/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_RootingAPI_h #define js_RootingAPI_h #include "mozilla/Attributes.h" #include "mozilla/DebugOnly.h" #include "mozilla/EnumeratedArray.h" #include "mozilla/LinkedList.h" #include "mozilla/Maybe.h" #include #include #include "jspubtd.h" #include "js/ComparisonOperators.h" // JS::detail::DefineComparisonOps #include "js/GCAnnotations.h" #include "js/GCPolicyAPI.h" #include "js/GCTypeMacros.h" // JS_FOR_EACH_PUBLIC_{,TAGGED_}GC_POINTER_TYPE #include "js/HashTable.h" #include "js/HeapAPI.h" #include "js/ProfilingStack.h" #include "js/Realm.h" #include "js/TypeDecls.h" #include "js/UniquePtr.h" #include "js/Utility.h" /* * [SMDOC] Stack Rooting * * Moving GC Stack Rooting * * A moving GC may change the physical location of GC allocated things, even * when they are rooted, updating all pointers to the thing to refer to its new * location. The GC must therefore know about all live pointers to a thing, * not just one of them, in order to behave correctly. * * The |Rooted| and |Handle| classes below are used to root stack locations * whose value may be held live across a call that can trigger GC. For a * code fragment such as: * * JSObject* obj = NewObject(cx); * DoSomething(cx); * ... = obj->lastProperty(); * * If |DoSomething()| can trigger a GC, the stack location of |obj| must be * rooted to ensure that the GC does not move the JSObject referred to by * |obj| without updating |obj|'s location itself. This rooting must happen * regardless of whether there are other roots which ensure that the object * itself will not be collected. * * If |DoSomething()| cannot trigger a GC, and the same holds for all other * calls made between |obj|'s definitions and its last uses, then no rooting * is required. * * SpiderMonkey can trigger a GC at almost any time and in ways that are not * always clear. For example, the following innocuous-looking actions can * cause a GC: allocation of any new GC thing; JSObject::hasProperty; * JS_ReportError and friends; and ToNumber, among many others. The following * dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_, * rt->malloc_, and friends and JS_ReportOutOfMemory. * * The following family of three classes will exactly root a stack location. * Incorrect usage of these classes will result in a compile error in almost * all cases. Therefore, it is very hard to be incorrectly rooted if you use * these classes exclusively. These classes are all templated on the type T of * the value being rooted. * * - Rooted declares a variable of type T, whose value is always rooted. * Rooted may be automatically coerced to a Handle, below. Rooted * should be used whenever a local variable's value may be held live across a * call which can trigger a GC. * * - Handle is a const reference to a Rooted. Functions which take GC * things or values as arguments and need to root those arguments should * generally use handles for those arguments and avoid any explicit rooting. * This has two benefits. First, when several such functions call each other * then redundant rooting of multiple copies of the GC thing can be avoided. * Second, if the caller does not pass a rooted value a compile error will be * generated, which is quicker and easier to fix than when relying on a * separate rooting analysis. * * - MutableHandle is a non-const reference to Rooted. It is used in the * same way as Handle and includes a |set(const T& v)| method to allow * updating the value of the referenced Rooted. A MutableHandle can be * created with an implicit cast from a Rooted*. * * In some cases the small performance overhead of exact rooting (measured to * be a few nanoseconds on desktop) is too much. In these cases, try the * following: * * - Move all Rooted above inner loops: this allows you to re-use the root * on each iteration of the loop. * * - Pass Handle through your hot call stack to avoid re-rooting costs at * every invocation. * * The following diagram explains the list of supported, implicit type * conversions between classes of this family: * * Rooted ----> Handle * | ^ * | | * | | * +---> MutableHandle * (via &) * * All of these types have an implicit conversion to raw pointers. */ namespace js { template struct BarrierMethods {}; template class WrappedPtrOperations {}; template class MutableWrappedPtrOperations : public WrappedPtrOperations {}; template class RootedBase : public MutableWrappedPtrOperations {}; template class HandleBase : public WrappedPtrOperations {}; template class MutableHandleBase : public MutableWrappedPtrOperations {}; template class HeapBase : public MutableWrappedPtrOperations {}; // Cannot use FOR_EACH_HEAP_ABLE_GC_POINTER_TYPE, as this would import too many // macros into scope template struct IsHeapConstructibleType { static constexpr bool value = false; }; #define DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE(T) \ template <> \ struct IsHeapConstructibleType { \ static constexpr bool value = true; \ }; JS_FOR_EACH_PUBLIC_GC_POINTER_TYPE(DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE) JS_FOR_EACH_PUBLIC_TAGGED_GC_POINTER_TYPE(DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE) #undef DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE template class PersistentRootedBase : public MutableWrappedPtrOperations {}; namespace gc { struct Cell; template struct PersistentRootedMarker; } /* namespace gc */ // Important: Return a reference so passing a Rooted, etc. to // something that takes a |const T&| is not a GC hazard. #define DECLARE_POINTER_CONSTREF_OPS(T) \ operator const T&() const { return get(); } \ const T& operator->() const { return get(); } // Assignment operators on a base class are hidden by the implicitly defined // operator= on the derived class. Thus, define the operator= directly on the // class as we would need to manually pass it through anyway. #define DECLARE_POINTER_ASSIGN_OPS(Wrapper, T) \ Wrapper& operator=(const T& p) { \ set(p); \ return *this; \ } \ Wrapper& operator=(T&& p) { \ set(std::move(p)); \ return *this; \ } \ Wrapper& operator=(const Wrapper& other) { \ set(other.get()); \ return *this; \ } #define DELETE_ASSIGNMENT_OPS(Wrapper, T) \ template \ Wrapper& operator=(S) = delete; \ Wrapper& operator=(const Wrapper&) = delete; #define DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr) \ const T* address() const { return &(ptr); } \ const T& get() const { return (ptr); } #define DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr) \ T* address() { return &(ptr); } \ T& get() { return (ptr); } } /* namespace js */ namespace JS { JS_FRIEND_API void HeapObjectPostWriteBarrier(JSObject** objp, JSObject* prev, JSObject* next); JS_FRIEND_API void HeapStringPostWriteBarrier(JSString** objp, JSString* prev, JSString* next); JS_FRIEND_API void HeapBigIntPostWriteBarrier(JS::BigInt** bip, JS::BigInt* prev, JS::BigInt* next); JS_FRIEND_API void HeapObjectWriteBarriers(JSObject** objp, JSObject* prev, JSObject* next); JS_FRIEND_API void HeapStringWriteBarriers(JSString** objp, JSString* prev, JSString* next); JS_FRIEND_API void HeapBigIntWriteBarriers(JS::BigInt** bip, JS::BigInt* prev, JS::BigInt* next); JS_FRIEND_API void HeapScriptWriteBarriers(JSScript** objp, JSScript* prev, JSScript* next); /** * Create a safely-initialized |T|, suitable for use as a default value in * situations requiring a safe but arbitrary |T| value. */ template inline T SafelyInitialized() { // This function wants to presume that |T()| -- which value-initializes a // |T| per C++11 [expr.type.conv]p2 -- will produce a safely-initialized, // safely-usable T that it can return. #if defined(XP_WIN) || defined(XP_MACOSX) || \ (defined(XP_UNIX) && !defined(__clang__)) // That presumption holds for pointers, where value initialization produces // a null pointer. constexpr bool IsPointer = std::is_pointer_v; // For classes and unions we *assume* that if |T|'s default constructor is // non-trivial it'll initialize correctly. (This is unideal, but C++ // doesn't offer a type trait indicating whether a class's constructor is // user-defined, which better approximates our desired semantics.) constexpr bool IsNonTriviallyDefaultConstructibleClassOrUnion = (std::is_class_v || std::is_union_v)&&!std::is_trivially_default_constructible_v; static_assert(IsPointer || IsNonTriviallyDefaultConstructibleClassOrUnion, "T() must evaluate to a safely-initialized T"); #endif return T(); } #ifdef JS_DEBUG /** * For generational GC, assert that an object is in the tenured generation as * opposed to being in the nursery. */ extern JS_FRIEND_API void AssertGCThingMustBeTenured(JSObject* obj); extern JS_FRIEND_API void AssertGCThingIsNotNurseryAllocable( js::gc::Cell* cell); #else inline void AssertGCThingMustBeTenured(JSObject* obj) {} inline void AssertGCThingIsNotNurseryAllocable(js::gc::Cell* cell) {} #endif /** * The Heap class is a heap-stored reference to a JS GC thing for use outside * the JS engine. All members of heap classes that refer to GC things should use * Heap (or possibly TenuredHeap, described below). * * Heap is an abstraction that hides some of the complexity required to * maintain GC invariants for the contained reference. It uses operator * overloading to provide a normal pointer interface, but adds barriers to * notify the GC of changes. * * Heap implements the following barriers: * * - Post-write barrier (necessary for generational GC). * - Read barrier (necessary for incremental GC and cycle collector * integration). * * Note Heap does not have a pre-write barrier as used internally in the * engine. The read barrier is used to mark anything read from a Heap during * an incremental GC. * * Heap may be moved or destroyed outside of GC finalization and hence may be * used in dynamic storage such as a Vector. * * Heap instances must be traced when their containing object is traced to * keep the pointed-to GC thing alive. * * Heap objects should only be used on the heap. GC references stored on the * C/C++ stack must use Rooted/Handle/MutableHandle instead. * * Type T must be a public GC pointer type. */ template class MOZ_NON_MEMMOVABLE Heap : public js::HeapBase> { // Please note: this can actually also be used by nsXBLMaybeCompiled, for // legacy reasons. static_assert(js::IsHeapConstructibleType::value, "Type T must be a public GC pointer type"); public: using ElementType = T; Heap() : ptr(SafelyInitialized()) { // No barriers are required for