/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/ReentrantMonitor.h" #include "MediaCache.h" #include "prio.h" #include "nsContentUtils.h" #include "nsThreadUtils.h" #include "MediaResource.h" #include "mozilla/Logging.h" #include "mozilla/Preferences.h" #include "FileBlockCache.h" #include "nsAnonymousTemporaryFile.h" #include "nsIObserverService.h" #include "nsISeekableStream.h" #include "nsIPrincipal.h" #include "mozilla/Attributes.h" #include "mozilla/Services.h" #include namespace mozilla { LazyLogModule gMediaCacheLog("MediaCache"); #define CACHE_LOG(type, msg) MOZ_LOG(gMediaCacheLog, type, msg) // Readahead blocks for non-seekable streams will be limited to this // fraction of the cache space. We don't normally evict such blocks // because replacing them requires a seek, but we need to make sure // they don't monopolize the cache. static const double NONSEEKABLE_READAHEAD_MAX = 0.5; // Data N seconds before the current playback position is given the same priority // as data REPLAY_PENALTY_FACTOR*N seconds ahead of the current playback // position. REPLAY_PENALTY_FACTOR is greater than 1 to reflect that // data in the past is less likely to be played again than data in the future. // We want to give data just behind the current playback position reasonably // high priority in case codecs need to retrieve that data (e.g. because // tracks haven't been muxed well or are being decoded at uneven rates). // 1/REPLAY_PENALTY_FACTOR as much data will be kept behind the // current playback position as will be kept ahead of the current playback // position. static const uint32_t REPLAY_PENALTY_FACTOR = 3; // When looking for a reusable block, scan forward this many blocks // from the desired "best" block location to look for free blocks, // before we resort to scanning the whole cache. The idea is to try to // store runs of stream blocks close-to-consecutively in the cache if we // can. static const uint32_t FREE_BLOCK_SCAN_LIMIT = 16; #ifdef DEBUG // Turn this on to do very expensive cache state validation // #define DEBUG_VERIFY_CACHE #endif // There is at most one media cache (although that could quite easily be // relaxed if we wanted to manage multiple caches with independent // size limits). static MediaCache* gMediaCache; class MediaCacheFlusher final : public nsIObserver, public nsSupportsWeakReference { MediaCacheFlusher() {} ~MediaCacheFlusher(); public: NS_DECL_ISUPPORTS NS_DECL_NSIOBSERVER static void Init(); }; static MediaCacheFlusher* gMediaCacheFlusher; NS_IMPL_ISUPPORTS(MediaCacheFlusher, nsIObserver, nsISupportsWeakReference) MediaCacheFlusher::~MediaCacheFlusher() { gMediaCacheFlusher = nullptr; } void MediaCacheFlusher::Init() { if (gMediaCacheFlusher) { return; } gMediaCacheFlusher = new MediaCacheFlusher(); NS_ADDREF(gMediaCacheFlusher); nsCOMPtr observerService = mozilla::services::GetObserverService(); if (observerService) { observerService->AddObserver(gMediaCacheFlusher, "last-pb-context-exited", true); observerService->AddObserver(gMediaCacheFlusher, "cacheservice:empty-cache", true); } } class MediaCache { public: friend class MediaCacheStream::BlockList; typedef MediaCacheStream::BlockList BlockList; static const int64_t BLOCK_SIZE = MediaCacheStream::BLOCK_SIZE; MediaCache() : mNextResourceID(1), mReentrantMonitor("MediaCache.mReentrantMonitor"), mUpdateQueued(false) #ifdef DEBUG , mInUpdate(false) #endif { MOZ_COUNT_CTOR(MediaCache); } ~MediaCache() { NS_ASSERTION(mStreams.IsEmpty(), "Stream(s) still open!"); Truncate(); NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?"); if (mFileCache) { mFileCache->Close(); mFileCache = nullptr; } MOZ_COUNT_DTOR(MediaCache); } // Main thread only. Creates the backing cache file. If this fails, // then the cache is still in a semi-valid state; mFD will be null, // so all I/O on the cache file will fail. nsresult Init(); // Shut down the global cache if it's no longer needed. We shut down // the cache as soon as there are no streams. This means that during // normal operation we are likely to start up the cache and shut it down // many times, but that's OK since starting it up is cheap and // shutting it down cleans things up and releases disk space. static void MaybeShutdown(); // Brutally flush the cache contents. Main thread only. static void Flush(); void FlushInternal(); // Cache-file access methods. These are the lowest-level cache methods. // mReentrantMonitor must be held; these can be called on any thread. // This can return partial reads. nsresult ReadCacheFile(int64_t aOffset, void* aData, int32_t aLength, int32_t* aBytes); // This will fail if all aLength bytes are not read nsresult ReadCacheFileAllBytes(int64_t aOffset, void* aData, int32_t aLength); int64_t AllocateResourceID() { mReentrantMonitor.AssertCurrentThreadIn(); return mNextResourceID++; } // mReentrantMonitor must be held, called on main thread. // These methods are used by the stream to set up and tear down streams, // and to handle reads and writes. // Add aStream to the list of streams. void OpenStream(MediaCacheStream* aStream); // Remove aStream from the list of streams. void ReleaseStream(MediaCacheStream* aStream); // Free all blocks belonging to aStream. void ReleaseStreamBlocks(MediaCacheStream* aStream); // Find a cache entry for this data, and write the data into it void AllocateAndWriteBlock(MediaCacheStream* aStream, const void* aData, MediaCacheStream::ReadMode aMode); // mReentrantMonitor must be held; can be called on any thread // Notify the cache that a seek has been requested. Some blocks may // need to change their class between PLAYED_BLOCK and READAHEAD_BLOCK. // This does not trigger channel seeks directly, the next Update() // will do that if necessary. The caller will call QueueUpdate(). void NoteSeek(MediaCacheStream* aStream, int64_t aOldOffset); // Notify the cache that a block has been read from. This is used // to update last-use times. The block may not actually have a // cache entry yet since Read can read data from a stream's // in-memory mPartialBlockBuffer while the block is only partly full, // and thus hasn't yet been committed to the cache. The caller will // call QueueUpdate(). void NoteBlockUsage(MediaCacheStream* aStream, int32_t aBlockIndex, int64_t aStreamOffset, MediaCacheStream::ReadMode aMode, TimeStamp aNow); // Mark aStream as having the block, adding it as an owner. void AddBlockOwnerAsReadahead(int32_t aBlockIndex, MediaCacheStream* aStream, int32_t aStreamBlockIndex); // This queues a call to Update() on the main thread. void QueueUpdate(); // Notify all streams for the resource ID that the suspended status changed // at the end of MediaCache::Update. void QueueSuspendedStatusUpdate(int64_t aResourceID); // Updates the cache state asynchronously on the main thread: // -- try to trim the cache back to its desired size, if necessary // -- suspend channels that are going to read data that's lower priority // than anything currently cached // -- resume channels that are going to read data that's higher priority // than something currently cached // -- seek channels that need to seek to a new location void Update(); #ifdef DEBUG_VERIFY_CACHE // Verify invariants, especially block list invariants void Verify(); #else void Verify() {} #endif ReentrantMonitor& GetReentrantMonitor() { return mReentrantMonitor; } /** * An iterator that makes it easy to iterate through all streams that * have a given resource ID and are not closed. * Can be used on the main thread or while holding the media cache lock. */ class ResourceStreamIterator { public: explicit ResourceStreamIterator(int64_t aResourceID) : mResourceID(aResourceID), mNext(0) {} MediaCacheStream* Next() { while (mNext < gMediaCache->mStreams.Length()) { MediaCacheStream* stream = gMediaCache->mStreams[mNext]; ++mNext; if (stream->GetResourceID() == mResourceID && !stream->IsClosed()) return stream; } return nullptr; } private: int64_t mResourceID; uint32_t mNext; }; protected: // Find a free or reusable block and return its index. If there are no // free blocks and no reusable blocks, add a new block to the cache // and return it. Can return -1 on OOM. int32_t FindBlockForIncomingData(TimeStamp aNow, MediaCacheStream* aStream); // Find a reusable block --- a free block, if there is one, otherwise // the reusable block with the latest predicted-next-use, or -1 if // there aren't any freeable blocks. Only block indices less than // aMaxSearchBlockIndex are considered. If aForStream is non-null, // then aForStream and aForStreamBlock indicate what media data will // be placed; FindReusableBlock will favour returning free blocks // near other blocks for that point in the stream. int32_t FindReusableBlock(TimeStamp aNow, MediaCacheStream* aForStream, int32_t aForStreamBlock, int32_t aMaxSearchBlockIndex); bool BlockIsReusable(int32_t aBlockIndex); // Given a list of blocks sorted with the most reusable blocks at the // end, find the last block whose stream is not pinned (if any) // and whose cache entry index is less than aBlockIndexLimit // and append it to aResult. void AppendMostReusableBlock(BlockList* aBlockList, nsTArray* aResult, int32_t aBlockIndexLimit); enum BlockClass { // block belongs to mMetadataBlockList because data has been consumed // from it in "metadata mode" --- in particular blocks read during // Ogg seeks go into this class. These blocks may have played data // in them