/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_Mutex_h #define mozilla_Mutex_h #include "mozilla/BlockingResourceBase.h" #include "mozilla/ThreadSafety.h" #include "mozilla/PlatformMutex.h" #include "nsISupports.h" // // Provides: // // - Mutex, a non-recursive mutex // - MutexAutoLock, an RAII class for ensuring that Mutexes are properly // locked and unlocked // - MutexAutoUnlock, complementary sibling to MutexAutoLock // // - OffTheBooksMutex, a non-recursive mutex that doesn't do leak checking // - OffTheBooksMutexAuto{Lock,Unlock} - Like MutexAuto{Lock,Unlock}, but for // an OffTheBooksMutex. // // Using MutexAutoLock/MutexAutoUnlock etc. is MUCH preferred to making bare // calls to Lock and Unlock. // namespace mozilla { /** * OffTheBooksMutex is identical to Mutex, except that OffTheBooksMutex doesn't * include leak checking. Sometimes you want to intentionally "leak" a mutex * until shutdown; in these cases, OffTheBooksMutex is for you. */ class CAPABILITY OffTheBooksMutex : public detail::MutexImpl, BlockingResourceBase { public: /** * @param aName A name which can reference this lock * @returns If failure, nullptr * If success, a valid Mutex* which must be destroyed * by Mutex::DestroyMutex() **/ explicit OffTheBooksMutex(const char* aName) : BlockingResourceBase(aName, eMutex) #ifdef DEBUG , mOwningThread(nullptr) #endif { } ~OffTheBooksMutex() { #ifdef DEBUG MOZ_ASSERT(!mOwningThread, "destroying a still-owned lock!"); #endif } #ifndef DEBUG /** * Lock this mutex. **/ void Lock() CAPABILITY_ACQUIRE() { this->lock(); } /** * Try to lock this mutex, returning true if we were successful. **/ [[nodiscard]] bool TryLock() TRY_ACQUIRE(true) { return this->tryLock(); } /** * Unlock this mutex. **/ void Unlock() CAPABILITY_RELEASE() { this->unlock(); } /** * Assert that the current thread owns this mutex in debug builds. * * Does nothing in non-debug builds. **/ void AssertCurrentThreadOwns() const ASSERT_CAPABILITY(this) {} /** * Assert that the current thread does not own this mutex. * * Note that this function is not implemented for debug builds *and* * non-debug builds due to difficulties in dealing with memory ordering. * * It is therefore mostly useful as documentation. **/ void AssertNotCurrentThreadOwns() const ASSERT_CAPABILITY(!this) {} #else void Lock() CAPABILITY_ACQUIRE(); [[nodiscard]] bool TryLock() TRY_ACQUIRE(true); void Unlock() CAPABILITY_RELEASE(); void AssertCurrentThreadOwns() const ASSERT_CAPABILITY(this); void AssertNotCurrentThreadOwns() const ASSERT_CAPABILITY(!this) { // FIXME bug 476536 } #endif // ifndef DEBUG private: OffTheBooksMutex() = delete; OffTheBooksMutex(const OffTheBooksMutex&) = delete; OffTheBooksMutex& operator=(const OffTheBooksMutex&) = delete; friend class OffTheBooksCondVar; #ifdef DEBUG PRThread* mOwningThread; #endif }; /** * Mutex * When possible, use MutexAutoLock/MutexAutoUnlock to lock/unlock this * mutex within a scope, instead of calling Lock/Unlock directly. */ class Mutex : public OffTheBooksMutex { public: explicit Mutex(const char* aName) : OffTheBooksMutex(aName) { MOZ_COUNT_CTOR(Mutex); } MOZ_COUNTED_DTOR(Mutex) private: Mutex() = delete; Mutex(const Mutex&) = delete; Mutex& operator=(const Mutex&) = delete; }; /** * MutexSingleWriter * * Mutex where a single writer exists, so that reads from the same thread * will not generate data races or consistency issues. * * When possible, use MutexAutoLock/MutexAutoUnlock to lock/unlock this * mutex within a scope, instead of calling Lock/Unlock directly. * * This requires an object implementing Mutex's SingleWriterLockOwner, so * we can do correct-thread checks. */ // Subclass this in the object owning the mutex class SingleWriterLockOwner { public: SingleWriterLockOwner() = default; ~SingleWriterLockOwner() = default; virtual bool OnWritingThread() const = 0; }; class MutexSingleWriter : public OffTheBooksMutex { public: // aOwner should be the object that contains the mutex, typically. We // will use that object (which must have a lifetime the same or greater // than this object) to verify that we're running on the correct thread, // typically only in DEBUG builds explicit MutexSingleWriter(const char* aName, SingleWriterLockOwner* aOwner) : OffTheBooksMutex(aName) #ifdef DEBUG , mOwner(aOwner) #endif { MOZ_COUNT_CTOR(MutexSingleWriter); MOZ_ASSERT(mOwner); } MOZ_COUNTED_DTOR(MutexSingleWriter) /** * Statically assert that we're on the only thread that modifies data * guarded by this Mutex. This allows static checking for the pattern of * having a single thread modify a set of data, and read it (under lock) * on other threads, and reads on the thread that modifies it doesn't * require a lock. This doesn't solve the issue of some data under the * Mutex following this pattern, and other data under the mutex being * written from multiple threads. * * We could set the writing thread and dynamically check it in debug * builds, but this doesn't. We could also use thread-safety/capability * system to provide direct thread assertions. **/ void AssertOnWritingThread() const ASSERT_CAPABILITY(this) { MOZ_ASSERT(mOwner->OnWritingThread()); } void AssertOnWritingThreadOrHeld() const ASSERT_CAPABILITY(this) { #ifdef DEBUG if (!mOwner->OnWritingThread()) { AssertCurrentThreadOwns(); } #endif } private: #ifdef DEBUG SingleWriterLockOwner* mOwner MOZ_UNSAFE_REF( "This is normally the object that contains the MonitorSingleWriter, so " "we don't want to hold a reference to ourselves"); #endif MutexSingleWriter() = delete; MutexSingleWriter(const MutexSingleWriter&) = delete; MutexSingleWriter& operator=(const MutexSingleWriter&) = delete; }; namespace detail { template class MOZ_RAII BaseAutoUnlock; /** * MutexAutoLock * Acquires the Mutex when it enters scope, and releases it when it leaves * scope. * * MUCH PREFERRED to bare calls to Mutex.Lock and Unlock. */ template class MOZ_RAII SCOPED_CAPABILITY BaseAutoLock { public: /** * Constructor * The constructor aquires the given lock. The destructor * releases the lock. * * @param aLock A valid mozilla::Mutex* returned by * mozilla::Mutex::NewMutex. **/ explicit BaseAutoLock(T aLock) CAPABILITY_ACQUIRE(aLock) : mLock(aLock) { mLock.Lock(); } ~BaseAutoLock(void) CAPABILITY_RELEASE() { mLock.Unlock(); } // Assert that aLock is the mutex passed to the constructor and that the // current thread owns the mutex. In coding patterns such as: // // void LockedMethod(const BaseAutoLock& aProofOfLock) // { // aProofOfLock.AssertOwns(mMutex); // ... // } // // Without this assertion, it could be that mMutex is not actually // locked. It's possible to have code like: // // BaseAutoLock lock(someMutex); // ... // BaseAutoUnlock unlock(someMutex); // ... // LockedMethod(lock); // // and in such a case, simply asserting that the mutex pointers match is not // sufficient; mutex ownership must be asserted as well. // // Note that if you are going to use the coding pattern presented above, you // should use this method in preference to using AssertCurrentThreadOwns on // the mutex you expected to be held, since this method provides stronger // guarantees. void AssertOwns(const T& aMutex) const ASSERT_CAPABILITY(aMutex) { MOZ_ASSERT(&aMutex == &mLock); mLock.AssertCurrentThreadOwns(); } private: BaseAutoLock() = delete; BaseAutoLock(BaseAutoLock&) = delete; BaseAutoLock& operator=(BaseAutoLock&) = delete; static void* operator new(size_t) noexcept(true); friend class BaseAutoUnlock; T mLock; }; template BaseAutoLock(MutexType&) -> BaseAutoLock; } // namespace detail typedef detail::BaseAutoLock MutexAutoLock; typedef detail::BaseAutoLock MutexSingleWriterAutoLock; typedef detail::BaseAutoLock OffTheBooksMutexAutoLock; // Use if we've done AssertOnWritingThread(), and then