initialization to the default value. static_assert(sizeof(T) == sizeof(Heap), "Heap must be binary compatible with T."); } explicit Heap(const T& p) { init(p); } /* * For Heap, move semantics are equivalent to copy semantics. In C++, a * copy constructor taking const-ref is the way to get a single function * that will be used for both lvalue and rvalue copies, so we can simply * omit the rvalue variant. */ explicit Heap(const Heap& other) { init(other.ptr); } Heap& operator=(Heap&& other) { set(other.unbarrieredGet()); other.set(SafelyInitialized()); return *this; } ~Heap() { postWriteBarrier(ptr, SafelyInitialized()); } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_POINTER_ASSIGN_OPS(Heap, T); const T* address() const { return &ptr; } void exposeToActiveJS() const { js::BarrierMethods::exposeToJS(ptr); } const T& get() const { exposeToActiveJS(); return ptr; } const T& unbarrieredGet() const { return ptr; } void set(const T& newPtr) { T tmp = ptr; ptr = newPtr; postWriteBarrier(tmp, ptr); } T* unsafeGet() { return &ptr; } void unbarrieredSet(const T& newPtr) { ptr = newPtr; } explicit operator bool() const { return bool(js::BarrierMethods::asGCThingOrNull(ptr)); } explicit operator bool() { return bool(js::BarrierMethods::asGCThingOrNull(ptr)); } private: void init(const T& newPtr) { ptr = newPtr; postWriteBarrier(SafelyInitialized(), ptr); } void postWriteBarrier(const T& prev, const T& next) { js::BarrierMethods::postWriteBarrier(&ptr, prev, next); } T ptr; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const Heap& v) { return v.unbarrieredGet(); } }; } // namespace detail static MOZ_ALWAYS_INLINE bool ObjectIsTenured(JSObject* obj) { return !js::gc::IsInsideNursery(reinterpret_cast(obj)); } static MOZ_ALWAYS_INLINE bool ObjectIsTenured(const Heap& obj) { return ObjectIsTenured(obj.unbarrieredGet()); } static MOZ_ALWAYS_INLINE bool ObjectIsMarkedGray(JSObject* obj) { auto cell = reinterpret_cast(obj); return js::gc::detail::CellIsMarkedGrayIfKnown(cell); } static MOZ_ALWAYS_INLINE bool ObjectIsMarkedGray( const JS::Heap& obj) { return ObjectIsMarkedGray(obj.unbarrieredGet()); } // The following *IsNotGray functions take account of the eventual // gray marking state at the end of any ongoing incremental GC by // delaying the checks if necessary. #ifdef DEBUG inline void AssertCellIsNotGray(const js::gc::Cell* maybeCell) { if (maybeCell) { js::gc::detail::AssertCellIsNotGray(maybeCell); } } inline void AssertObjectIsNotGray(JSObject* maybeObj) { AssertCellIsNotGray(reinterpret_cast(maybeObj)); } inline void AssertObjectIsNotGray(const JS::Heap& obj) { AssertObjectIsNotGray(obj.unbarrieredGet()); } #else inline void AssertCellIsNotGray(js::gc::Cell* maybeCell) {} inline void AssertObjectIsNotGray(JSObject* maybeObj) {} inline void AssertObjectIsNotGray(const JS::Heap& obj) {} #endif /** * The TenuredHeap class is similar to the Heap class above in that it * encapsulates the GC concerns of an on-heap reference to a JS object. However, * it has two important differences: * * 1) Pointers which are statically known to only reference "tenured" objects * can avoid the extra overhead of SpiderMonkey's write barriers. * * 2) Objects in the "tenured" heap have stronger alignment restrictions than * those in the "nursery", so it is possible to store flags in the lower * bits of pointers known to be tenured. TenuredHeap wraps a normal tagged * pointer with a nice API for accessing the flag bits and adds various * assertions to ensure that it is not mis-used. * * GC things are said to be "tenured" when they are located in the long-lived * heap: e.g. they have gained tenure as an object by surviving past at least * one GC. For performance, SpiderMonkey allocates some things which are known * to normally be long lived directly into the tenured generation; for example, * global objects. Additionally, SpiderMonkey does not visit individual objects * when deleting non-tenured objects, so object with finalizers are also always * tenured; for instance, this includes most DOM objects. * * The considerations to keep in mind when using a TenuredHeap vs a normal * Heap are: * * - It is invalid for a TenuredHeap to refer to a non-tenured thing. * - It is however valid for a Heap to refer to a tenured thing. * - It is not possible to store flag bits in a Heap. */ template class TenuredHeap : public js::HeapBase> { public: using ElementType = T; TenuredHeap() : bits(0) { static_assert(sizeof(T) == sizeof(TenuredHeap), "TenuredHeap must be binary compatible with T."); } explicit TenuredHeap(T p) : bits(0) { setPtr(p); } explicit TenuredHeap(const TenuredHeap& p) : bits(0) { setPtr(p.getPtr()); } void setPtr(T newPtr) { MOZ_ASSERT((reinterpret_cast(newPtr) & flagsMask) == 0); MOZ_ASSERT(js::gc::IsCellPointerValidOrNull(newPtr)); if (newPtr) { AssertGCThingMustBeTenured(newPtr); } bits = (bits & flagsMask) | reinterpret_cast(newPtr); } void setFlags(uintptr_t flagsToSet) { MOZ_ASSERT((flagsToSet & ~flagsMask) == 0); bits |= flagsToSet; } void unsetFlags(uintptr_t flagsToUnset) { MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0); bits &= ~flagsToUnset; } bool hasFlag(uintptr_t flag) const { MOZ_ASSERT((flag & ~flagsMask) == 0); return (bits & flag) != 0; } T unbarrieredGetPtr() const { return reinterpret_cast(bits & ~flagsMask); } uintptr_t getFlags() const { return bits & flagsMask; } void exposeToActiveJS() const { js::BarrierMethods::exposeToJS(unbarrieredGetPtr()); } T getPtr() const { exposeToActiveJS(); return unbarrieredGetPtr(); } operator T() const { return getPtr(); } T operator->() const { return getPtr(); } explicit operator bool() const { return bool(js::BarrierMethods::asGCThingOrNull(unbarrieredGetPtr())); } explicit operator bool() { return bool(js::BarrierMethods::asGCThingOrNull(unbarrieredGetPtr())); } TenuredHeap& operator=(T p) { setPtr(p); return *this; } TenuredHeap& operator=(const TenuredHeap& other) { bits = other.bits; return *this; } private: enum { maskBits = 3, flagsMask = (1 << maskBits) - 1, }; uintptr_t bits; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T get(const TenuredHeap& v) { return v.unbarrieredGetPtr(); } }; } // namespace detail // std::swap uses a stack temporary, which prevents classes like Heap // from being declared MOZ_HEAP_CLASS. template void swap(TenuredHeap& aX, TenuredHeap& aY) { T tmp = aX; aX = aY; aY = tmp; } template void swap(Heap& aX, Heap& aY) { T tmp = aX; aX = aY; aY = tmp; } static MOZ_ALWAYS_INLINE bool ObjectIsMarkedGray( const JS::TenuredHeap& obj) { return ObjectIsMarkedGray(obj.unbarrieredGetPtr()); } template class MutableHandle; template class Rooted; template class PersistentRooted; /** * Reference to a T that has been rooted elsewhere. This is most useful * as a parameter type, which guarantees that the T lvalue is properly * rooted. See "Move GC Stack Rooting" above. * * If you want to add additional methods to Handle for a specific * specialization, define a HandleBase specialization containing them. */ template class MOZ_NONHEAP_CLASS Handle : public js::HandleBase> { friend class MutableHandle; public: using ElementType = T; /* Creates a handle from a handle of a type convertible to T. */ template MOZ_IMPLICIT Handle( Handle handle, std::enable_if_t, int> dummy = 0) { static_assert(sizeof(Handle) == sizeof(T*), "Handle must be binary compatible with T*."); ptr = reinterpret_cast(handle.address()); } MOZ_IMPLICIT Handle(decltype(nullptr)) { static_assert(std::is_pointer_v, "nullptr_t overload not valid for non-pointer types"); static void* const ConstNullValue = nullptr; ptr = reinterpret_cast(&ConstNullValue); } MOZ_IMPLICIT Handle(MutableHandle handle) { ptr = handle.address(); } /* * Take care when calling this method! * * This creates a Handle from the raw location of a T. * * It should be called only if the following conditions hold: * * 1) the location of the T is guaranteed to be marked (for some reason * other than being a Rooted), e.g., if it is guaranteed to be reachable * from an implicit root. * * 2) the contents of the location are immutable, or at least cannot change * for the lifetime of the handle, as its users may not expect its value * to change underneath them. */ static constexpr Handle fromMarkedLocation(const T* p) { return Handle(p, DeliberatelyChoosingThisOverload, ImUsingThisOnlyInFromFromMarkedLocation); } /* * Construct a handle from an explicitly rooted location. This is the * normal way to create a handle, and normally happens implicitly. */ template inline MOZ_IMPLICIT Handle( const Rooted& root, std::enable_if_t, int> dummy = 0); template inline MOZ_IMPLICIT Handle( const PersistentRooted& root, std::enable_if_t, int> dummy = 0); /* Construct a read only handle from a mutable handle. */ template inline MOZ_IMPLICIT Handle( MutableHandle& root, std::enable_if_t, int> dummy = 0); DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr); private: Handle() = default; DELETE_ASSIGNMENT_OPS(Handle, T); enum Disambiguator { DeliberatelyChoosingThisOverload = 42 }; enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 }; constexpr Handle(const T* p, Disambiguator, CallerIdentity) : ptr(p) {} const T* ptr; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const Handle& v) { return v.get(); } }; } // namespace detail /** * Similar to a handle, but the underlying storage can be changed. This is * useful for outparams. * * If you want to add additional methods to MutableHandle for a specific * specialization, define a MutableHandleBase specialization containing * them. */ template class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleBase> { public: using ElementType = T; inline MOZ_IMPLICIT MutableHandle(Rooted* root); inline MOZ_IMPLICIT MutableHandle(PersistentRooted* root); private: // Disallow nullptr for overloading purposes. MutableHandle(decltype(nullptr)) = delete; public: void set(const T& v) { *ptr = v; MOZ_ASSERT(GCPolicy::isValid(*ptr)); } void set(T&& v) { *ptr = std::move(v); MOZ_ASSERT(GCPolicy::isValid(*ptr)); } /* * This may be called only if the location of the T is guaranteed * to be marked (for some reason other than being a Rooted), * e.g., if it is guaranteed to be reachable from an implicit root. * * Create a MutableHandle from a raw location of a T. */ static MutableHandle fromMarkedLocation(T* p) { MutableHandle h; h.ptr = p; return h; } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr); DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr); private: MutableHandle() = default; DELETE_ASSIGNMENT_OPS(MutableHandle, T); T* ptr; }; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const MutableHandle& v) { return v.get(); } }; } // namespace detail } /* namespace JS */ namespace js { namespace detail { // Default implementations for barrier methods on GC thing pointers. template struct PtrBarrierMethodsBase { static T* initial() { return nullptr; } static gc::Cell* asGCThingOrNull(T* v) { if (!v) { return nullptr; } MOZ_ASSERT(uintptr_t(v) > 32); return reinterpret_cast(v); } static void exposeToJS(T* t) { if (t) { js::gc::ExposeGCThingToActiveJS(JS::GCCellPtr(t)); } } }; } // namespace detail template struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(T** vp, T* prev, T* next) { if (next) { JS::AssertGCThingIsNotNurseryAllocable( reinterpret_cast(next)); } } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JSObject** vp, JSObject* prev, JSObject* next) { JS::HeapObjectPostWriteBarrier(vp, prev, next); } static void exposeToJS(JSObject* obj) { if (obj) { JS::ExposeObjectToActiveJS(obj); } } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JSFunction** vp, JSFunction* prev, JSFunction* next) { JS::HeapObjectPostWriteBarrier(reinterpret_cast(vp), reinterpret_cast(prev), reinterpret_cast(next)); } static void exposeToJS(JSFunction* fun) { if (fun) { JS::ExposeObjectToActiveJS(reinterpret_cast(fun)); } } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JSString** vp, JSString* prev, JSString* next) { JS::HeapStringPostWriteBarrier(vp, prev, next); } }; template <> struct BarrierMethods : public detail::PtrBarrierMethodsBase { static void postWriteBarrier(JS::BigInt** vp, JS::BigInt* prev, JS::BigInt* next) { JS::HeapBigIntPostWriteBarrier(vp, prev, next); } }; // Provide hash codes for Cell kinds that may be relocated and, thus, not have // a stable address to use as the base for a hash code. Instead of the address, // this hasher uses Cell::getUniqueId to provide exact matches and as a base // for generating hash codes. // // Note: this hasher, like PointerHasher can "hash" a nullptr. While a nullptr // would not likely be a useful key, there are some cases where being able to // hash a nullptr is useful, either on purpose or because of bugs: // (1) existence checks where the key may happen to be null and (2) some // aggregate Lookup kinds embed a JSObject* that is frequently null and do not // null test before dispatching to the hasher. template struct JS_PUBLIC_API MovableCellHasher { using Key = T; using Lookup = T; static bool hasHash(const Lookup& l); static bool ensureHash(const Lookup& l); static HashNumber hash(const Lookup& l); static bool match(const Key& k, const Lookup& l); // The rekey hash policy method is not provided since you dont't need to // rekey any more when using this policy. }; template struct JS_PUBLIC_API MovableCellHasher> { using Key = JS::Heap; using Lookup = T; static bool hasHash(const Lookup& l) { return MovableCellHasher::hasHash(l); } static bool ensureHash(const Lookup& l) { return MovableCellHasher::ensureHash(l); } static HashNumber hash(const Lookup& l) { return MovableCellHasher::hash(l); } static bool match(const Key& k, const Lookup& l) { return MovableCellHasher::match(k.unbarrieredGet(), l); } }; } // namespace js namespace mozilla { template struct FallibleHashMethods> { template static bool hasHash(Lookup&& l) { return js::MovableCellHasher::hasHash(std::forward(l)); } template static bool ensureHash(Lookup&& l) { return js::MovableCellHasher::ensureHash(std::forward(l)); } }; } // namespace mozilla namespace js { struct VirtualTraceable { virtual ~VirtualTraceable() = default; virtual void trace(JSTracer* trc, const char* name) = 0; }; template struct RootedTraceable final : public VirtualTraceable { static_assert(JS::MapTypeToRootKind::kind == JS::RootKind::Traceable, "RootedTraceable is intended only for usage with a Traceable"); T ptr; template MOZ_IMPLICIT RootedTraceable(U&& initial) : ptr(std::forward(initial)) {} operator T&() { return ptr; } operator const T&() const { return ptr; } void trace(JSTracer* trc, const char* name) override { JS::GCPolicy::trace(trc, &ptr, name); } }; template struct RootedTraceableTraits { static T* address(RootedTraceable& self) { return &self.ptr; } static const T* address(const RootedTraceable& self) { return &self.ptr; } static void trace(JSTracer* trc, VirtualTraceable* thingp, const char* name); }; template struct RootedGCThingTraits { static T* address(T& self) { return &self; } static const T* address(const T& self) { return &self; } static void trace(JSTracer* trc, T* thingp, const char* name); }; } /* namespace js */ namespace JS { class JS_PUBLIC_API AutoGCRooter; enum class AutoGCRooterKind : uint8_t { WrapperVector, /* js::AutoWrapperVector */ Wrapper, /* js::AutoWrapperRooter */ Custom, /* js::CustomAutoRooter */ Limit }; // Our instantiations of Rooted and PersistentRooted require an // instantiation of MapTypeToRootKind. template <> struct MapTypeToRootKind { static const RootKind kind = RootKind::Traceable; }; using RootedListHeads = mozilla::EnumeratedArray*>; using AutoRooterListHeads = mozilla::EnumeratedArray; // Superclass