too. METADATA_BLOCK, // block belongs to mPlayedBlockList because its offset is // less than the stream's current reader position PLAYED_BLOCK, // block belongs to the stream's mReadaheadBlockList because its // offset is greater than or equal to the stream's current // reader position READAHEAD_BLOCK }; struct BlockOwner { constexpr BlockOwner() {} // The stream that owns this block, or null if the block is free. MediaCacheStream* mStream = nullptr; // The block index in the stream. Valid only if mStream is non-null. // Initialized to an insane value to highlight misuse. uint32_t mStreamBlock = UINT32_MAX; // Time at which this block was last used. Valid only if // mClass is METADATA_BLOCK or PLAYED_BLOCK. TimeStamp mLastUseTime; BlockClass mClass = READAHEAD_BLOCK; }; struct Block { // Free blocks have an empty mOwners array nsTArray mOwners; }; // Get the BlockList that the block should belong to given its // current owner BlockList* GetListForBlock(BlockOwner* aBlock); // Get the BlockOwner for the given block index and owning stream // (returns null if the stream does not own the block) BlockOwner* GetBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream); // Returns true iff the block is free bool IsBlockFree(int32_t aBlockIndex) { return mIndex[aBlockIndex].mOwners.IsEmpty(); } // Add the block to the free list and mark its streams as not having // the block in cache void FreeBlock(int32_t aBlock); // Mark aStream as not having the block, removing it as an owner. If // the block has no more owners it's added to the free list. void RemoveBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream); // Swap all metadata associated with the two blocks. The caller // is responsible for swapping up any cache file state. void SwapBlocks(int32_t aBlockIndex1, int32_t aBlockIndex2); // Insert the block into the readahead block list for the stream // at the right point in the list. void InsertReadaheadBlock(BlockOwner* aBlockOwner, int32_t aBlockIndex); // Guess the duration until block aBlock will be next used TimeDuration PredictNextUse(TimeStamp aNow, int32_t aBlock); // Guess the duration until the next incoming data on aStream will be used TimeDuration PredictNextUseForIncomingData(MediaCacheStream* aStream); // Truncate the file and index array if there are free blocks at the // end void Truncate(); // This member is main-thread only. It's used to allocate unique // resource IDs to streams. int64_t mNextResourceID; // The monitor protects all the data members here. Also, off-main-thread // readers that need to block will Wait() on this monitor. When new // data becomes available in the cache, we NotifyAll() on this monitor. ReentrantMonitor mReentrantMonitor; // This is only written while on the main thread and the monitor is held. // Thus, it can be safely read from the main thread or while holding the monitor. nsTArray mStreams; // The Blocks describing the cache entries. nsTArray mIndex; // Writer which performs IO, asynchronously writing cache blocks. RefPtr mFileCache; // The list of free blocks; they are not ordered. BlockList mFreeBlocks; // True if an event to run Update() has been queued but not processed bool mUpdateQueued; #ifdef DEBUG bool mInUpdate; #endif // A list of resource IDs to notify about the change in suspended status. nsTArray mSuspendedStatusToNotify; }; NS_IMETHODIMP MediaCacheFlusher::Observe(nsISupports *aSubject, char const *aTopic, char16_t const *aData) { if (strcmp(aTopic, "last-pb-context-exited") == 0) { MediaCache::Flush(); } if (strcmp(aTopic, "cacheservice:empty-cache") == 0) { MediaCache::Flush(); } return NS_OK; } MediaCacheStream::MediaCacheStream(ChannelMediaResource* aClient) : mClient(aClient), mInitialized(false), mHasHadUpdate(false), mClosed(false), mDidNotifyDataEnded(false), mResourceID(0), mIsTransportSeekable(false), mCacheSuspended(false), mChannelEnded(false), mChannelOffset(0), mStreamLength(-1), mStreamOffset(0), mPlaybackBytesPerSecond(10000), mPinCount(0), mCurrentMode(MODE_PLAYBACK), mMetadataInPartialBlockBuffer(false), mPartialBlockBuffer(MakeUnique(BLOCK_SIZE/sizeof(int64_t))) { } size_t MediaCacheStream::SizeOfExcludingThis( MallocSizeOf aMallocSizeOf) const { // Looks like these are not owned: // - mClient // - mPrincipal size_t size = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf); size += mReadaheadBlocks.SizeOfExcludingThis(aMallocSizeOf); size += mMetadataBlocks.SizeOfExcludingThis(aMallocSizeOf); size += mPlayedBlocks.SizeOfExcludingThis(aMallocSizeOf); size += aMallocSizeOf(mPartialBlockBuffer.get()); return size; } size_t MediaCacheStream::BlockList::SizeOfExcludingThis( MallocSizeOf aMallocSizeOf) const { return mEntries.ShallowSizeOfExcludingThis(aMallocSizeOf); } void MediaCacheStream::BlockList::AddFirstBlock(int32_t aBlock) { NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list"); Entry* entry = mEntries.PutEntry(aBlock); if (mFirstBlock < 0) { entry->mNextBlock = entry->mPrevBlock = aBlock; } else { entry->mNextBlock = mFirstBlock; entry->mPrevBlock = mEntries.GetEntry(mFirstBlock)->mPrevBlock; mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock; mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock; } mFirstBlock = aBlock; ++mCount; } void MediaCacheStream::BlockList::AddAfter(int32_t aBlock, int32_t aBefore) { NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list"); Entry* entry = mEntries.PutEntry(aBlock); Entry* addAfter = mEntries.GetEntry(aBefore); NS_ASSERTION(addAfter, "aBefore not in list"); entry->mNextBlock = addAfter->mNextBlock; entry->mPrevBlock = aBefore; mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock; mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock; ++mCount; } void MediaCacheStream::BlockList::RemoveBlock(int32_t aBlock) { Entry* entry = mEntries.GetEntry(aBlock); NS_ASSERTION(entry, "Block not in list"); if (entry->mNextBlock == aBlock) { NS_ASSERTION(entry->mPrevBlock == aBlock, "Linked list inconsistency"); NS_ASSERTION(mFirstBlock == aBlock, "Linked list inconsistency"); mFirstBlock = -1; } else { if (mFirstBlock == aBlock) { mFirstBlock = entry->mNextBlock; } mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = entry->mPrevBlock; mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = entry->mNextBlock; } mEntries.RemoveEntry(entry); --mCount; } int32_t MediaCacheStream::BlockList::GetLastBlock() const { if (mFirstBlock < 0) return -1; return mEntries.GetEntry(mFirstBlock)->mPrevBlock; } int32_t MediaCacheStream::BlockList::GetNextBlock(int32_t aBlock) const { int32_t block = mEntries.GetEntry(aBlock)->mNextBlock; if (block == mFirstBlock) return -1; return block; } int32_t MediaCacheStream::BlockList::GetPrevBlock(int32_t aBlock) const { if (aBlock == mFirstBlock) return -1; return mEntries.GetEntry(aBlock)->mPrevBlock; } #ifdef DEBUG void MediaCacheStream::BlockList::Verify() { int32_t count = 0; if (mFirstBlock >= 0) { int32_t block = mFirstBlock; do { Entry* entry = mEntries.GetEntry(block); NS_ASSERTION(mEntries.GetEntry(entry->mNextBlock)->mPrevBlock == block, "Bad prev link"); NS_ASSERTION(mEntries.GetEntry(entry->mPrevBlock)->mNextBlock == block, "Bad next link"); block = entry->mNextBlock; ++count; } while (block != mFirstBlock); } NS_ASSERTION(count == mCount, "Bad count"); } #endif static void UpdateSwappedBlockIndex(int32_t* aBlockIndex, int32_t aBlock1Index, int32_t aBlock2Index) { int32_t index = *aBlockIndex; if (index == aBlock1Index) { *aBlockIndex = aBlock2Index; } else if (index == aBlock2Index) { *aBlockIndex = aBlock1Index; } } void MediaCacheStream::BlockList::NotifyBlockSwapped(int32_t aBlockIndex1, int32_t aBlockIndex2) { Entry* e1 = mEntries.GetEntry(aBlockIndex1); Entry* e2 = mEntries.GetEntry(aBlockIndex2); int32_t e1Prev = -1, e1Next = -1, e2Prev = -1, e2Next = -1; // Fix mFirstBlock UpdateSwappedBlockIndex(&mFirstBlock, aBlockIndex1, aBlockIndex2); // Fix mNextBlock/mPrevBlock links. First capture previous/next links // so we don't get confused due to aliasing. if (e1) { e1Prev = e1->mPrevBlock; e1Next = e1->mNextBlock; } if (e2) { e2Prev = e2->mPrevBlock; e2Next = e2->mNextBlock; } // Update the entries. if (e1) { mEntries.GetEntry(e1Prev)->mNextBlock = aBlockIndex2; mEntries.GetEntry(e1Next)->mPrevBlock = aBlockIndex2; } if (e2) { mEntries.GetEntry(e2Prev)->mNextBlock = aBlockIndex1; mEntries.GetEntry(e2Next)->mPrevBlock = aBlockIndex1; } // Fix hashtable keys. First remove stale entries. if (e1) { e1Prev = e1->mPrevBlock; e1Next = e1->mNextBlock; mEntries.RemoveEntry(aBlockIndex1); // Refresh pointer after hashtable mutation. e2 = mEntries.GetEntry(aBlockIndex2); } if (e2) { e2Prev = e2->mPrevBlock; e2Next = e2->mNextBlock; mEntries.RemoveEntry(aBlockIndex2); } // Put new entries back. if (e1) { e1 = mEntries.PutEntry(aBlockIndex2); e1->mNextBlock = e1Next; e1->mPrevBlock = e1Prev; } if (e2) { e2 = mEntries.PutEntry(aBlockIndex1); e2->mNextBlock = e2Next; e2->mPrevBlock = e2Prev; } } nsresult MediaCache::Init() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); NS_ASSERTION(!mFileCache, "Cache file already open?"); PRFileDesc* fileDesc = nullptr; nsresult rv = NS_OpenAnonymousTemporaryFile(&fileDesc); NS_ENSURE_SUCCESS(rv,rv); mFileCache = new FileBlockCache(); rv = mFileCache->Open(fileDesc); NS_ENSURE_SUCCESS(rv,rv); MediaCacheFlusher::Init(); return NS_OK; } void MediaCache::Flush() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (!gMediaCache) return; gMediaCache->FlushInternal(); } void