColIndex) < endIndexForRow) { for (colX = endIndexForRow; colX > uint32_t(aColIndex); colX--) { DestroyCellData(row[colX-1]); } row.RemoveElementsAt(aColIndex, endIndexForRow - aColIndex); } } numCols = aMap.GetColCount(); // update the row and col info due to shifting for (rowX = aRowIndex; rowX <= endRowIndex; rowX++) { CellDataArray& row = mRows[rowX]; for (colX = aColIndex; colX < numCols - colSpan; colX++) { CellData* data = row.SafeElementAt(colX); if (data) { if (data->IsOrig()) { // a cell that gets moved to the left needs adjustment in its new location data->GetCellFrame()->SetColIndex(colX); nsColInfo* colInfo = aMap.GetColInfoAt(colX); colInfo->mNumCellsOrig++; // a cell that gets moved to the left needs adjustment in its old location colInfo = aMap.GetColInfoAt(colX + colSpan); if (colInfo) { colInfo->mNumCellsOrig--; } } else if (data->IsColSpan()) { // a cell that gets moved to the left needs adjustment // in its new location nsColInfo* colInfo = aMap.GetColInfoAt(colX); colInfo->mNumCellsSpan++; // a cell that gets moved to the left needs adjustment // in its old location colInfo = aMap.GetColInfoAt(colX + colSpan); if (colInfo) { colInfo->mNumCellsSpan--; } } } } } aMap.RemoveColsAtEnd(); SetDamageArea(aColIndex, aRgFirstRowIndex + aRowIndex, std::max(0, aMap.GetColCount() - aColIndex - 1), 1 + endRowIndex - aRowIndex, aDamageArea); } void nsCellMap::RebuildConsideringRows(nsTableCellMap& aMap, int32_t aStartRowIndex, nsTArray* aRowsToInsert, int32_t aNumRowsToRemove) { NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch"); // copy the old cell map into a new array uint32_t numOrigRows = mRows.Length(); nsTArray origRows; mRows.SwapElements(origRows); int32_t rowNumberChange; if (aRowsToInsert) { rowNumberChange = aRowsToInsert->Length(); } else { rowNumberChange = -aNumRowsToRemove; } // adjust mContentRowCount based on the function arguments as they are known to // be real rows. mContentRowCount += rowNumberChange; NS_ASSERTION(mContentRowCount >= 0, "previous mContentRowCount was wrong"); // mRows is empty now. Grow it to the size we expect it to have. if (mContentRowCount) { if (!Grow(aMap, mContentRowCount)) { // Bail, I guess... Not sure what else we can do here. return; } } // aStartRowIndex might be after all existing rows so we should limit the // copy to the amount of exisiting rows uint32_t copyEndRowIndex = std::min(numOrigRows, uint32_t(aStartRowIndex)); // rowX keeps track of where we are in mRows while setting up the // new cellmap. uint32_t rowX = 0; TableArea damageArea; // put back the rows before the affected ones just as before. Note that we // can't just copy the old rows in bit-for-bit, because they might be // spanning out into the rows we're adding/removing. for ( ; rowX < copyEndRowIndex; rowX++) { const CellDataArray& row = origRows[rowX]; uint32_t numCols = row.Length(); for (uint32_t colX = 0; colX < numCols; colX++) { // put in the original cell from the cell map const CellData* data = row.ElementAt(colX); if (data && data->IsOrig()) { AppendCell(aMap, data->GetCellFrame(), rowX, false, 0, damageArea); } } } // Now handle the new rows being inserted, if any. uint32_t copyStartRowIndex; rowX = aStartRowIndex; if (aRowsToInsert) { // add in the new cells and create rows if necessary int32_t numNewRows = aRowsToInsert->Length(); for (int32_t newRowX = 0; newRowX < numNewRows; newRowX++) { nsTableRowFrame* rFrame = aRowsToInsert->ElementAt(newRowX); for (nsIFrame* cFrame : rFrame->PrincipalChildList()) { nsTableCellFrame *cellFrame = do_QueryFrame(cFrame); if (cellFrame) { AppendCell(aMap, cellFrame, rowX, false, 0, damageArea); } } rowX++; } copyStartRowIndex = aStartRowIndex; } else { copyStartRowIndex = aStartRowIndex + aNumRowsToRemove; } // put back the rows after the affected ones just as before. Again, we can't // just copy the old bits because that would not handle the new rows spanning // out or our earlier old rows spanning through the damaged area. for (uint32_t copyRowX = copyStartRowIndex; copyRowX < numOrigRows; copyRowX++) { const CellDataArray& row = origRows[copyRowX]; uint32_t numCols = row.Length(); for (uint32_t colX = 0; colX < numCols; colX++) { // put in the original cell from the cell map CellData* data = row.ElementAt(colX); if (data && data->IsOrig()) { AppendCell(aMap, data->GetCellFrame(), rowX, false, 0, damageArea); } } rowX++; } // delete the old cell map. Now rowX no longer has anything to do with mRows for (rowX = 0; rowX < numOrigRows; rowX++) { CellDataArray& row = origRows[rowX]; uint32_t len = row.Length(); for (uint32_t colX = 0; colX < len; colX++) { DestroyCellData(row[colX]); } } } void nsCellMap::RebuildConsideringCells(nsTableCellMap& aMap, int32_t aNumOrigCols, nsTArray* aCellFrames, int32_t aRowIndex, int32_t aColIndex, bool aInsert) { NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch"); // copy the old cell map into a new array int32_t numOrigRows = mRows.Length(); nsTArray origRows; mRows.SwapElements(origRows); int32_t numNewCells = (aCellFrames) ? aCellFrames->Length() : 0; // the new cells might extend the previous column number NS_ASSERTION(aNumOrigCols >= aColIndex, "Appending cells far beyond cellmap data?!"); int32_t numCols = aInsert ? std::max(aNumOrigCols, aColIndex + 1) : aNumOrigCols; // build the new cell map. Hard to say what, if anything, we can preallocate // here... Should come back to that sometime, perhaps. int32_t rowX; TableArea damageArea; for (rowX = 0; rowX < numOrigRows; rowX++) { const CellDataArray& row = origRows[rowX]; for (int32_t colX = 0; colX < numCols; colX++) { if ((rowX == aRowIndex) && (colX == aColIndex)) { if (aInsert) { // put in the new cells for (int32_t cellX = 0; cellX < numNewCells; cellX++) { nsTableCellFrame* cell = aCellFrames->ElementAt(cellX); if (cell) { AppendCell(aMap, cell, rowX, false, 0, damageArea); } } } else { continue; // do not put the deleted cell back } } // put in the original cell from the cell map CellData* data = row.SafeElementAt(colX); if (data && data->IsOrig()) { AppendCell(aMap, data->GetCellFrame(), rowX, false, 0, damageArea); } } } if (aInsert && numOrigRows <= aRowIndex) { // append the new cells below the last original row NS_ASSERTION (numOrigRows == aRowIndex, "Appending cells far beyond the last row"); for (int32_t cellX = 0; cellX < numNewCells; cellX++) { nsTableCellFrame* cell = aCellFrames->ElementAt(cellX); if (cell) { AppendCell(aMap, cell, aRowIndex, false, 0, damageArea); } } } // delete the old cell map for (rowX = 0; rowX < numOrigRows; rowX++) { CellDataArray& row = origRows[rowX]; uint32_t len = row.Length(); for (uint32_t colX = 0; colX < len; colX++) { DestroyCellData(row.SafeElementAt(colX)); } } // expand the cellmap to cover empty content rows if (mRows.Length() < uint32_t(mContentRowCount)) { Grow(aMap, mContentRowCount - mRows.Length()); } } void nsCellMap::RemoveCell(nsTableCellMap& aMap, nsTableCellFrame* aCellFrame, int32_t aRowIndex, int32_t aRgFirstRowIndex, TableArea& aDamageArea) { uint32_t numRows = mRows.Length(); if (uint32_t(aRowIndex) >= numRows) { NS_ERROR("bad arg in