/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Matrix.h" #include "Quaternion.h" #include "Tools.h" #include #include #include #include // for FLT_EPSILON #include "mozilla/FloatingPoint.h" // for UnspecifiedNaN using namespace std; namespace { /* Force small values to zero. We do this to avoid having sin(360deg) * evaluate to a tiny but nonzero value. */ double FlushToZero(double aVal) { // XXX Is double precision really necessary here if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) { return 0.0f; } else { return aVal; } } /* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is * undefined or very large, SafeTangent returns a manageably large value * of the correct sign. */ double SafeTangent(double aTheta) { // XXX Is double precision really necessary here const double kEpsilon = 0.0001; /* tan(theta) = sin(theta)/cos(theta); problems arise when * cos(theta) is too close to zero. Limit cos(theta) to the * range [-1, -epsilon] U [epsilon, 1]. */ double sinTheta = sin(aTheta); double cosTheta = cos(aTheta); if (cosTheta >= 0 && cosTheta < kEpsilon) { cosTheta = kEpsilon; } else if (cosTheta < 0 && cosTheta >= -kEpsilon) { cosTheta = -kEpsilon; } return FlushToZero(sinTheta / cosTheta); } } // namespace namespace mozilla { namespace gfx { std::ostream& operator<<(std::ostream& aStream, const Matrix& aMatrix) { return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; " << aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31 << " " << aMatrix._32 << "; ]"; } std::ostream& operator<<(std::ostream& aStream, const Matrix4x4& aMatrix) { const Float *f = &aMatrix._11; aStream << "[ " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4; aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4; aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4; aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ]" << std::endl; return aStream; } Matrix Matrix::Rotation(Float aAngle) { Matrix newMatrix; Float s = sinf(aAngle); Float c = cosf(aAngle); newMatrix._11 = c; newMatrix._12 = s; newMatrix._21 = -s; newMatrix._22 = c; return newMatrix; } Rect Matrix::TransformBounds(const Rect &aRect) const { int i; Point quad[4]; Float min_x, max_x; Float min_y, max_y; quad[0] = *this * aRect.TopLeft(); quad[1] = *this * aRect.TopRight(); quad[2] = *this * aRect.BottomLeft(); quad[3] = *this * aRect.BottomRight(); min_x = max_x = quad[0].x; min_y = max_y = quad[0].y; for (i = 1; i < 4; i++) { if (quad[i].x < min_x) min_x = quad[i].x; if (quad[i].x > max_x) max_x = quad[i].x; if (quad[i].y < min_y) min_y = quad[i].y; if (quad[i].y > max_y) max_y = quad[i].y; } return Rect(min_x, min_y, max_x - min_x, max_y - min_y); } Matrix& Matrix::NudgeToIntegers() { NudgeToInteger(&_11); NudgeToInteger(&_12); NudgeToInteger(&_21); NudgeToInteger(&_22); NudgeToInteger(&_31); NudgeToInteger(&_32); return *this; } template RectTyped Matrix4x4::TransformBounds(const RectTyped& aRect) const { Point4DTyped verts[4]; verts[0] = *this * Point4DTyped(aRect.x, aRect.y, 0.0, 1.0); verts[1] = *this * Point4DTyped(aRect.XMost(), aRect.y, 0.0, 1.0); verts[2] = *this * Point4DTyped(aRect.XMost(), aRect.YMost(), 0.0, 1.0); verts[3] = *this * Point4DTyped(aRect.x, aRect.YMost(), 0.0, 1.0); PointTyped quad[4]; F min_x, max_x; F min_y, max_y; quad[0] = *this * aRect.TopLeft(); quad[1] = *this * aRect.TopRight(); quad[2] = *this * aRect.BottomLeft(); quad[3] = *this * aRect.BottomRight(); min_x = max_x = quad[0].x; min_y = max_y = quad[0].y; for (int i = 1; i < 4; i++) { if (quad[i].x < min_x) { min_x = quad[i].x; } if (quad[i].x > max_x) { max_x = quad[i].x; } if (quad[i].y < min_y) { min_y = quad[i].y; } if (quad[i].y > max_y) { max_y = quad[i].y; } } return RectTyped(min_x, min_y, max_x - min_x, max_y - min_y); } Point4D ComputePerspectivePlaneIntercept(const Point4D& aFirst, const Point4D& aSecond) { // This function will always return a point with a w value of 0. // The X, Y, and Z components will point towards an infinite vanishing // point. // We want to interpolate aFirst and aSecond to find the point intersecting // with the w=0 plane. // Since we know what we want the w component to be, we can rearrange the // interpolation equation and solve for t. float t = -aFirst.w / (aSecond.w - aFirst.w); // Use t to find the remainder of the components return aFirst + (aSecond - aFirst) * t; } Rect Matrix4x4::ProjectRectBounds(const Rect& aRect, const Rect &aClip) const { // This function must never return std::numeric_limits::max() or any // other arbitrary large value in place of inifinity. This often occurs when // aRect is an inversed projection matrix or when aRect is transformed to be // partly behind and in front of the camera (w=0 plane in homogenous // coordinates) - See Bug 1035611 // Some call-sites will call RoundGfxRectToAppRect which clips both the // extents and dimensions of the rect to be bounded by nscoord_MAX. // If we return a Rect that, when converted to nscoords, has a width or height // greater than nscoord_MAX, RoundGfxRectToAppRect will clip the overflow // off both the min and max end of the rect after clipping the extents of the // rect, resulting in a translation of the rect towards the infinite end. // The bounds returned by ProjectRectBounds are expected to be clipped only on // the edges beyond the bounds of the coordinate system; otherwise, the // clipped bounding box would be smaller than the correct one and result // bugs such as incorrect culling (eg. Bug 1073056) // To address this without requiring all code to work in homogenous // coordinates or interpret infinite values correctly, a specialized // clipping function is integrated into ProjectRectBounds. // Callers should pass an aClip value that represents the extents to clip // the result to, in the same coordinate system as aRect. Point4D points[4]; points[0] = ProjectPoint(aRect.TopLeft()); points[1] = ProjectPoint(aRect.TopRight()); points[2] = ProjectPoint(aRect.BottomRight()); points[3] = ProjectPoint(aRect.BottomLeft()); Float min_x = std::numeric_limits::max(); Float min_y = std::numeric_limits::max(); Float max_x = -std::numeric_limits::max(); Float max_y = -std::numeric_limits::max(); for (int i=0; i<4; i++) { // Only use points that exist above the w=0 plane if (points[i].HasPositiveWCoord()) { Point point2d = aClip.ClampPoint(points[i].As2DPoint()); min_x = std::min(point2d.x, min_x); max_x = std::max(point2d.x, max_x); min_y = std::min(point2d.y, min_y); max_y = std::max(point2d.y, max_y); } int next = (i == 3) ? 0 : i + 1; if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) { // If the line between two points crosses the w=0 plane, then interpolate // to find the point of intersection with the w=0 plane and use that // instead. Point4D intercept = ComputePerspectivePlaneIntercept(points[i], points[next]); // Since intercept.w will always be 0 here, we interpret x,y,z as a // direction towards an infinite vanishing point. if (intercept.x < 0.0f) { min_x = aClip.x; } else if (intercept.x > 0.0f) { max_x = aClip.XMost(); } if (intercept.y < 0.0f) { min_y = aClip.y; } else if (intercept.y > 0.0f) { max_y = aClip.YMost(); } } } if (max_x < min_x || max_y < min_y) { return Rect(0, 0, 0, 0); } return Rect(min_x, min_y, max_x - min_x, max_y - min_y); } template size_t Matrix4x4::TransformAndClipRect(const RectTyped& aRect, const RectTyped& aClip, PointTyped* aVerts) const { // Initialize a double-buffered array of points in homogenous space with // the input rectangle, aRect. Point4DTyped points[2][kTransformAndClipRectMaxVerts]; Point4DTyped* dstPoint = points[0]; *dstPoint++ = *this * Point4DTyped(aRect.x, aRect.y, 0, 1); *dstPoint++ = *this * Point4DTyped(aRect.XMost(), aRect.y, 0, 1); *dstPoint++ = *this * Point4DTyped(aRect.XMost(), aRect.YMost(), 0, 1); *dstPoint++ = *this * Point4DTyped(aRect.x, aRect.YMost(), 0, 1); // View frustum clipping planes are described as normals originating from // the 0,0,0,0 origin. Point4DTyped planeNormals[4]; planeNormals[0] = Point4DTyped(1.0, 0.0, 0.0, -aClip.x); planeNormals[1] = Point4DTyped(-1.0, 0.0, 0.0, aClip.XMost()); planeNormals[2] = Point4DTyped(0.0, 1.0, 0.0, -aClip.y); planeNormals[3] = Point4DTyped(0.0, -1.0, 0.0, aClip.YMost()); // Iterate through each clipping plane and clip the polygon. // In each pass, we double buffer, alternating between points[0] and // points[1]. for (int plane=0; plane < 4; plane++) { planeNormals[plane].Normalize(); Point4DTyped* srcPoint = points[plane & 1]; Point4DTyped* srcPointEnd = dstPoint; dstPoint = points[~plane & 1]; Point4DTyped* prevPoint = srcPointEnd - 1; F prevDot = planeNormals[plane].DotProduct(*prevPoint); while (srcPoint < srcPointEnd) { F nextDot = planeNormals[plane].DotProduct(*srcPoint); if ((nextDot >= 0.0) != (prevDot >= 0.0)) { // An intersection with the clipping plane has been detected. // Interpolate to find the intersecting point and emit it. F t = -prevDot / (nextDot - prevDot); *dstPoint++ = *srcPoint * t + *prevPoint * (1.0 - t); } if (nextDot >= 0.0) { // Emit any source points that are on the positive side of the // clipping plane. *dstPoint++ = *srcPoint; } prevPoint = srcPoint++; prevDot = nextDot; } } size_t dstPointCount = 0; size_t srcPointCount = dstPoint - points[0]; for (Point4DTyped* srcPoint = points[0]; srcPoint < points[0] + srcPointCount; srcPoint++) { PointTyped p; if (srcPoint->w == 0.0) { // If a point lies on the intersection of the clipping planes at // (0,0,0,0), we must avoid a division by zero w component. p = PointTyped(0.0, 0.0); } else { p = srcPoint->As2DPoint(); } // Emit only unique points if (dstPointCount == 0 || p != aVerts[dstPointCount - 1]) { aVerts[dstPointCount++] = p; } } return dstPointCount; } bool Matrix4x4::Invert() { Float det = Determinant(); if (!det) { return false; } Matrix4x4 result; result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 - _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44; result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 + _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44; result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 - _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44; result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 + _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34; result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 + _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44; result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 - _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44; result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 + _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44; result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 - _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34; result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 - _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44; result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 + _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44; result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44; result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 + _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34; result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 + _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43; result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 - _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43; result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 + _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43; result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 - _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33; result._11 /= det; result._12 /= det; result._13 /= det; result._14 /= det; result._21 /= det; result._22 /= det; result._23 /= det; result._24 /= det; result._31 /= det; result._32 /= det; result._33 /= det; result._34 /= det; result._41 /= det; result._42 /= det; result._43 /= det; result._44 /= det; *this = result; return true; } void Matrix4x4::SetNAN() { _11 = UnspecifiedNaN(); _21 = UnspecifiedNaN(); _31 = UnspecifiedNaN(); _41 = UnspecifiedNaN(); _12 = UnspecifiedNaN(); _22 = UnspecifiedNaN(); _32 = UnspecifiedNaN(); _42 = UnspecifiedNaN(); _13 = UnspecifiedNaN(); _23 = UnspecifiedNaN(); _33 = UnspecifiedNaN(); _43 = UnspecifiedNaN(); _14 = UnspecifiedNaN(); _24 = UnspecifiedNaN(); _34 = UnspecifiedNaN(); _44 = UnspecifiedNaN(); } void Matrix4x4::SetRotationFromQuaternion(const Quaternion& q) { const Float x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z; const Float xx = q.x * x2, xy = q.x * y2, xz = q.x * z2; const Float yy = q.y * y2, yz = q.y * z2, zz = q.z * z2; const Float wx = q.w * x2, wy = q.w * y2, wz = q.w * z2; _11 = 1.0f - (yy + zz); _21 = xy + wz; _31 = xz - wy; _41 = 0.0f; _12 = xy - wz; _22 = 1.0f - (xx + zz); _32 = yz + wx; _42 = 0.0f; _13 = xz + wy; _23 = yz - wx; _33 = 1.0f - (xx + yy); _43 = 0.0f; _14 = _42 = _43 = 0.0f; _44 = 1.0f; } void Matrix4x4::SkewXY(double aXSkew, double aYSkew) { // XXX Is double precision really necessary here float tanX = SafeTangent(aXSkew); float tanY = SafeTangent(aYSkew); float temp; temp = _11; _11 += tanY * _21; _21 += tanX * temp; temp = _12; _12 += tanY * _22; _22 += tanX * temp; temp = _13; _13 += tanY * _23; _23 += tanX * temp; temp = _14; _14 += tanY * _24; _24 += tanX * temp; } void Matrix4x4::RotateX(double aTheta) { // XXX Is double precision really necessary here double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _21; _21 = cosTheta * _21 + sinTheta * _31; _31 = -sinTheta * temp + cosTheta * _31; temp = _22; _22 = cosTheta * _22 + sinTheta * _32; _32 = -sinTheta * temp + cosTheta * _32; temp = _23; _23 = cosTheta * _23 + sinTheta * _33; _33 = -sinTheta * temp + cosTheta * _33; temp = _24; _24 = cosTheta * _24 + sinTheta * _34; _34 = -sinTheta * temp + cosTheta * _34; } void Matrix4x4::RotateY(double aTheta) { // XXX Is double precision really necessary here double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _11; _11 = cosTheta * _11 + -sinTheta * _31; _31 = sinTheta * temp + cosTheta * _31; temp = _12; _12 = cosTheta * _12 + -sinTheta * _32; _32 = sinTheta * temp + cosTheta * _32; temp = _13; _13 = cosTheta * _13 + -sinTheta * _33; _33 = sinTheta * temp + cosTheta * _33; temp = _14; _14 = cosTheta * _14 + -sinTheta * _34; _34 = sinTheta * temp + cosTheta * _34; } void Matrix4x4::RotateZ(double aTheta) { // XXX Is double precision really necessary here double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _11; _11 = cosTheta * _11 + sinTheta * _21; _21 = -sinTheta * temp + cosTheta * _21; temp = _12; _12 = cosTheta * _12 + sinTheta * _22; _22 = -sinTheta * temp + cosTheta * _22; temp = _13; _13 = cosTheta * _13 + sinTheta * _23; _23 = -sinTheta * temp + cosTheta * _23; temp = _14; _14 = cosTheta * _14 + sinTheta * _24; _24 = -sinTheta * temp + cosTheta * _24; } void Matrix4x4::Perspective(float aDepth) { MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!"); _31 += -1.0/aDepth * _41; _32 += -1.0/aDepth * _42; _33 += -1.0/aDepth * _43; _34 += -1.0/aDepth * _44; } Point3D Matrix4x4::GetNormalVector() const { // Define a plane in transformed space as the transformations // of 3 points on the z=0 screen plane. Point3D a = *this * Point3D(0, 0, 0); Point3D b = *this * Point3D(0, 1, 0); Point3D c = *this * Point3D(1, 0, 0); // Convert to two vectors on the surface of the plane. Point3D ab = b - a; Point3D ac = c - a; return ac.CrossProduct(ab); } template RectTyped Matrix4x4::TransformAndClipBounds(const RectTyped& aRect, const RectTyped& aClip) const { PointTyped verts[kTransformAndClipRectMaxVerts]; size_t vertCount = TransformAndClipRect(aRect, aClip, verts); F min_x = std::numeric_limits::max(); F min_y = std::numeric_limits::max(); F max_x = -std::numeric_limits::max(); F max_y = -std::numeric_limits::max(); for (size_t i=0; i < vertCount; i++) { min_x = std::min(min_x, verts[i].x); max_x = std::max(max_x, verts[i].x); min_y = std::min(min_y, verts[i].y); max_y = std::max(max_y, verts[i].y); } if (max_x < min_x || max_y < min_y) { return RectTyped(0, 0, 0, 0); } return RectTyped(min_x, min_y, max_x - min_x, max_y - min_y); } // Explicit template instantiation for float and double precision template size_t Matrix4x4::TransformAndClipRect(const Rect& aRect, const Rect& aClip, Point* aVerts) const; template size_t Matrix4x4::TransformAndClipRect(const RectDouble& aRect, const RectDouble& aClip, PointDouble* aVerts) const; template Rect Matrix4x4::TransformAndClipBounds(const Rect& aRect, const Rect& aClip) const; template RectDouble Matrix4x4::TransformAndClipBounds(const RectDouble& aRect, const RectDouble& aClip) const; template Rect Matrix4x4::TransformBounds(const Rect& aRect) const; template RectDouble Matrix4x4::TransformBounds(const RectDouble& aRect) const; } // namespace gfx } // namespace mozilla