MediaCache::FlushInternal() { ReentrantMonitorAutoEnter mon(mReentrantMonitor); for (uint32_t blockIndex = 0; blockIndex < mIndex.Length(); ++blockIndex) { FreeBlock(blockIndex); } // Truncate file, close it, and reopen Truncate(); NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?"); if (mFileCache) { mFileCache->Close(); mFileCache = nullptr; } Init(); } void MediaCache::MaybeShutdown() { NS_ASSERTION(NS_IsMainThread(), "MediaCache::MaybeShutdown called on non-main thread"); if (!gMediaCache->mStreams.IsEmpty()) { // Don't shut down yet, streams are still alive return; } // Since we're on the main thread, no-one is going to add a new stream // while we shut down. // This function is static so we don't have to delete 'this'. delete gMediaCache; gMediaCache = nullptr; NS_IF_RELEASE(gMediaCacheFlusher); } static void InitMediaCache() { if (gMediaCache) return; gMediaCache = new MediaCache(); nsresult rv = gMediaCache->Init(); if (NS_FAILED(rv)) { delete gMediaCache; gMediaCache = nullptr; } } nsresult MediaCache::ReadCacheFile(int64_t aOffset, void* aData, int32_t aLength, int32_t* aBytes) { mReentrantMonitor.AssertCurrentThreadIn(); if (!mFileCache) return NS_ERROR_FAILURE; return mFileCache->Read(aOffset, reinterpret_cast(aData), aLength, aBytes); } nsresult MediaCache::ReadCacheFileAllBytes(int64_t aOffset, void* aData, int32_t aLength) { mReentrantMonitor.AssertCurrentThreadIn(); int64_t offset = aOffset; int32_t count = aLength; // Cast to char* so we can do byte-wise pointer arithmetic char* data = static_cast(aData); while (count > 0) { int32_t bytes; nsresult rv = ReadCacheFile(offset, data, count, &bytes); if (NS_FAILED(rv)) return rv; if (bytes == 0) return NS_ERROR_FAILURE; count -= bytes; data += bytes; offset += bytes; } return NS_OK; } static int32_t GetMaxBlocks() { // We look up the cache size every time. This means dynamic changes // to the pref are applied. // Cache size is in KB int32_t cacheSize = Preferences::GetInt("media.cache_size", 500*1024); int64_t maxBlocks = static_cast(cacheSize)*1024/MediaCache::BLOCK_SIZE; maxBlocks = std::max(maxBlocks, 1); return int32_t(std::min(maxBlocks, INT32_MAX)); } int32_t MediaCache::FindBlockForIncomingData(TimeStamp aNow, MediaCacheStream* aStream) { mReentrantMonitor.AssertCurrentThreadIn(); int32_t blockIndex = FindReusableBlock(aNow, aStream, aStream->mChannelOffset/BLOCK_SIZE, INT32_MAX); if (blockIndex < 0 || !IsBlockFree(blockIndex)) { // The block returned is already allocated. // Don't reuse it if a) there's room to expand the cache or // b) the data we're going to store in the free block is not higher // priority than the data already stored in the free block. // The latter can lead us to go over the cache limit a bit. if ((mIndex.Length() < uint32_t(GetMaxBlocks()) || blockIndex < 0 || PredictNextUseForIncomingData(aStream) >= PredictNextUse(aNow, blockIndex))) { blockIndex = mIndex.Length(); if (!mIndex.AppendElement()) return -1; mFreeBlocks.AddFirstBlock(blockIndex); return blockIndex; } } return blockIndex; } bool MediaCache::BlockIsReusable(int32_t aBlockIndex) { Block* block = &mIndex[aBlockIndex]; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { MediaCacheStream* stream = block->mOwners[i].mStream; if (stream->mPinCount > 0 || stream->mStreamOffset/BLOCK_SIZE == block->mOwners[i].mStreamBlock) { return false; } } return true; } void MediaCache::AppendMostReusableBlock(BlockList* aBlockList, nsTArray* aResult, int32_t aBlockIndexLimit) { mReentrantMonitor.AssertCurrentThreadIn(); int32_t blockIndex = aBlockList->GetLastBlock(); if (blockIndex < 0) return; do { // Don't consider blocks for pinned streams, or blocks that are // beyond the specified limit, or a block that contains a stream's // current read position (such a block contains both played data // and readahead data) if (blockIndex < aBlockIndexLimit && BlockIsReusable(blockIndex)) { aResult->AppendElement(blockIndex); return; } blockIndex = aBlockList->GetPrevBlock(blockIndex); } while (blockIndex >= 0); } int32_t MediaCache::FindReusableBlock(TimeStamp aNow, MediaCacheStream* aForStream, int32_t aForStreamBlock, int32_t aMaxSearchBlockIndex) { mReentrantMonitor.AssertCurrentThreadIn(); uint32_t length = std::min(uint32_t(aMaxSearchBlockIndex), uint32_t(mIndex.Length())); if (aForStream && aForStreamBlock > 0 && uint32_t(aForStreamBlock) <= aForStream->mBlocks.Length()) { int32_t prevCacheBlock = aForStream->mBlocks[aForStreamBlock - 1]; if (prevCacheBlock >= 0) { uint32_t freeBlockScanEnd = std::min(length, prevCacheBlock + FREE_BLOCK_SCAN_LIMIT); for (uint32_t i = prevCacheBlock; i < freeBlockScanEnd; ++i) { if (IsBlockFree(i)) return i; } } } if (!mFreeBlocks.IsEmpty()) { int32_t blockIndex = mFreeBlocks.GetFirstBlock(); do { if (blockIndex < aMaxSearchBlockIndex) return blockIndex; blockIndex = mFreeBlocks.GetNextBlock(blockIndex); } while (blockIndex >= 0); } // Build a list of the blocks we should consider for the "latest // predicted time of next use". We can exploit the fact that the block // linked lists are ordered by increasing time of next use. This is // actually the whole point of having the linked lists. AutoTArray candidates; for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; if (stream->mPinCount > 0) { // No point in even looking at this stream's blocks continue; } AppendMostReusableBlock(&stream->mMetadataBlocks, &candidates, length); AppendMostReusableBlock(&stream->mPlayedBlocks, &candidates, length); // Don't consider readahead blocks in non-seekable streams. If we // remove the block we won't be able to seek back to read it later. if (stream->mIsTransportSeekable) { AppendMostReusableBlock(&stream->mReadaheadBlocks, &candidates, length); } } TimeDuration latestUse; int32_t latestUseBlock = -1; for (uint32_t i = 0; i < candidates.Length(); ++i) { TimeDuration nextUse = PredictNextUse(aNow, candidates[i]); if (nextUse > latestUse) { latestUse = nextUse; latestUseBlock = candidates[i]; } } return latestUseBlock; } MediaCache::BlockList* MediaCache::GetListForBlock(BlockOwner* aBlock) { switch (aBlock->mClass) { case METADATA_BLOCK: NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?"); return &aBlock->mStream->mMetadataBlocks; case PLAYED_BLOCK: NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?"); return &aBlock->mStream->mPlayedBlocks; case READAHEAD_BLOCK: NS_ASSERTION(aBlock->mStream, "Readahead block has no stream?"); return &aBlock->mStream->mReadaheadBlocks; default: NS_ERROR("Invalid block class"); return nullptr; } } MediaCache::BlockOwner* MediaCache::GetBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream) { Block* block = &mIndex[aBlockIndex]; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { if (block->mOwners[i].mStream == aStream) return &block->mOwners[i]; } return nullptr; } void MediaCache::SwapBlocks(int32_t aBlockIndex1, int32_t aBlockIndex2) { mReentrantMonitor.AssertCurrentThreadIn(); Block* block1 = &mIndex[aBlockIndex1]; Block* block2 = &mIndex[aBlockIndex2]; block1->mOwners.SwapElements(block2->mOwners); // Now all references to block1 have to be replaced with block2 and // vice versa. // First update stream references to blocks via mBlocks. const Block* blocks[] = { block1, block2 }; int32_t blockIndices[] = { aBlockIndex1, aBlockIndex2 }; for (int32_t i = 0; i < 2; ++i) { for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) { const BlockOwner* b = &blocks[i]->mOwners[j]; b->mStream->mBlocks[b->mStreamBlock] = blockIndices[i]; } } // Now update references to blocks in block lists. mFreeBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); nsTHashtable > visitedStreams; for (int32_t i = 0; i < 2; ++i) { for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) { MediaCacheStream* stream = blocks[i]->mOwners[j].mStream; // Make sure that we don't update the same stream twice --- that // would result in swapping the block references back again! if (visitedStreams.GetEntry(stream)) continue; visitedStreams.PutEntry(stream); stream->mReadaheadBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); stream->mPlayedBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); stream->mMetadataBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); } } Verify(); } void MediaCache::RemoveBlockOwner(int32_t aBlockIndex, MediaCacheStream* aStream) { Block* block = &mIndex[aBlockIndex]; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { BlockOwner* bo = &block->mOwners[i]; if (bo->mStream == aStream) { GetListForBlock(bo)->RemoveBlock(aBlockIndex); bo->mStream->mBlocks[bo->mStreamBlock] = -1; block->mOwners.RemoveElementAt(i); if (block->mOwners.IsEmpty()) { mFreeBlocks.AddFirstBlock(aBlockIndex); } return; } } } void MediaCache::AddBlockOwnerAsReadahead(int32_t aBlockIndex, MediaCacheStream* aStream, int32_t aStreamBlockIndex) { Block* block = &mIndex[aBlockIndex]; if (block->mOwners.IsEmpty()) { mFreeBlocks.RemoveBlock(aBlockIndex); } BlockOwner* bo = block->mOwners.AppendElement(); bo->mStream = aStream; bo->mStreamBlock = aStreamBlockIndex; aStream->mBlocks[aStreamBlockIndex] = aBlockIndex; bo->mClass = READAHEAD_BLOCK; InsertReadaheadBlock(bo, aBlockIndex); } void MediaCache::FreeBlock(int32_t aBlock) { mReentrantMonitor.AssertCurrentThreadIn(); Block* block = &mIndex[aBlock]; if (block->mOwners.IsEmpty()) { // already free return; } CACHE_LOG(LogLevel::Debug, ("Released block %d", aBlock)); for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { BlockOwner* bo = &block->mOwners[i]; GetListForBlock(bo)->RemoveBlock(aBlock); bo->mStream->mBlocks[bo->mStreamBlock] = -1; } block->mOwners.Clear(); mFreeBlocks.AddFirstBlock(aBlock); Verify(); } TimeDuration MediaCache::PredictNextUse(TimeStamp aNow, int32_t aBlock) { mReentrantMonitor.AssertCurrentThreadIn(); NS_ASSERTION(!IsBlockFree(aBlock), "aBlock is free"); Block* block = &mIndex[aBlock]; // Blocks can be belong to multiple streams. The predicted next use // time is the earliest time predicted by any of the streams. TimeDuration result; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { BlockOwner* bo = &block->mOwners[i]; TimeDuration prediction; switch (bo->mClass) { case METADATA_BLOCK: // This block should be managed in LRU mode. For metadata we predict // that the time until the next use is the time since the last use. prediction = aNow - bo->mLastUseTime; break; case PLAYED_BLOCK: { // This block should be managed in LRU mode, and we should impose // a "replay delay" to reflect the likelihood of replay happening NS_ASSERTION(static_cast(bo->mStreamBlock)*BLOCK_SIZE < bo->mStream->mStreamOffset, "Played block after the current stream position?"); int64_t bytesBehind = bo->mStream->mStreamOffset - static_cast(bo->mStreamBlock)*BLOCK_SIZE; int64_t millisecondsBehind = bytesBehind*1000/bo->mStream->mPlaybackBytesPerSecond; prediction = TimeDuration::FromMilliseconds( std::min(millisecondsBehind*REPLAY_PENALTY_FACTOR, INT32_MAX)); break; } case READAHEAD_BLOCK: { int64_t bytesAhead = static_cast(bo->mStreamBlock)*BLOCK_SIZE - bo->mStream->mStreamOffset; NS_ASSERTION(bytesAhead >= 0, "Readahead block before the current stream position?"); int64_t millisecondsAhead = bytesAhead*1000/bo->mStream->mPlaybackBytesPerSecond; prediction = TimeDuration::FromMilliseconds( std::min(millisecondsAhead, INT32_MAX)); break; } default: NS_ERROR("Invalid class for predicting next use"); return TimeDuration(0); } if (i == 0 || prediction < result) { result = prediction; } } return result; } TimeDuration MediaCache::PredictNextUseForIncomingData(MediaCacheStream* aStream) { mReentrantMonitor.AssertCurrentThreadIn(); int64_t bytesAhead = aStream->mChannelOffset - aStream->mStreamOffset; if (bytesAhead <= -BLOCK_SIZE) { // Hmm, no idea when data behind us will be used. Guess 24 hours. return TimeDuration::FromSeconds(24*60*60); } if (bytesAhead <= 0) return TimeDuration(0); int64_t millisecondsAhead = bytesAhead*1000/aStream->mPlaybackBytesPerSecond; return TimeDuration::FromMilliseconds( std::min(millisecondsAhead, INT32_MAX)); } enum StreamAction { NONE, SEEK, SEEK_AND_RESUME, RESUME, SUSPEND }; void MediaCache::Update() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); // The action to use for each stream. We store these so we can make // decisions while holding the cache lock but implement those decisions // without holding the cache lock, since we need to call out to // stream, decoder and element code. AutoTArray actions; { ReentrantMonitorAutoEnter mon(mReentrantMonitor); mUpdateQueued = false; #ifdef DEBUG mInUpdate = true; #endif int32_t maxBlocks = GetMaxBlocks(); TimeStamp now = TimeStamp::Now(); int32_t freeBlockCount = mFreeBlocks.GetCount(); TimeDuration latestPredictedUseForOverflow = 0; if (mIndex.Length() > uint32_t(maxBlocks)) { // Try to trim back the cache to its desired maximum size. The cache may // have overflowed simply due to data being received when we have // no blocks in the main part of the cache that are free or lower // priority than the new data. The cache can also be overflowing because // the media.cache_size preference was reduced. // First, figure out what the least valuable block in the cache overflow // is. We don't want to replace any blocks in the main part of the // cache whose expected time of next use is earlier or equal to that. // If we allow that, we can effectively end up discarding overflowing // blocks (by moving an overflowing block to the main part of the cache, // and then overwriting it with another overflowing block), and we try // to avoid that since it requires HTTP seeks. // We also use this loop to eliminate overflowing blocks from // freeBlockCount. for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks; --blockIndex) { if (IsBlockFree(blockIndex)) { // Don't count overflowing free blocks in our free block count --freeBlockCount; continue; } TimeDuration predictedUse = PredictNextUse(now, blockIndex); latestPredictedUseForOverflow = std::max(latestPredictedUseForOverflow, predictedUse); } } else { freeBlockCount += maxBlocks - mIndex.Length(); } // Now try to move overflowing blocks to the main part of the cache. for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks; --blockIndex) { if (IsBlockFree(blockIndex)) continue; Block* block = &mIndex[blockIndex]; // Try to relocate the block close to other blocks for the first stream. // There is no point in trying to make it close to other blocks in // *all* the streams it might belong to. int32_t destinationBlockIndex = FindReusableBlock(now, block->mOwners[0].mStream, block->mOwners[0].mStreamBlock, maxBlocks); if (destinationBlockIndex < 0) { // Nowhere to place this overflow block. We won't be able to // place any more overflow blocks. break; } if (IsBlockFree(destinationBlockIndex) || PredictNextUse(now, destinationBlockIndex) > latestPredictedUseForOverflow) { // Reuse blocks in the main part of the cache that are less useful than // the least useful overflow blocks nsresult rv = mFileCache->MoveBlock(blockIndex, destinationBlockIndex); if (NS_SUCCEEDED(rv)) { // We successfully copied the file data. CACHE_LOG(LogLevel::Debug, ("Swapping blocks %d and %d (trimming cache)", blockIndex, destinationBlockIndex)); // Swapping the block metadata here lets us maintain the // correct positions in the linked lists SwapBlocks(blockIndex, destinationBlockIndex); //Free the overflowing block even if the copy failed. CACHE_LOG(LogLevel::Debug, ("Released block %d (trimming cache)", blockIndex)); FreeBlock(blockIndex); } } else { CACHE_LOG(LogLevel::Debug, ("Could not trim cache block %d (destination %d, predicted next use %f, latest predicted use for overflow %f", blockIndex, destinationBlockIndex, PredictNextUse(now, destinationBlockIndex).ToSeconds(), latestPredictedUseForOverflow.ToSeconds())); } } // Try chopping back the array of cache entries and the cache file. Truncate(); // Count the blocks allocated for readahead of non-seekable streams // (these blocks can't be freed but we don't want them to monopolize the // cache) int32_t nonSeekableReadaheadBlockCount = 0; for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; if (!stream->mIsTransportSeekable) { nonSeekableReadaheadBlockCount += stream->mReadaheadBlocks.GetCount(); } } // If freeBlockCount is zero, then compute the latest of // the predicted next-uses for all blocks TimeDuration latestNextUse; if (freeBlockCount == 0) { int32_t reusableBlock = FindReusableBlock(now, nullptr, 0, maxBlocks); if (reusableBlock >= 0) { latestNextUse = PredictNextUse(now, reusableBlock); } } int32_t resumeThreshold = Preferences::GetInt("media.cache_resume_threshold", 10); int32_t readaheadLimit = Preferences::GetInt("media.cache_readahead_limit", 30); for (uint32_t i = 0; i < mStreams.Length(); ++i) { actions.AppendElement(NONE); MediaCacheStream* stream = mStreams[i]; if (stream->mClosed) { CACHE_LOG(LogLevel::Debug, ("Stream %p closed", stream)); continue; } // Figure out where we should be reading from. It's the first // uncached byte after the current mStreamOffset. int64_t dataOffset = stream->GetCachedDataEndInternal(stream->mStreamOffset); MOZ_ASSERT(dataOffset >= 0); // Compute where we'd actually seek to to read at readOffset int64_t desiredOffset = dataOffset; if (stream->mIsTransportSeekable) { if (desiredOffset > stream->mChannelOffset && desiredOffset <= stream->mChannelOffset + SEEK_VS_READ_THRESHOLD) { // Assume it's more efficient to just keep reading up to the // desired position instead of trying to seek desiredOffset = stream->mChannelOffset; } } else { // We can't seek directly to the desired offset... if (stream->mChannelOffset > desiredOffset) { // Reading forward won't get us anywhere, we need to go backwards. // Seek back to 0 (the client will reopen the stream) and then // read forward. NS_WARNING("Can't seek backwards, so seeking to 0"); desiredOffset = 0; // Flush cached blocks out, since if this is a live stream // the cached data may be completely different next time we // read it. We have to assume that live streams don't // advertise themselves as being seekable... ReleaseStreamBlocks(stream); } else { // otherwise reading forward is looking good, so just stay where we // are and don't trigger a channel seek! desiredOffset = stream->mChannelOffset; } } // Figure out if we should be reading data now or not. It's amazing // how complex this is, but each decision is simple enough. bool enableReading; if (stream->mStreamLength >= 0 && dataOffset >= stream->mStreamLength) { // We want data at the end of the stream, where there's nothing to // read. We don't want to try to read if we're suspended, because that // might create a new channel and seek unnecessarily (and incorrectly, // since HTTP doesn't allow seeking to the actual EOF), and we don't want // to suspend if we're not suspended and already reading at