of JSContext which can be used for rooting data in use by the // current thread but that does not provide all the functions of a JSContext. class RootingContext { // Stack GC roots for Rooted GC heap pointers. RootedListHeads stackRoots_; template friend class Rooted; // Stack GC roots for AutoFooRooter classes. AutoRooterListHeads autoGCRooters_; friend class AutoGCRooter; // Gecko profiling metadata. // This isn't really rooting related. It's only here because we want // GetContextProfilingStackIfEnabled to be inlineable into non-JS code, and // we didn't want to add another superclass of JSContext just for this. js::GeckoProfilerThread geckoProfiler_; public: RootingContext(); void traceStackRoots(JSTracer* trc); /* Implemented in gc/RootMarking.cpp. */ void traceAllGCRooters(JSTracer* trc); void traceWrapperGCRooters(JSTracer* trc); static void traceGCRooterList(JSTracer* trc, AutoGCRooter* head); void checkNoGCRooters(); js::GeckoProfilerThread& geckoProfiler() { return geckoProfiler_; } protected: // The remaining members in this class should only be accessed through // JSContext pointers. They are unrelated to rooting and are in place so // that inlined API functions can directly access the data. /* The current realm. */ Realm* realm_; /* The current zone. */ Zone* zone_; public: /* Limit pointer for checking native stack consumption. */ uintptr_t nativeStackLimit[StackKindCount]; static const RootingContext* get(const JSContext* cx) { return reinterpret_cast(cx); } static RootingContext* get(JSContext* cx) { return reinterpret_cast(cx); } friend JS::Realm* js::GetContextRealm(const JSContext* cx); friend JS::Zone* js::GetContextZone(const JSContext* cx); }; class JS_PUBLIC_API AutoGCRooter { public: using Kind = AutoGCRooterKind; AutoGCRooter(JSContext* cx, Kind kind) : AutoGCRooter(JS::RootingContext::get(cx), kind) {} AutoGCRooter(RootingContext* cx, Kind kind) : down(cx->autoGCRooters_[kind]), stackTop(&cx->autoGCRooters_[kind]), kind_(kind) { MOZ_ASSERT(this != *stackTop); *stackTop = this; } ~AutoGCRooter() { MOZ_ASSERT(this == *stackTop); *stackTop = down; } void trace(JSTracer* trc); private: friend class RootingContext; AutoGCRooter* const down; AutoGCRooter** const stackTop; /* * Discriminates actual subclass of this being used. The meaning is * indicated by the corresponding value in the Kind enum. */ Kind kind_; /* No copy or assignment semantics. */ AutoGCRooter(AutoGCRooter& ida) = delete; void operator=(AutoGCRooter& ida) = delete; } JS_HAZ_ROOTED_BASE; namespace detail { template using RootedPtr = std::conditional_t::kind == JS::RootKind::Traceable, js::RootedTraceable, T>; template using RootedPtrTraits = std::conditional_t::kind == JS::RootKind::Traceable, js::RootedTraceableTraits, js::RootedGCThingTraits>; // Dummy types to make it easier to understand template overload preference // ordering. struct FallbackOverload {}; struct PreferredOverload : FallbackOverload {}; using OverloadSelector = PreferredOverload; } /* namespace detail */ /** * Local variable of type T whose value is always rooted. This is typically * used for local variables, or for non-rooted values being passed to a * function that requires a handle, e.g. Foo(Root(cx, x)). * * If you want to add additional methods to Rooted for a specific * specialization, define a RootedBase specialization containing them. */ template class MOZ_RAII Rooted : public js::RootedBase> { using Ptr = detail::RootedPtr; using PtrTraits = detail::RootedPtrTraits; inline void registerWithRootLists(RootedListHeads& roots) { this->stack = &roots[JS::MapTypeToRootKind::kind]; this->prev = *stack; *stack = reinterpret_cast*>(this); } inline RootedListHeads& rootLists(RootingContext* cx) { return cx->stackRoots_; } inline RootedListHeads& rootLists(JSContext* cx) { return rootLists(RootingContext::get(cx)); } // Define either one or two Rooted(cx) constructors: the fallback one, which // constructs a Rooted holding a SafelyInitialized, and a convenience one // for types that can be constructed with a cx, which will give a Rooted // holding a T(cx). // Dummy type to distinguish these constructors from Rooted(cx, initial) struct CtorDispatcher {}; // Normal case: construct an empty Rooted holding a safely initialized but // empty T. template Rooted(const RootingContext& cx, CtorDispatcher, detail::FallbackOverload) : Rooted(cx, SafelyInitialized()) {} // If T can be constructed with a cx, then define another constructor for it // that will be preferred. template < typename RootingContext, typename = std::enable_if_t>> Rooted(const RootingContext& cx, CtorDispatcher, detail::PreferredOverload) : Rooted(cx, T(cx)) {} public: using ElementType = T; // Construct an empty Rooted. Delegates to an internal constructor that // chooses a specific meaning of "empty" depending on whether T can be // constructed with a cx. template explicit Rooted(const RootingContext& cx) : Rooted(cx, CtorDispatcher(), detail::OverloadSelector()) {} template Rooted(const RootingContext& cx, S&& initial) : ptr(std::forward(initial)) { MOZ_ASSERT(GCPolicy::isValid(ptr)); registerWithRootLists(rootLists(cx)); } ~Rooted() { MOZ_ASSERT(*stack == reinterpret_cast*>(this)); *stack = prev; } Rooted* previous() { return reinterpret_cast*>(prev); } /* * This method is public for Rooted so that Codegen.py can use a Rooted * interchangeably with a MutableHandleValue. */ void set(const T& value) { ptr = value; MOZ_ASSERT(GCPolicy::isValid(ptr)); } void set(T&& value) { ptr = std::move(value); MOZ_ASSERT(GCPolicy::isValid(ptr)); } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_POINTER_ASSIGN_OPS(Rooted, T); T& get() { return ptr; } const T& get() const { return ptr; } T* address() { return PtrTraits::address(ptr); } const T* address() const { return PtrTraits::address(ptr); } void trace(JSTracer* trc, const char* name); private: /* * These need to be templated on void* to avoid aliasing issues between, for * example, Rooted and Rooted, which use the same * stack head pointer for different classes. */ Rooted** stack; Rooted* prev; Ptr ptr; Rooted(const Rooted&) = delete; } JS_HAZ_ROOTED; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const Rooted& v) { return v.get(); } }; } // namespace detail } /* namespace JS */ namespace js { /* * Inlinable accessors for JSContext. * * - These must not be available on the more restricted superclasses of * JSContext, so we can't simply define them on RootingContext. * * - They're perfectly ordinary JSContext functionality, so ought to be * usable without resorting to jsfriendapi.h, and when JSContext is an * incomplete type. */ inline JS::Realm* GetContextRealm(const JSContext* cx) { return JS::RootingContext::get(cx)->realm_; } inline JS::Compartment* GetContextCompartment(const JSContext* cx) { if (JS::Realm* realm = GetContextRealm(cx)) { return GetCompartmentForRealm(realm); } return nullptr; } inline JS::Zone* GetContextZone(const JSContext* cx) { return JS::RootingContext::get(cx)->zone_; } inline ProfilingStack* GetContextProfilingStackIfEnabled(JSContext* cx) { return JS::RootingContext::get(cx) ->geckoProfiler() .getProfilingStackIfEnabled(); } /** * Augment the generic Rooted interface when T = JSObject* with * class-querying and downcasting operations. * * Given a Rooted obj, one can view * Handle h = obj.as(); * as an optimization of * Rooted rooted(cx, &obj->as()); * Handle h = rooted; */ template class RootedBase : public MutableWrappedPtrOperations { public: template JS::Handle as() const; }; /** * Augment the generic Handle interface when T = JSObject* with * downcasting operations. * * Given a Handle obj, one can view * Handle h = obj.as(); * as an optimization of * Rooted rooted(cx, &obj->as()); * Handle h = rooted; */ template class HandleBase : public WrappedPtrOperations { public: template JS::Handle as() const; }; } /* namespace js */ namespace JS { template template inline Handle::Handle( const Rooted& root, std::enable_if_t, int> dummy) { ptr = reinterpret_cast(root.address()); } template template inline Handle::Handle( const PersistentRooted& root, std::enable_if_t, int> dummy) { ptr = reinterpret_cast(root.address()); } template template inline Handle::Handle( MutableHandle& root, std::enable_if_t, int> dummy) { ptr = reinterpret_cast(root.address()); } template inline MutableHandle::MutableHandle(Rooted* root) { static_assert(sizeof(MutableHandle) == sizeof(T*), "MutableHandle must be binary compatible with T*."); ptr = root->address(); } template inline MutableHandle::MutableHandle(PersistentRooted* root) { static_assert(sizeof(MutableHandle) == sizeof(T*), "MutableHandle must be binary compatible with T*."); ptr = root->address(); } JS_PUBLIC_API void AddPersistentRoot(RootingContext* cx, RootKind kind, PersistentRooted* root); JS_PUBLIC_API void AddPersistentRoot(JSRuntime* rt, RootKind kind, PersistentRooted* root); /** * A copyable, assignable global GC root type with arbitrary lifetime, an * infallible constructor, and automatic unrooting on destruction. * * These roots can be used in heap-allocated data structures, so they are not * associated with any particular JSContext or stack. They are registered with * the JSRuntime itself, without locking. Initialization may take place on * construction, or in two phases if the no-argument constructor is called * followed by init(). * * Note that you must not use an PersistentRooted in an object owned by a JS * object: * * Whenever one object whose lifetime is decided by the GC refers to another * such object, that edge must be traced only if the owning JS object is traced. * This applies not only to JS objects (which obviously are managed by the GC) * but also to C++ objects owned by JS objects. * * If you put a PersistentRooted in such a C++ object, that is almost certainly * a leak. When a GC begins, the referent of the PersistentRooted is treated as * live, unconditionally (because a PersistentRooted is a *root*), even if the * JS object that owns it is unreachable. If there is any path from that * referent back to the JS object, then the C++ object containing the * PersistentRooted will not be destructed, and the whole blob of objects will * not be freed, even if there are no references to them from the outside. * * In the context of Firefox, this is a severe restriction: almost everything in * Firefox is owned by some JS object or another, so using PersistentRooted in * such