later need to take the // lock to write to a protected member. Instead of // MutexSingleWriterAutoLock lock(mutex) // use // MutexSingleWriterAutoLockOnThread(lock, mutex) #define MutexSingleWriterAutoLockOnThread(lock, mutex) \ PUSH_IGNORE_THREAD_SAFETY \ MutexSingleWriterAutoLock lock(mutex); \ POP_THREAD_SAFETY namespace detail { /** * ReleasableMutexAutoLock * Acquires the Mutex when it enters scope, and releases it when it leaves * scope. Allows calling Unlock (and Lock) as an alternative to * MutexAutoUnlock; this can avoid an extra lock/unlock pair. * */ template class MOZ_RAII SCOPED_CAPABILITY ReleasableBaseAutoLock { public: /** * Constructor * The constructor aquires the given lock. The destructor * releases the lock. * * @param aLock A valid mozilla::Mutex& returned by * mozilla::Mutex::NewMutex. **/ explicit ReleasableBaseAutoLock(T aLock) CAPABILITY_ACQUIRE(aLock) : mLock(aLock) { mLock.Lock(); mLocked = true; } ~ReleasableBaseAutoLock(void) CAPABILITY_RELEASE() { if (mLocked) { Unlock(); } } void AssertOwns(const T& aMutex) const ASSERT_CAPABILITY(aMutex) { MOZ_ASSERT(&aMutex == &mLock); mLock.AssertCurrentThreadOwns(); } // Allow dropping the lock prematurely; for example to support something like: // clang-format off // MutexAutoLock lock(mMutex); // ... // if (foo) { // lock.Unlock(); // MethodThatCantBeCalledWithLock() // return; // } // clang-format on void Unlock() CAPABILITY_RELEASE() { MOZ_ASSERT(mLocked); mLock.Unlock(); mLocked = false; } void Lock() CAPABILITY_ACQUIRE() { MOZ_ASSERT(!mLocked); mLock.Lock(); mLocked = true; } private: ReleasableBaseAutoLock() = delete; ReleasableBaseAutoLock(ReleasableBaseAutoLock&) = delete; ReleasableBaseAutoLock& operator=(ReleasableBaseAutoLock&) = delete; static void* operator new(size_t) noexcept(true); bool mLocked; T mLock; }; template ReleasableBaseAutoLock(MutexType&) -> ReleasableBaseAutoLock; } // namespace detail typedef detail::ReleasableBaseAutoLock ReleasableMutexAutoLock; namespace detail { /** * BaseAutoUnlock * Releases the Mutex when it enters scope, and re-acquires it when it leaves * scope. * * MUCH PREFERRED to bare calls to Mutex.Unlock and Lock. */ template class MOZ_RAII SCOPED_CAPABILITY BaseAutoUnlock { public: explicit BaseAutoUnlock(T aLock) SCOPED_UNLOCK_RELEASE(aLock) : mLock(aLock) { mLock.Unlock(); } explicit BaseAutoUnlock(BaseAutoLock& aAutoLock) /* CAPABILITY_RELEASE(aAutoLock.mLock) */ : mLock(aAutoLock.mLock) { NS_ASSERTION(mLock, "null lock"); mLock->Unlock(); } ~BaseAutoUnlock() SCOPED_UNLOCK_REACQUIRE() { mLock.Lock(); } private: BaseAutoUnlock() = delete; BaseAutoUnlock(BaseAutoUnlock&) = delete; BaseAutoUnlock& operator=(BaseAutoUnlock&) = delete; static void* operator new(size_t) noexcept(true); T mLock; }; template BaseAutoUnlock(MutexType&) -> BaseAutoUnlock; } // namespace detail typedef detail::BaseAutoUnlock MutexAutoUnlock; typedef detail::BaseAutoUnlock MutexSingleWriterAutoUnlock; typedef detail::BaseAutoUnlock OffTheBooksMutexAutoUnlock; namespace detail { /** * BaseAutoTryLock * Tries to acquire the Mutex when it enters scope, and releases it when it * leaves scope. * * MUCH PREFERRED to bare calls to Mutex.TryLock and Unlock. */ template class MOZ_RAII SCOPED_CAPABILITY BaseAutoTryLock { public: explicit BaseAutoTryLock(T& aLock) CAPABILITY_ACQUIRE(aLock) : mLock(aLock.TryLock() ? &aLock : nullptr) {} ~BaseAutoTryLock() CAPABILITY_RELEASE() { if (mLock) { mLock->Unlock(); mLock = nullptr; } } explicit operator bool() const { return mLock; } private: BaseAutoTryLock(BaseAutoTryLock&) = delete; BaseAutoTryLock& operator=(BaseAutoTryLock&) = delete; static void* operator new(size_t) noexcept(true); T* mLock; }; } // namespace detail typedef detail::BaseAutoTryLock MutexAutoTryLock; typedef detail::BaseAutoTryLock OffTheBooksMutexAutoTryLock; } // namespace mozilla #endif // ifndef mozilla_Mutex_h