the end of // the stream, since there just might be more data than the server // advertised with Content-Length, and we may as well keep reading. // But we don't want to seek to the end of the stream if we're not // already there. CACHE_LOG(LogLevel::Debug, ("Stream %p at end of stream", stream)); enableReading = !stream->mCacheSuspended && stream->mStreamLength == stream->mChannelOffset; } else if (desiredOffset < stream->mStreamOffset) { // We're reading to try to catch up to where the current stream // reader wants to be. Better not stop. CACHE_LOG(LogLevel::Debug, ("Stream %p catching up", stream)); enableReading = true; } else if (desiredOffset < stream->mStreamOffset + BLOCK_SIZE) { // The stream reader is waiting for us, or nearly so. Better feed it. CACHE_LOG(LogLevel::Debug, ("Stream %p feeding reader", stream)); enableReading = true; } else if (!stream->mIsTransportSeekable && nonSeekableReadaheadBlockCount >= maxBlocks*NONSEEKABLE_READAHEAD_MAX) { // This stream is not seekable and there are already too many blocks // being cached for readahead for nonseekable streams (which we can't // free). So stop reading ahead now. CACHE_LOG(LogLevel::Debug, ("Stream %p throttling non-seekable readahead", stream)); enableReading = false; } else if (mIndex.Length() > uint32_t(maxBlocks)) { // We're in the process of bringing the cache size back to the // desired limit, so don't bring in more data yet CACHE_LOG(LogLevel::Debug, ("Stream %p throttling to reduce cache size", stream)); enableReading = false; } else { TimeDuration predictedNewDataUse = PredictNextUseForIncomingData(stream); if (stream->mCacheSuspended && predictedNewDataUse.ToSeconds() > resumeThreshold) { // Don't need data for a while, so don't bother waking up the stream CACHE_LOG(LogLevel::Debug, ("Stream %p avoiding wakeup since more data is not needed", stream)); enableReading = false; } else if (predictedNewDataUse.ToSeconds() > readaheadLimit) { // Don't read ahead more than this much CACHE_LOG(LogLevel::Debug, ("Stream %p throttling to avoid reading ahead too far", stream)); enableReading = false; } else if (freeBlockCount > 0) { // Free blocks in the cache, so keep reading CACHE_LOG(LogLevel::Debug, ("Stream %p reading since there are free blocks", stream)); enableReading = true; } else if (latestNextUse <= TimeDuration(0)) { // No reusable blocks, so can't read anything CACHE_LOG(LogLevel::Debug, ("Stream %p throttling due to no reusable blocks", stream)); enableReading = false; } else { // Read ahead if the data we expect to read is more valuable than // the least valuable block in the main part of the cache CACHE_LOG(LogLevel::Debug, ("Stream %p predict next data in %f, current worst block is %f", stream, predictedNewDataUse.ToSeconds(), latestNextUse.ToSeconds())); enableReading = predictedNewDataUse < latestNextUse; } } if (enableReading) { for (uint32_t j = 0; j < i; ++j) { MediaCacheStream* other = mStreams[j]; if (other->mResourceID == stream->mResourceID && !other->mClosed && !other->mClient->IsSuspended() && other->mChannelOffset/BLOCK_SIZE == desiredOffset/BLOCK_SIZE) { // This block is already going to be read by the other stream. // So don't try to read it from this stream as well. enableReading = false; CACHE_LOG(LogLevel::Debug, ("Stream %p waiting on same block (%" PRId64 ") from stream %p", stream, desiredOffset/BLOCK_SIZE, other)); break; } } } if (stream->mChannelOffset != desiredOffset && enableReading) { // We need to seek now. NS_ASSERTION(stream->mIsTransportSeekable || desiredOffset == 0, "Trying to seek in a non-seekable stream!"); // Round seek offset down to the start of the block. This is essential // because we don't want to think we have part of a block already // in mPartialBlockBuffer. stream->mChannelOffset = (desiredOffset/BLOCK_SIZE)*BLOCK_SIZE; actions[i] = stream->mCacheSuspended ? SEEK_AND_RESUME : SEEK; } else if (enableReading && stream->mCacheSuspended) { actions[i] = RESUME; } else if (!enableReading && !stream->mCacheSuspended) { actions[i] = SUSPEND; } } #ifdef DEBUG mInUpdate = false; #endif } // Update the channel state without holding our cache lock. While we're // doing this, decoder threads may be running and seeking, reading or changing // other cache state. That's OK, they'll trigger new Update events and we'll // get back here and revise our decisions. The important thing here is that // performing these actions only depends on mChannelOffset and // the action, which can only be written by the main thread (i.e., this // thread), so we don't have races here. // First, update the mCacheSuspended/mCacheEnded flags so that they're all correct // when we fire our CacheClient commands below. Those commands can rely on these flags // being set correctly for all streams. for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; switch (actions[i]) { case SEEK: case SEEK_AND_RESUME: stream->mCacheSuspended = false; stream->mChannelEnded = false; break; case RESUME: stream->mCacheSuspended = false; break; case SUSPEND: stream->mCacheSuspended = true; break; default: break; } stream->mHasHadUpdate = true; } for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; nsresult rv; switch (actions[i]) { case SEEK: case SEEK_AND_RESUME: CACHE_LOG(LogLevel::Debug, ("Stream %p CacheSeek to %lld (resume=%d)", stream, (long long)stream->mChannelOffset, actions[i] == SEEK_AND_RESUME)); rv = stream->mClient->CacheClientSeek(stream->mChannelOffset, actions[i] == SEEK_AND_RESUME); break; case RESUME: CACHE_LOG(LogLevel::Debug, ("Stream %p Resumed", stream)); rv = stream->mClient->CacheClientResume(); QueueSuspendedStatusUpdate(stream->mResourceID); break; case SUSPEND: CACHE_LOG(LogLevel::Debug, ("Stream %p Suspended", stream)); rv = stream->mClient->CacheClientSuspend(); QueueSuspendedStatusUpdate(stream->mResourceID); break; default: rv = NS_OK; break; } if (NS_FAILED(rv)) { // Close the streams that failed due to error. This will cause all // client Read and Seek operations on those streams to fail. Blocked // Reads will also be woken up. ReentrantMonitorAutoEnter mon(mReentrantMonitor); stream->CloseInternal(mon); } } // Notify streams about the suspended status changes. for (uint32_t i = 0; i < mSuspendedStatusToNotify.Length(); ++i) { MediaCache::ResourceStreamIterator iter(mSuspendedStatusToNotify[i]); while (MediaCacheStream* stream = iter.Next()) { stream->mClient->CacheClientNotifySuspendedStatusChanged(); } } mSuspendedStatusToNotify.Clear(); } class UpdateEvent : public Runnable { public: NS_IMETHOD Run() override { if (gMediaCache) { gMediaCache->Update(); } return NS_OK; } }; void MediaCache::QueueUpdate() { mReentrantMonitor.AssertCurrentThreadIn(); // Queuing an update while we're in an update raises a high risk of // triggering endless events NS_ASSERTION(!mInUpdate, "Queuing an update while we're in an update"); if (mUpdateQueued) return; mUpdateQueued = true; // XXX MediaCache does updates when decoders are still running at // shutdown and get freed in the final cycle-collector cleanup. So // don't leak a runnable in that case. nsCOMPtr mainThread = do_GetMainThread(); if (mainThread) { nsCOMPtr event = new UpdateEvent(); mainThread->Dispatch(event.forget(), NS_DISPATCH_NORMAL); } } void MediaCache::QueueSuspendedStatusUpdate(int64_t aResourceID) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (!mSuspendedStatusToNotify.Contains(aResourceID)) { mSuspendedStatusToNotify.AppendElement(aResourceID); } } #ifdef DEBUG_VERIFY_CACHE void MediaCache::Verify() { mReentrantMonitor.AssertCurrentThreadIn(); mFreeBlocks.Verify(); for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; stream->mReadaheadBlocks.Verify(); stream->mPlayedBlocks.Verify(); stream->mMetadataBlocks.Verify(); // Verify that the readahead blocks are listed in stream block order int32_t block = stream->mReadaheadBlocks.GetFirstBlock(); int32_t lastStreamBlock = -1; while (block >= 0) { uint32_t j = 0; while (mIndex[block].mOwners[j].mStream != stream) { ++j; } int32_t nextStreamBlock = int32_t(mIndex[block].mOwners[j].mStreamBlock); NS_ASSERTION(lastStreamBlock < nextStreamBlock, "Blocks not increasing in readahead stream"); lastStreamBlock = nextStreamBlock; block = stream->mReadaheadBlocks.GetNextBlock(block); } } } #endif void MediaCache::InsertReadaheadBlock(BlockOwner* aBlockOwner, int32_t aBlockIndex) { mReentrantMonitor.AssertCurrentThreadIn(); // Find the last block whose stream block is before aBlockIndex's // stream block, and insert after it MediaCacheStream* stream = aBlockOwner->mStream; int32_t readaheadIndex = stream->mReadaheadBlocks.GetLastBlock(); while (readaheadIndex >= 0) { BlockOwner* bo = GetBlockOwner(readaheadIndex, stream); NS_ASSERTION(bo, "stream must own its blocks"); if (bo->mStreamBlock < aBlockOwner->mStreamBlock) { stream->mReadaheadBlocks.AddAfter(aBlockIndex, readaheadIndex); return; } NS_ASSERTION(bo->mStreamBlock > aBlockOwner->mStreamBlock, "Duplicated blocks??"); readaheadIndex = stream->mReadaheadBlocks.GetPrevBlock(readaheadIndex); } stream->mReadaheadBlocks.AddFirstBlock(aBlockIndex); Verify(); } void MediaCache::AllocateAndWriteBlock(MediaCacheStream* aStream, const void* aData, MediaCacheStream::ReadMode aMode) { mReentrantMonitor.AssertCurrentThreadIn(); int32_t streamBlockIndex = aStream->mChannelOffset/BLOCK_SIZE; // Remove all cached copies of this block ResourceStreamIterator iter(aStream->mResourceID); while (MediaCacheStream* stream = iter.Next()) { while (streamBlockIndex >= int32_t(stream->mBlocks.Length())) { stream->mBlocks.AppendElement(-1); } if (stream->mBlocks[streamBlockIndex] >= 0) { // We no longer want to own this block int32_t globalBlockIndex = stream->mBlocks[streamBlockIndex]; CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)", globalBlockIndex, stream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE)); RemoveBlockOwner(globalBlockIndex, stream); } } // Extend the mBlocks array as necessary TimeStamp now = TimeStamp::Now(); int32_t blockIndex = FindBlockForIncomingData(now, aStream); if (blockIndex >= 0) { FreeBlock(blockIndex); Block* block = &mIndex[blockIndex]; CACHE_LOG(LogLevel::Debug, ("Allocated block %d to stream %p block %d(%lld)", blockIndex, aStream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE)); mFreeBlocks.RemoveBlock(blockIndex); // Tell each stream using this resource about the new block. ResourceStreamIterator iter(aStream->mResourceID); while (MediaCacheStream* stream = iter.Next()) { BlockOwner* bo = block->mOwners.AppendElement(); if (!bo) return; bo->mStream = stream; bo->mStreamBlock = streamBlockIndex; bo->mLastUseTime = now; stream->mBlocks[streamBlockIndex] = blockIndex; if (streamBlockIndex*BLOCK_SIZE < stream->mStreamOffset) { bo->mClass = aMode == MediaCacheStream::MODE_PLAYBACK ? PLAYED_BLOCK : METADATA_BLOCK; // This must be the most-recently-used block, since we // marked it as used now (which may be slightly bogus, but we'll // treat it as used for simplicity). GetListForBlock(bo)->AddFirstBlock(blockIndex); Verify(); } else { // This may not be the latest readahead block, although it usually // will be. We may have to scan for the right place to insert // the block in the list. bo->mClass = READAHEAD_BLOCK; InsertReadaheadBlock(bo, blockIndex); } } nsresult rv = mFileCache->WriteBlock(blockIndex, reinterpret_cast(aData)); if (NS_FAILED(rv)) { CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)", blockIndex, aStream, streamBlockIndex, (long long)streamBlockIndex*BLOCK_SIZE)); FreeBlock(blockIndex); } } // Queue an Update since the cache state has changed (for example // we might want to stop loading because the cache is full) QueueUpdate(); } void MediaCache::OpenStream(MediaCacheStream* aStream) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); ReentrantMonitorAutoEnter mon(mReentrantMonitor); CACHE_LOG(LogLevel::Debug, ("Stream %p opened", aStream)); mStreams.AppendElement(aStream); aStream->mResourceID = AllocateResourceID(); // Queue an update since a new stream has been opened. gMediaCache->QueueUpdate(); } void MediaCache::ReleaseStream(MediaCacheStream* aStream) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); ReentrantMonitorAutoEnter mon(mReentrantMonitor); CACHE_LOG(LogLevel::Debug, ("Stream %p closed", aStream)); mStreams.RemoveElement(aStream); // Update MediaCache again for |mStreams| is changed. // We need to re-run Update() to ensure streams reading from the same resource // as the removed stream get a chance to continue reading. gMediaCache->QueueUpdate(); } void MediaCache::ReleaseStreamBlocks(MediaCacheStream* aStream) { mReentrantMonitor.AssertCurrentThreadIn(); // XXX scanning the entire stream doesn't seem great, if not much of it // is cached, but the only easy alternative is to scan the entire cache // which isn't better uint32_t length = aStream->mBlocks.Length(); for (uint32_t i = 0; i < length; ++i) { int32_t blockIndex = aStream->mBlocks[i]; if (blockIndex >= 0) { CACHE_LOG(LogLevel::Debug, ("Released block %d from stream %p block %d(%lld)", blockIndex, aStream, i, (long long)i*BLOCK_SIZE)); RemoveBlockOwner(blockIndex, aStream); } } } void MediaCache::Truncate() { uint32_t end; for (end = mIndex.Length(); end > 0; --end) { if (!IsBlockFree(end - 1)) break; mFreeBlocks.RemoveBlock(end - 1); } if (end < mIndex.Length()) { mIndex.TruncateLength(end); // XXX We could truncate the cache file here, but we don't seem // to have a cross-platform API for doing that. At least when all // streams are closed we shut down the cache, which erases the // file at that point. } } void MediaCache::NoteBlockUsage(MediaCacheStream* aStream, int32_t aBlockIndex, int64_t aStreamOffset, MediaCacheStream::ReadMode aMode, TimeStamp aNow) { mReentrantMonitor.AssertCurrentThreadIn(); if (aBlockIndex < 0) { // this block is not in the cache yet return; } BlockOwner* bo = GetBlockOwner(aBlockIndex, aStream); if (!bo) { // this block is not in the cache yet return; } // The following check has to be <= because the stream offset has // not yet been updated for the data read from this block NS_ASSERTION(bo->mStreamBlock*BLOCK_SIZE <= aStreamOffset, "Using a block that's behind the read position?"); GetListForBlock(bo)->RemoveBlock(aBlockIndex); bo->mClass = (aMode == MediaCacheStream::MODE_METADATA || bo->mClass == METADATA_BLOCK) ? METADATA_BLOCK : PLAYED_BLOCK; // Since this is just being used now, it can definitely be at the front // of mMetadataBlocks or mPlayedBlocks GetListForBlock(bo)->AddFirstBlock(aBlockIndex); bo->mLastUseTime = aNow; Verify(); } void MediaCache::NoteSeek(MediaCacheStream* aStream, int64_t aOldOffset) { mReentrantMonitor.AssertCurrentThreadIn(); if (aOldOffset < aStream->mStreamOffset) { // We seeked forward. Convert blocks from readahead to played. // Any readahead block that intersects the seeked-over range must // be converted. int32_t blockIndex = aOldOffset/BLOCK_SIZE; int32_t endIndex = std::min((aStream->mStreamOffset + BLOCK_SIZE - 1)/BLOCK_SIZE, aStream->mBlocks.Length()); TimeStamp now = TimeStamp::Now(); while (blockIndex < endIndex) { int32_t cacheBlockIndex = aStream->mBlocks[blockIndex]; if (cacheBlockIndex >= 0) { // Marking the block used may not be exactly what we want but // it's simple NoteBlockUsage(aStream, cacheBlockIndex, aStream->mStreamOffset, MediaCacheStream::MODE_PLAYBACK, now); } ++blockIndex; } } else { // We seeked backward. Convert from played to readahead. // Any played block that is entirely after the start of the seeked-over // range must be converted. int32_t blockIndex = (aStream->mStreamOffset + BLOCK_SIZE - 1)/BLOCK_SIZE; int32_t endIndex = std::min((aOldOffset + BLOCK_SIZE - 1)/BLOCK_SIZE, aStream->mBlocks.Length()); while (blockIndex < endIndex) { MOZ_ASSERT(endIndex > 0); int32_t cacheBlockIndex = aStream->mBlocks[endIndex - 1]; if (cacheBlockIndex >= 0) { BlockOwner* bo = GetBlockOwner(cacheBlockIndex, aStream); NS_ASSERTION(bo, "Stream doesn't own its blocks?"); if (bo->mClass == PLAYED_BLOCK) { aStream->mPlayedBlocks.RemoveBlock(cacheBlockIndex); bo->mClass = READAHEAD_BLOCK; // Adding this as the first block is sure to be OK since // this must currently be the earliest readahead block // (that's why we're proceeding backwards from the end of // the seeked range to the start) aStream->mReadaheadBlocks.AddFirstBlock(cacheBlockIndex); Verify(); } } --endIndex; } } } void MediaCacheStream::NotifyDataLength(int64_t aLength) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); mStreamLength = aLength; } void MediaCacheStream::NotifyDataStarted(int64_t aOffset) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); NS_WARNING_ASSERTION(aOffset == mChannelOffset, "Server is giving us unexpected offset"); MOZ_ASSERT(aOffset >= 0); mChannelOffset = aOffset; if (mStreamLength >= 0) { // If we started reading at a certain offset, then for sure // the stream is at least that long. mStreamLength = std::max(mStreamLength, mChannelOffset); } } bool MediaCacheStream::UpdatePrincipal(nsIPrincipal* aPrincipal) { return nsContentUtils::CombineResourcePrincipals(&mPrincipal, aPrincipal); } void MediaCacheStream::NotifyDataReceived(int64_t aSize, const char* aData, nsIPrincipal* aPrincipal) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); // Update principals before putting the data in the cache. This is important, // we want to make sure all principals are updated before any consumer // can see the new data. // We do this without holding the cache monitor, in case the client wants // to do something that takes a lock. { MediaCache::ResourceStreamIterator iter(mResourceID); while (MediaCacheStream* stream = iter.Next()) { if (stream->UpdatePrincipal(aPrincipal)) { stream->mClient->CacheClientNotifyPrincipalChanged(); } } } ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); int64_t size = aSize; const char* data = aData; CACHE_LOG(LogLevel::Debug, ("Stream %p DataReceived at %lld count=%lld", this, (long long)mChannelOffset, (long long)aSize)); // We process the data one block (or part of a block) at a time while (size > 0) { uint32_t blockIndex = mChannelOffset/BLOCK_SIZE; int32_t blockOffset = int32_t(mChannelOffset - blockIndex*BLOCK_SIZE); int32_t chunkSize = std::min(BLOCK_SIZE - blockOffset, size); // This gets set to something non-null if we have a whole block // of data to write to the cache const char* blockDataToStore = nullptr; ReadMode mode = MODE_PLAYBACK; if (blockOffset == 0 && chunkSize == BLOCK_SIZE) { // We received a whole block, so avoid a useless copy through // mPartialBlockBuffer blockDataToStore = data; } else { if (blockOffset == 0) { // We've just started filling this buffer so now is a good time // to clear this flag. mMetadataInPartialBlockBuffer = false; } memcpy(reinterpret_cast(mPartialBlockBuffer.get()) + blockOffset, data, chunkSize); if (blockOffset + chunkSize == BLOCK_SIZE) { // We