objects would introduce leaks. For these kinds of edges, Heap or * TenuredHeap would be better types. It's up to the implementor of the type * containing Heap or TenuredHeap members to make sure their referents get * marked when the object itself is marked. */ template class PersistentRooted : public js::RootedBase>, private mozilla::LinkedListElement> { using ListBase = mozilla::LinkedListElement>; using Ptr = detail::RootedPtr; using PtrTraits = detail::RootedPtrTraits; friend class mozilla::LinkedList; friend class mozilla::LinkedListElement; void registerWithRootLists(RootingContext* cx) { MOZ_ASSERT(!initialized()); JS::RootKind kind = JS::MapTypeToRootKind::kind; AddPersistentRoot(cx, kind, reinterpret_cast*>(this)); } void registerWithRootLists(JSRuntime* rt) { MOZ_ASSERT(!initialized()); JS::RootKind kind = JS::MapTypeToRootKind::kind; AddPersistentRoot(rt, kind, reinterpret_cast*>(this)); } public: using ElementType = T; PersistentRooted() : ptr(SafelyInitialized()) {} explicit PersistentRooted(RootingContext* cx) : ptr(SafelyInitialized()) { registerWithRootLists(cx); } explicit PersistentRooted(JSContext* cx) : ptr(SafelyInitialized()) { registerWithRootLists(RootingContext::get(cx)); } template PersistentRooted(RootingContext* cx, U&& initial) : ptr(std::forward(initial)) { registerWithRootLists(cx); } template PersistentRooted(JSContext* cx, U&& initial) : ptr(std::forward(initial)) { registerWithRootLists(RootingContext::get(cx)); } explicit PersistentRooted(JSRuntime* rt) : ptr(SafelyInitialized()) { registerWithRootLists(rt); } template PersistentRooted(JSRuntime* rt, U&& initial) : ptr(std::forward(initial)) { registerWithRootLists(rt); } PersistentRooted(const PersistentRooted& rhs) : mozilla::LinkedListElement>(), ptr(rhs.ptr) { /* * Copy construction takes advantage of the fact that the original * is already inserted, and simply adds itself to whatever list the * original was on - no JSRuntime pointer needed. * * This requires mutating rhs's links, but those should be 'mutable' * anyway. C++ doesn't let us declare mutable base classes. */ const_cast(rhs).setNext(this); } bool initialized() const { return ListBase::isInList(); } void init(RootingContext* cx) { init(cx, SafelyInitialized()); } void init(JSContext* cx) { init(RootingContext::get(cx)); } template void init(RootingContext* cx, U&& initial) { ptr = std::forward(initial); registerWithRootLists(cx); } template void init(JSContext* cx, U&& initial) { ptr = std::forward(initial); registerWithRootLists(RootingContext::get(cx)); } void reset() { if (initialized()) { set(SafelyInitialized()); ListBase::remove(); } } DECLARE_POINTER_CONSTREF_OPS(T); DECLARE_POINTER_ASSIGN_OPS(PersistentRooted, T); T& get() { return ptr; } const T& get() const { return ptr; } T* address() { MOZ_ASSERT(initialized()); return PtrTraits::address(ptr); } const T* address() const { return PtrTraits::address(ptr); } template void set(U&& value) { MOZ_ASSERT(initialized()); ptr = std::forward(value); } void trace(JSTracer* trc, const char* name); private: Ptr ptr; } JS_HAZ_ROOTED; namespace detail { template struct DefineComparisonOps> : std::true_type { static const T& get(const PersistentRooted& v) { return v.get(); } }; } // namespace detail } /* namespace JS */ namespace js { template class WrappedPtrOperations, Container> { const UniquePtr& uniquePtr() const { return static_cast(this)->get(); } public: explicit operator bool() const { return !!uniquePtr(); } T* get() const { return uniquePtr().get(); } T* operator->() const { return get(); } T& operator*() const { return *uniquePtr(); } }; template class MutableWrappedPtrOperations, Container> : public WrappedPtrOperations, Container> { UniquePtr& uniquePtr() { return static_cast(this)->get(); } public: MOZ_MUST_USE typename UniquePtr::Pointer release() { return uniquePtr().release(); } void reset(T* ptr = T()) { uniquePtr().reset(ptr); } }; template class WrappedPtrOperations, Container> { const mozilla::Maybe& maybe() const { return static_cast(this)->get(); } public: // This only supports a subset of Maybe's interface. bool isSome() const { return maybe().isSome(); } bool isNothing() const { return maybe().isNothing(); } const T value() const { return maybe().value(); } const T* operator->() const { return maybe().ptr(); } const T& operator*() const { return maybe().ref(); } }; template class MutableWrappedPtrOperations, Container> : public WrappedPtrOperations, Container> { mozilla::Maybe& maybe() { return static_cast(this)->get(); } public: // This only supports a subset of Maybe's interface. T* operator->() { return maybe().ptr(); } T& operator*() { return maybe().ref(); } void reset() { return maybe().reset(); } }; namespace gc { template void CallTraceCallbackOnNonHeap(T* v, const TraceCallbacks& aCallbacks, const char* aName, void* aClosure) { static_assert(sizeof(T) == sizeof(JS::Heap), "T and Heap must be compatible."); MOZ_ASSERT(v); mozilla::DebugOnly cell = BarrierMethods::asGCThingOrNull(*v); MOZ_ASSERT(cell); MOZ_ASSERT(!IsInsideNursery(cell)); JS::Heap* asHeapT = reinterpret_cast*>(v); aCallbacks.Trace(asHeapT, aName, aClosure); } } /* namespace gc */ } /* namespace js */ #endif /* js_RootingAPI_h */