nsCellMap::RemoveCell"); return; } int32_t numCols = aMap.GetColCount(); // Now aRowIndex is guaranteed OK. // get the starting col index of the cell to remove int32_t startColIndex; for (startColIndex = 0; startColIndex < numCols; startColIndex++) { CellData* data = mRows[aRowIndex].SafeElementAt(startColIndex); if (data && (data->IsOrig()) && (aCellFrame == data->GetCellFrame())) { break; // we found the col index } } int32_t rowSpan = GetRowSpan(aRowIndex, startColIndex, false); // record whether removing the cells is going to cause complications due // to existing row spans, col spans or table sizing. bool spansCauseRebuild = CellsSpanInOrOut(aRowIndex, aRowIndex + rowSpan - 1, startColIndex, numCols - 1); // XXX if the cell has a col span to the end of the map, and the end has no originating // cells, we need to assume that this the only such cell, and rebuild so that there are // no extraneous cols at the end. The same is true for removing rows. if (!aCellFrame->GetRowSpan() || !aCellFrame->GetColSpan()) spansCauseRebuild = true; if (spansCauseRebuild) { aMap.RebuildConsideringCells(this, nullptr, aRowIndex, startColIndex, false, aDamageArea); } else { ShrinkWithoutCell(aMap, *aCellFrame, aRowIndex, startColIndex, aRgFirstRowIndex, aDamageArea); } } #ifdef DEBUG void nsCellMap::Dump(bool aIsBorderCollapse) const { printf("\n ***** START GROUP CELL MAP DUMP ***** %p\n", (void*)this); nsTableRowGroupFrame* rg = GetRowGroup(); const nsStyleDisplay* display = rg->StyleDisplay(); switch (display->mDisplay) { case StyleDisplay::TableHeaderGroup: printf(" thead "); break; case StyleDisplay::TableFooterGroup: printf(" tfoot "); break; case StyleDisplay::TableRowGroup: printf(" tbody "); break; default: printf("HUH? wrong display type on rowgroup"); } uint32_t mapRowCount = mRows.Length(); printf("mapRowCount=%u tableRowCount=%d\n", mapRowCount, mContentRowCount); uint32_t rowIndex, colIndex; for (rowIndex = 0; rowIndex < mapRowCount; rowIndex++) { const CellDataArray& row = mRows[rowIndex]; printf(" row %d : ", rowIndex); uint32_t colCount = row.Length(); for (colIndex = 0; colIndex < colCount; colIndex++) { CellData* cd = row[colIndex]; if (cd) { if (cd->IsOrig()) { printf("C%d,%d ", rowIndex, colIndex); } else { if (cd->IsRowSpan()) { printf("R "); } if (cd->IsColSpan()) { printf("C "); } if (!(cd->IsRowSpan() && cd->IsColSpan())) { printf(" "); } printf(" "); } } else { printf("---- "); } } if (aIsBorderCollapse) { nscoord size; BCBorderOwner owner; LogicalSide side; bool segStart; bool bevel; for (int32_t i = 0; i <= 2; i++) { printf("\n "); for (colIndex = 0; colIndex < colCount; colIndex++) { BCCellData* cd = (BCCellData *)row[colIndex]; if (cd) { if (0 == i) { size = cd->mData.GetBStartEdge(owner, segStart); printf("t=%d%d%d ", int32_t(size), owner, segStart); } else if (1 == i) { size = cd->mData.GetIStartEdge(owner, segStart); printf("l=%d%d%d ", int32_t(size), owner, segStart); } else { size = cd->mData.GetCorner(side, bevel); printf("c=%d%d%d ", int32_t(size), side, bevel); } } } } } printf("\n"); } // output info mapping Ci,j to cell address uint32_t cellCount = 0; for (uint32_t rIndex = 0; rIndex < mapRowCount; rIndex++) { const CellDataArray& row = mRows[rIndex]; uint32_t colCount = row.Length(); printf(" "); for (colIndex = 0; colIndex < colCount; colIndex++) { CellData* cd = row[colIndex]; if (cd) { if (cd->IsOrig()) { nsTableCellFrame* cellFrame = cd->GetCellFrame(); uint32_t cellFrameColIndex = cellFrame->ColIndex(); printf("C%d,%d=%p(%u) ", rIndex, colIndex, (void*)cellFrame, cellFrameColIndex); cellCount++; } } } printf("\n"); } printf(" ***** END