completed a block, so lets write it out. blockDataToStore = reinterpret_cast(mPartialBlockBuffer.get()); if (mMetadataInPartialBlockBuffer) { mode = MODE_METADATA; } } } if (blockDataToStore) { gMediaCache->AllocateAndWriteBlock(this, blockDataToStore, mode); } mChannelOffset += chunkSize; size -= chunkSize; data += chunkSize; } MediaCache::ResourceStreamIterator iter(mResourceID); while (MediaCacheStream* stream = iter.Next()) { if (stream->mStreamLength >= 0) { // The stream is at least as long as what we've read stream->mStreamLength = std::max(stream->mStreamLength, mChannelOffset); } stream->mClient->CacheClientNotifyDataReceived(); } // Notify in case there's a waiting reader // XXX it would be fairly easy to optimize things a lot more to // avoid waking up reader threads unnecessarily mon.NotifyAll(); } void MediaCacheStream::FlushPartialBlockInternal(bool aNotifyAll, ReentrantMonitorAutoEnter& aReentrantMonitor) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); int32_t blockOffset = int32_t(mChannelOffset%BLOCK_SIZE); if (blockOffset > 0) { CACHE_LOG(LogLevel::Debug, ("Stream %p writing partial block: [%d] bytes; " "mStreamOffset [%" PRId64 "] mChannelOffset[%" PRId64 "] mStreamLength [%" PRId64 "] notifying: [%s]", this, blockOffset, mStreamOffset, mChannelOffset, mStreamLength, aNotifyAll ? "yes" : "no")); // Write back the partial block memset(reinterpret_cast(mPartialBlockBuffer.get()) + blockOffset, 0, BLOCK_SIZE - blockOffset); gMediaCache->AllocateAndWriteBlock(this, mPartialBlockBuffer.get(), mMetadataInPartialBlockBuffer ? MODE_METADATA : MODE_PLAYBACK); } // |mChannelOffset == 0| means download ends with no bytes received. // We should also wake up those readers who are waiting for data // that will never come. if ((blockOffset > 0 || mChannelOffset == 0) && aNotifyAll) { // Wake up readers who may be waiting for this data aReentrantMonitor.NotifyAll(); } } void MediaCacheStream::FlushPartialBlock() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); // Write the current partial block to memory. // Note: This writes a full block, so if data is not at the end of the // stream, the decoder must subsequently choose correct start and end offsets // for reading/seeking. FlushPartialBlockInternal(false, mon); gMediaCache->QueueUpdate(); } void MediaCacheStream::NotifyDataEnded(nsresult aStatus) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); if (NS_FAILED(aStatus)) { // Disconnect from other streams sharing our resource, since they // should continue trying to load. Our load might have been deliberately // canceled and that shouldn't affect other streams. mResourceID = gMediaCache->AllocateResourceID(); } // It is prudent to update channel/cache status before calling // CacheClientNotifyDataEnded() which will read |mChannelEnded|. FlushPartialBlockInternal(true, mon); mChannelEnded = true; gMediaCache->QueueUpdate(); MediaCache::ResourceStreamIterator iter(mResourceID); while (MediaCacheStream* stream = iter.Next()) { if (NS_SUCCEEDED(aStatus)) { // We read the whole stream, so remember the true length stream->mStreamLength = mChannelOffset; } if (!stream->mDidNotifyDataEnded) { stream->mDidNotifyDataEnded = true; stream->mNotifyDataEndedStatus = aStatus; stream->mClient->CacheClientNotifyDataEnded(aStatus); } } } void MediaCacheStream::NotifyChannelRecreated() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); mChannelEnded = false; mDidNotifyDataEnded = false; } MediaCacheStream::~MediaCacheStream() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); NS_ASSERTION(!mPinCount, "Unbalanced Pin"); if (gMediaCache) { NS_ASSERTION(mClosed, "Stream was not closed"); gMediaCache->ReleaseStream(this); MediaCache::MaybeShutdown(); } } void MediaCacheStream::SetTransportSeekable(bool aIsTransportSeekable) { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); NS_ASSERTION(mIsTransportSeekable || aIsTransportSeekable || mChannelOffset == 0, "channel offset must be zero when we become non-seekable"); mIsTransportSeekable = aIsTransportSeekable; // Queue an Update since we may change our strategy for dealing // with this stream gMediaCache->QueueUpdate(); } bool MediaCacheStream::IsTransportSeekable() { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); return mIsTransportSeekable; } bool MediaCacheStream::AreAllStreamsForResourceSuspended() { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); MediaCache::ResourceStreamIterator iter(mResourceID); // Look for a stream that's able to read the data we need int64_t dataOffset = -1; while (MediaCacheStream* stream = iter.Next()) { if (stream->mCacheSuspended || stream->mChannelEnded || stream->mClosed) { continue; } if (dataOffset < 0) { dataOffset = GetCachedDataEndInternal(mStreamOffset); } // Ignore streams that are reading beyond the data we need if (stream->mChannelOffset > dataOffset) { continue; } return false; } return true; } void MediaCacheStream::Close() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (!mInitialized) return; ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); CloseInternal(mon); // Queue an Update since we may have created more free space. Don't do // it from CloseInternal since that gets called by Update() itself // sometimes, and we try to not to queue updates from Update(). gMediaCache->QueueUpdate(); } void MediaCacheStream::EnsureCacheUpdate() { if (mHasHadUpdate) return; gMediaCache->Update(); } void MediaCacheStream::CloseInternal(ReentrantMonitorAutoEnter& aReentrantMonitor) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (mClosed) return; mClosed = true; // Closing a stream will change the return value of // MediaCacheStream::AreAllStreamsForResourceSuspended as well as // ChannelMediaResource::IsSuspendedByCache. Let's notify it. gMediaCache->QueueSuspendedStatusUpdate(mResourceID); gMediaCache->ReleaseStreamBlocks(this); // Wake up any blocked readers aReentrantMonitor.NotifyAll(); } void MediaCacheStream::Pin() { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); ++mPinCount; // Queue an Update since we may no longer want to read more into the // cache, if this stream's block have become non-evictable gMediaCache->QueueUpdate(); } void MediaCacheStream::Unpin() { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); NS_ASSERTION(mPinCount > 0, "Unbalanced Unpin"); --mPinCount; // Queue an Update since we may be able to read more into the // cache, if this stream's block have become evictable gMediaCache->QueueUpdate(); } int64_t MediaCacheStream::GetLength() { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); return mStreamLength; } int64_t MediaCacheStream::GetNextCachedData(int64_t aOffset) { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); return GetNextCachedDataInternal(aOffset); } int64_t MediaCacheStream::GetCachedDataEnd(int64_t aOffset) { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); return GetCachedDataEndInternal(aOffset); } bool MediaCacheStream::IsDataCachedToEndOfStream(int64_t aOffset) { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); if (mStreamLength < 0) return false; return GetCachedDataEndInternal(aOffset) >= mStreamLength; } int64_t MediaCacheStream::GetCachedDataEndInternal(int64_t aOffset) { gMediaCache->GetReentrantMonitor().AssertCurrentThreadIn(); uint32_t startBlockIndex = aOffset/BLOCK_SIZE; uint32_t blockIndex = startBlockIndex; while (blockIndex < mBlocks.Length() && mBlocks[blockIndex] != -1) { ++blockIndex; } int64_t result = blockIndex*BLOCK_SIZE; if (blockIndex == mChannelOffset/BLOCK_SIZE) { // The block containing mChannelOffset may be partially read but not // yet committed to the main cache result = mChannelOffset; } if (mStreamLength >= 0) { // The last block in the cache may only be partially valid, so limit // the cached range to the stream length result = std::min(result, mStreamLength); } return std::max(result, aOffset); } int64_t MediaCacheStream::GetNextCachedDataInternal(int64_t aOffset) { gMediaCache->GetReentrantMonitor().AssertCurrentThreadIn(); if (aOffset == mStreamLength) return -1; uint32_t startBlockIndex = aOffset/BLOCK_SIZE; uint32_t channelBlockIndex = mChannelOffset/BLOCK_SIZE; if (startBlockIndex == channelBlockIndex && aOffset < mChannelOffset) { // The block containing mChannelOffset is partially read, but not // yet committed to the main cache. aOffset lies in the partially // read portion, thus it is effectively cached. return aOffset; } if (startBlockIndex >= mBlocks.Length()) return -1; // Is the current block cached? if (mBlocks[startBlockIndex] != -1) return aOffset; // Count the number of uncached blocks bool hasPartialBlock = (mChannelOffset % BLOCK_SIZE) != 0; uint32_t blockIndex = startBlockIndex + 1; while (true) { if ((hasPartialBlock && blockIndex == channelBlockIndex) || (blockIndex < mBlocks.Length() && mBlocks[blockIndex] != -1)) { // We at the incoming channel block, which has has data in it, // or are we at a cached block. Return index of block start. return blockIndex * BLOCK_SIZE; } // No more cached blocks? if (blockIndex >= mBlocks.Length()) return -1; ++blockIndex; } NS_NOTREACHED("Should return in loop"); return -1; } void MediaCacheStream::SetReadMode(ReadMode aMode) { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); if (aMode == mCurrentMode) return; mCurrentMode = aMode; gMediaCache->QueueUpdate(); } void MediaCacheStream::SetPlaybackRate(uint32_t aBytesPerSecond) { NS_ASSERTION(aBytesPerSecond > 0, "Zero playback rate not allowed"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); if (aBytesPerSecond == mPlaybackBytesPerSecond) return; mPlaybackBytesPerSecond = aBytesPerSecond; gMediaCache->QueueUpdate(); } nsresult MediaCacheStream::Seek(int32_t aWhence, int64_t aOffset) { NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); if (mClosed) return NS_ERROR_FAILURE; int64_t oldOffset = mStreamOffset; int64_t newOffset = mStreamOffset; switch (aWhence) { case PR_SEEK_END: if (mStreamLength < 0) return NS_ERROR_FAILURE; newOffset = mStreamLength + aOffset; break; case PR_SEEK_CUR: newOffset += aOffset; break; case PR_SEEK_SET: newOffset = aOffset; break; default: NS_ERROR("Unknown whence"); return NS_ERROR_FAILURE; } if (newOffset < 0) return NS_ERROR_FAILURE; mStreamOffset = newOffset; CACHE_LOG(LogLevel::Debug, ("Stream %p Seek to %lld", this, (long long)mStreamOffset)); gMediaCache->NoteSeek(this, oldOffset); gMediaCache->QueueUpdate(); return NS_OK; } int64_t MediaCacheStream::Tell() { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); return mStreamOffset; } nsresult MediaCacheStream::Read(char* aBuffer, uint32_t aCount, uint32_t* aBytes) { NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); if (mClosed) return NS_ERROR_FAILURE; // Cache the offset in case it is changed again when we are waiting for the // monitor to be notified to avoid reading at the wrong position. auto streamOffset = mStreamOffset; uint32_t count = 0; // Read one block (or part of a block) at a time while (count < aCount) { uint32_t streamBlock = uint32_t(streamOffset/BLOCK_SIZE); uint32_t offsetInStreamBlock = uint32_t(streamOffset - streamBlock*BLOCK_SIZE); int64_t size = std::min(aCount - count, BLOCK_SIZE - offsetInStreamBlock); if (mStreamLength >= 0) { // Don't try to read beyond the end of the stream int64_t bytesRemaining = mStreamLength - streamOffset; if (bytesRemaining <= 0) { // Get out of here and return NS_OK break; } size = std::min(size, bytesRemaining); // Clamp size until 64-bit file size issues are fixed. size = std::min(size, int64_t(INT32_MAX)); } int32_t cacheBlock = streamBlock < mBlocks.Length() ? mBlocks[streamBlock] : -1; if (cacheBlock < 0) { // We don't have a complete cached block here. if (count > 0) { // Some data has been read, so return what we've got instead of // blocking or trying to find a stream with a partial block. break; } // See if the data is available in the partial cache block of any // stream reading this resource. We need to do this in case there is // another stream with this resource that has all the data to the end of // the stream but the data doesn't end on a block boundary. MediaCacheStream* streamWithPartialBlock = nullptr; MediaCache::ResourceStreamIterator iter(mResourceID); while (MediaCacheStream* stream = iter.Next()) { if (uint32_t(stream->mChannelOffset/BLOCK_SIZE) == streamBlock && streamOffset < stream->mChannelOffset) { streamWithPartialBlock = stream; break; } } if (streamWithPartialBlock) { // We can just use the data in mPartialBlockBuffer. In fact we should // use it rather than waiting for the block to fill and land in // the cache. int64_t bytes = std::min(size, streamWithPartialBlock->mChannelOffset - streamOffset); // Clamp bytes until 64-bit file size issues are fixed. bytes = std::min(bytes, int64_t(INT32_MAX)); MOZ_ASSERT(bytes >= 0 && bytes <= aCount, "Bytes out of range."); memcpy(aBuffer, reinterpret_cast(streamWithPartialBlock->mPartialBlockBuffer.get()) + offsetInStreamBlock, bytes); if (mCurrentMode == MODE_METADATA) { streamWithPartialBlock->mMetadataInPartialBlockBuffer = true; } streamOffset += bytes; count = bytes; break; } // No data has been read yet, so block mon.Wait(); if (mClosed) { // We may have successfully read some data, but let's just throw // that out. return NS_ERROR_FAILURE; } continue; } gMediaCache->NoteBlockUsage(this, cacheBlock, streamOffset, mCurrentMode, TimeStamp::Now()); int64_t offset = cacheBlock*BLOCK_SIZE + offsetInStreamBlock; int32_t bytes; MOZ_ASSERT(size >= 0 && size <= INT32_MAX, "Size out of range."); nsresult rv = gMediaCache->ReadCacheFile(offset, aBuffer + count, int32_t(size), &bytes); if (NS_FAILED(rv)) { if (count == 0) return rv; // If we did successfully read some data, may as well return it break; } streamOffset += bytes; count += bytes; } if (count > 0) { // Some data was read, so queue an update since block priorities may // have changed gMediaCache->QueueUpdate(); } CACHE_LOG(LogLevel::Debug, ("Stream %p Read at %" PRId64 " count=%d", this, streamOffset-count, count)); *aBytes = count; mStreamOffset = streamOffset; return NS_OK; } nsresult MediaCacheStream::ReadAt(int64_t aOffset, char* aBuffer, uint32_t aCount, uint32_t* aBytes) { NS_ASSERTION(!NS_IsMainThread(), "Don't call on main thread"); ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); nsresult rv = Seek(nsISeekableStream::NS_SEEK_SET, aOffset); if (NS_FAILED(rv)) return rv; return Read(aBuffer, aCount, aBytes); } nsresult MediaCacheStream::ReadFromCache(char* aBuffer, int64_t aOffset, int64_t aCount) { ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); if (mClosed) return NS_ERROR_FAILURE; // Read one block (or part of a block) at a time uint32_t count = 0; int64_t streamOffset = aOffset; while (count < aCount) { uint32_t streamBlock = uint32_t(streamOffset/BLOCK_SIZE); uint32_t offsetInStreamBlock = uint32_t(streamOffset - streamBlock*BLOCK_SIZE); int64_t size = std::min(aCount - count, BLOCK_SIZE - offsetInStreamBlock); if (mStreamLength >= 0) { // Don't try to read beyond the end of the stream int64_t bytesRemaining = mStreamLength - streamOffset; if (bytesRemaining <= 0) { return NS_ERROR_FAILURE; } size = std::min(size, bytesRemaining); // Clamp size until 64-bit file size issues are fixed. size = std::min(size, int64_t(INT32_MAX)); } int32_t bytes; uint32_t channelBlock = uint32_t(mChannelOffset/BLOCK_SIZE); int32_t cacheBlock = streamBlock < mBlocks.Length() ? mBlocks[streamBlock] : -1; if (channelBlock == streamBlock && streamOffset < mChannelOffset) { // We can just use the data in mPartialBlockBuffer. In fact we should // use it rather than waiting for the block to fill and land in // the cache. // Clamp bytes until 64-bit file size issues are fixed. int64_t toCopy = std::min(size, mChannelOffset - streamOffset); bytes = std::min(toCopy, int64_t(INT32_MAX)); MOZ_ASSERT(bytes >= 0 && bytes <= toCopy, "Bytes out of range."); memcpy(aBuffer + count, reinterpret_cast(mPartialBlockBuffer.get()) + offsetInStreamBlock, bytes); } else { if (cacheBlock < 0) { // We expect all blocks to be cached! Fail! return NS_ERROR_FAILURE; } int64_t offset = cacheBlock*BLOCK_SIZE + offsetInStreamBlock; MOZ_ASSERT(size >= 0 && size <= INT32_MAX, "Size out of range."); nsresult rv = gMediaCache->ReadCacheFile(offset, aBuffer + count, int32_t(size), &bytes); if (NS_FAILED(rv)) { return rv; } } streamOffset += bytes; count += bytes; } return NS_OK; } nsresult MediaCacheStream::Init() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (mInitialized) return NS_OK; InitMediaCache(); if (!gMediaCache) return NS_ERROR_FAILURE; gMediaCache->OpenStream(this); mInitialized = true; return NS_OK; } nsresult MediaCacheStream::InitAsClone(MediaCacheStream* aOriginal) { if (!aOriginal->IsAvailableForSharing()) return NS_ERROR_FAILURE; if (mInitialized) return NS_OK; nsresult rv = Init(); if (NS_FAILED(rv)) return rv; mResourceID = aOriginal->mResourceID; // Grab cache blocks from aOriginal as readahead blocks for our stream ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); mPrincipal = aOriginal->mPrincipal; mStreamLength = aOriginal->mStreamLength; mIsTransportSeekable = aOriginal->mIsTransportSeekable; // Cloned streams are initially suspended, since there is no channel open // initially for a clone. mCacheSuspended = true; mChannelEnded = true; if (aOriginal->mDidNotifyDataEnded) { mNotifyDataEndedStatus = aOriginal->mNotifyDataEndedStatus; mDidNotifyDataEnded = true; mClient->CacheClientNotifyDataEnded(mNotifyDataEndedStatus); } for (uint32_t i = 0; i < aOriginal->mBlocks.Length(); ++i) { int32_t cacheBlockIndex = aOriginal->mBlocks[i]; if (cacheBlockIndex < 0) continue; while (i >= mBlocks.Length()) { mBlocks.AppendElement(-1); } // Every block is a readahead block for the clone because the clone's initial // stream offset is zero gMediaCache->AddBlockOwnerAsReadahead(cacheBlockIndex, this, i); } return NS_OK; } nsresult MediaCacheStream::GetCachedRanges(MediaByteRangeSet& aRanges) { // Take the monitor, so that the cached data ranges can't grow while we're // trying to loop over them. ReentrantMonitorAutoEnter mon(gMediaCache->GetReentrantMonitor()); // We must be pinned while running this, otherwise the cached data ranges may // shrink while we're trying to loop over them. NS_ASSERTION(mPinCount > 0, "Must be pinned"); int64_t startOffset = GetNextCachedDataInternal(0); while (startOffset >= 0) { int64_t endOffset = GetCachedDataEndInternal(startOffset); NS_ASSERTION(startOffset < endOffset, "Buffered range must end after its start"); // Bytes [startOffset..endOffset] are cached. aRanges += MediaByteRange(startOffset, endOffset); startOffset = GetNextCachedDataInternal(endOffset); NS_ASSERTION(startOffset == -1 || startOffset > endOffset, "Must have advanced to start of next range, or hit end of stream"); } return NS_OK; } } // namespace mozilla