GROUP CELL MAP DUMP *****\n"); } #endif CellData* nsCellMap::GetDataAt(int32_t aMapRowIndex, int32_t aColIndex) const { return mRows.SafeElementAt(aMapRowIndex, *sEmptyRow).SafeElementAt(aColIndex); } // only called if the cell at aMapRowIndex, aColIndex is null or dead // (the latter from ExpandZeroColSpans (XXXmats which has now been removed - // are there other ways cells may be dead?)). void nsCellMap::SetDataAt(nsTableCellMap& aMap, CellData& aNewCell, int32_t aMapRowIndex, int32_t aColIndex) { NS_ASSERTION(!!aMap.mBCInfo == mIsBC, "BC state mismatch"); if (uint32_t(aMapRowIndex) >= mRows.Length()) { NS_ERROR("SetDataAt called with row index > num rows"); return; } CellDataArray& row = mRows[aMapRowIndex]; // the table map may need cols added int32_t numColsToAdd = aColIndex + 1 - aMap.GetColCount(); if (numColsToAdd > 0) { aMap.AddColsAtEnd(numColsToAdd); } // the row may need cols added numColsToAdd = aColIndex + 1 - row.Length(); if (numColsToAdd > 0) { // XXXbz need to handle allocation failures. GrowRow(row, numColsToAdd); } DestroyCellData(row[aColIndex]); row.ReplaceElementsAt(aColIndex, 1, &aNewCell); // update the originating cell counts if cell originates in this row, col nsColInfo* colInfo = aMap.GetColInfoAt(aColIndex); if (colInfo) { if (aNewCell.IsOrig()) { colInfo->mNumCellsOrig++; } else if (aNewCell.IsColSpan()) { colInfo->mNumCellsSpan++; } } else NS_ERROR("SetDataAt called with col index > table map num cols"); } nsTableCellFrame* nsCellMap::GetCellInfoAt(const nsTableCellMap& aMap, int32_t aRowX, int32_t aColX, bool* aOriginates, int32_t* aColSpan) const { if (aOriginates) { *aOriginates = false; } CellData* data = GetDataAt(aRowX, aColX); nsTableCellFrame* cellFrame = nullptr; if (data) { if (data->IsOrig()) { cellFrame = data->GetCellFrame(); if (aOriginates) *aOriginates = true; } else { cellFrame = GetCellFrame(aRowX, aColX, *data, true); } if (cellFrame && aColSpan) { uint32_t initialColIndex = cellFrame->ColIndex(); *aColSpan = GetEffectiveColSpan(aMap, aRowX, initialColIndex); } } return cellFrame; } bool nsCellMap::RowIsSpannedInto(int32_t aRowIndex, int32_t aNumEffCols) const { if ((0 > aRowIndex) || (aRowIndex >= mContentRowCount)) { return false; } for (int32_t colIndex = 0; colIndex < aNumEffCols; colIndex++) { CellData* cd = GetDataAt(aRowIndex, colIndex); if (cd) { // there's really a cell at (aRowIndex, colIndex) if (cd->IsSpan()) { // the cell at (aRowIndex, colIndex) is the result of a span if (cd->IsRowSpan() && GetCellFrame(aRowIndex, colIndex, *cd, true)) { // XXX why the last check return true; } } } } return false; } bool nsCellMap::RowHasSpanningCells(int32_t aRowIndex, int32_t aNumEffCols) const { if ((0 > aRowIndex) || (aRowIndex >= mContentRowCount)) { return false; } if (aRowIndex != mContentRowCount - 1) { // aRowIndex is not the last row, so we check the next row after aRowIndex for spanners for (int32_t colIndex = 0; colIndex < aNumEffCols; colIndex++) { CellData* cd = GetDataAt(aRowIndex, colIndex); if (cd && (cd->IsOrig())) { // cell originates CellData* cd2 = GetDataAt(aRowIndex + 1, colIndex); if (cd2 && cd2->IsRowSpan()) { // cd2 is spanned by a row if (cd->GetCellFrame() == GetCellFrame(aRowIndex + 1, colIndex, *cd2, true)) { return true; } } } } } return false; } void nsCellMap::DestroyCellData(CellData* aData) { if (!aData) { return; } if (mIsBC) { BCCellData* bcData = static_cast(aData); bcData->~BCCellData(); mPresContext->PresShell()-> FreeByObjectID(eArenaObjectID_BCCellData, bcData); } else { aData->~CellData(); mPresContext->PresShell()-> FreeByObjectID(eArenaObjectID_CellData, aData); } } CellData* nsCellMap::AllocCellData(nsTableCellFrame* aOrigCell) { if (mIsBC) { BCCellData* data = (BCCellData*) mPresContext->PresShell()-> AllocateByObjectID(eArenaObjectID_BCCellData, sizeof(BCCellData)); if (data) { new (data) BCCellData(aOrigCell); } return data; } CellData* data = (CellData*) mPresContext->PresShell()-> AllocateByObjectID(eArenaObjectID_CellData, sizeof(CellData)); if (data) { new (data) CellData(aOrigCell); } return data; } void nsCellMapColumnIterator::AdvanceRowGroup() { do { mCurMapStart += mCurMapContentRowCount; mCurMap = mCurMap->GetNextSibling(); if (!mCurMap) { // Set mCurMapContentRowCount and mCurMapRelevantRowCount to 0 in case // mCurMap has no next sibling. This can happen if we just handled the // last originating cell. Future calls will end up with mFoundCells == // mOrigCells, but for this one mFoundCells was definitely not big enough // if we got here. mCurMapContentRowCount = 0; mCurMapRelevantRowCount = 0; break; } mCurMapContentRowCount = mCurMap->GetRowCount(); uint32_t rowArrayLength = mCurMap->mRows.Length(); mCurMapRelevantRowCount = std::min(mCurMapContentRowCount, rowArrayLength); } while (0 == mCurMapRelevantRowCount); NS_ASSERTION(mCurMapRelevantRowCount != 0 || !mCurMap, "How did that happen?"); // Set mCurMapRow to 0, since cells can't span across table row groups. mCurMapRow = 0; } void nsCellMapColumnIterator::IncrementRow(int32_t aIncrement) { MOZ_ASSERT(aIncrement >= 0, "Bogus increment"); MOZ_ASSERT(mCurMap, "Bogus mOrigCells?"); if (aIncrement == 0) { AdvanceRowGroup(); } else { mCurMapRow += aIncrement; if (mCurMapRow >= mCurMapRelevantRowCount) { AdvanceRowGroup(); } } } nsTableCellFrame* nsCellMapColumnIterator::GetNextFrame(int32_t* aRow, int32_t* aColSpan) { // Fast-path for the case when we don't have anything left in the column and // we know it. if (mFoundCells == mOrigCells) { *aRow = 0; *aColSpan = 1; return nullptr; } while (1) { NS_ASSERTION(mCurMapRow < mCurMapRelevantRowCount, "Bogus mOrigCells?"); // Safe to just get the row (which is faster than calling GetDataAt(), but // there may not be that many cells in it, so have to use SafeElementAt for // the mCol. const nsCellMap::CellDataArray& row = mCurMap->mRows[mCurMapRow]; CellData* cellData = row.SafeElementAt(mCol); if (!cellData || cellData->IsDead()) { // Could hit this if there are fewer cells in this row than others, for // example. IncrementRow(1); continue; } if (cellData->IsColSpan()) { // Look up the originating data for this cell, advance by its relative rowspan. int32_t rowspanOffset = cellData->GetRowSpanOffset(); nsTableCellFrame* cellFrame = mCurMap->GetCellFrame(mCurMapRow, mCol, *cellData, false); NS_ASSERTION(cellFrame,"Must have usable originating data here"); int32_t rowSpan = cellFrame->GetRowSpan(); if (rowSpan == 0) { AdvanceRowGroup(); } else { IncrementRow(rowSpan - rowspanOffset); } continue; } NS_ASSERTION(cellData->IsOrig(), "Must have originating cellData by this point. " "See comment on mCurMapRow in header."); nsTableCellFrame* cellFrame = cellData->GetCellFrame(); NS_ASSERTION(cellFrame, "Orig data without cellframe?"); *aRow = mCurMapStart + mCurMapRow; *aColSpan = mCurMap->GetEffectiveColSpan(*mMap, mCurMapRow, mCol); IncrementRow(cellFrame->GetRowSpan()); ++mFoundCells; MOZ_ASSERT(cellData == mMap->GetDataAt(*aRow, mCol), "Giving caller bogus row?"); return cellFrame; } NS_NOTREACHED("Can't get here"); return nullptr; }