/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef DOM_MEDIA_INTERVALS_H_ #define DOM_MEDIA_INTERVALS_H_ #include #include "mozilla/TypeTraits.h" #include "nsTArray.h" // Specialization for nsTArray CopyChooser. namespace mozilla { namespace media { template class IntervalSet; } // namespace media } // namespace mozilla template struct nsTArray_CopyChooser> { typedef nsTArray_CopyWithConstructors> Type; }; namespace mozilla { namespace media { /* Interval defines an interval between two points. Unlike a traditional interval [A,B] where A <= x <= B, the upper boundary B is exclusive: A <= x < B (e.g [A,B[ or [A,B) depending on where you're living) It provides basic interval arithmetic and fuzzy edges. The type T must provides a default constructor and +, -, <, <= and == operators. */ template class Interval { public: typedef Interval SelfType; Interval() : mStart(T()), mEnd(T()), mFuzz(T()) {} template Interval(StartArg&& aStart, EndArg&& aEnd) : mStart(std::forward(aStart)), mEnd(std::forward(aEnd)), mFuzz() { MOZ_DIAGNOSTIC_ASSERT(mStart <= mEnd, "Invalid Interval"); } template Interval(StartArg&& aStart, EndArg&& aEnd, FuzzArg&& aFuzz) : mStart(std::forward(aStart)), mEnd(std::forward(aEnd)), mFuzz(std::forward(aFuzz)) { MOZ_DIAGNOSTIC_ASSERT(mStart <= mEnd, "Invalid Interval"); } Interval(const SelfType& aOther) : mStart(aOther.mStart), mEnd(aOther.mEnd), mFuzz(aOther.mFuzz) {} Interval(SelfType&& aOther) : mStart(std::move(aOther.mStart)), mEnd(std::move(aOther.mEnd)), mFuzz(std::move(aOther.mFuzz)) {} SelfType& operator=(const SelfType& aOther) { mStart = aOther.mStart; mEnd = aOther.mEnd; mFuzz = aOther.mFuzz; return *this; } SelfType& operator=(SelfType&& aOther) { MOZ_ASSERT(&aOther != this, "self-moves are prohibited"); this->~Interval(); new (this) Interval(std::move(aOther)); return *this; } // Basic interval arithmetic operator definition. SelfType operator+(const SelfType& aOther) const { return SelfType(mStart + aOther.mStart, mEnd + aOther.mEnd, mFuzz + aOther.mFuzz); } SelfType operator+(const T& aVal) const { return SelfType(mStart + aVal, mEnd + aVal, mFuzz); } SelfType operator-(const SelfType& aOther) const { return SelfType(mStart - aOther.mEnd, mEnd - aOther.mStart, mFuzz + aOther.mFuzz); } SelfType operator-(const T& aVal) const { return SelfType(mStart - aVal, mEnd - aVal, mFuzz); } SelfType& operator+=(const SelfType& aOther) { mStart += aOther.mStart; mEnd += aOther.mEnd; mFuzz += aOther.mFuzz; return *this; } SelfType& operator+=(const T& aVal) { mStart += aVal; mEnd += aVal; return *this; } SelfType& operator-=(const SelfType& aOther) { mStart -= aOther.mStart; mEnd -= aOther.mEnd; mFuzz += aOther.mFuzz; return *this; } SelfType& operator-=(const T& aVal) { mStart -= aVal; mEnd -= aVal; return *this; } bool operator==(const SelfType& aOther) const { return mStart == aOther.mStart && mEnd == aOther.mEnd; } bool operator!=(const SelfType& aOther) const { return !(*this == aOther); } bool Contains(const T& aX) const { return mStart - mFuzz <= aX && aX < mEnd + mFuzz; } bool ContainsStrict(const T& aX) const { return mStart <= aX && aX < mEnd; } bool ContainsWithStrictEnd(const T& aX) const { return mStart - mFuzz <= aX && aX < mEnd; } bool Contains(const SelfType& aOther) const { return (mStart - mFuzz <= aOther.mStart + aOther.mFuzz) && (aOther.mEnd - aOther.mFuzz <= mEnd + mFuzz); } bool ContainsStrict(const SelfType& aOther) const { return mStart <= aOther.mStart && aOther.mEnd <= mEnd; } bool ContainsWithStrictEnd(const SelfType& aOther) const { return (mStart - mFuzz <= aOther.mStart + aOther.mFuzz) && aOther.mEnd <= mEnd; } bool Intersects(const SelfType& aOther) const { return (mStart - mFuzz < aOther.mEnd + aOther.mFuzz) && (aOther.mStart - aOther.mFuzz < mEnd + mFuzz); } bool IntersectsStrict(const SelfType& aOther) const { return mStart < aOther.mEnd && aOther.mStart < mEnd; } // Same as Intersects, but including the boundaries. bool Touches(const SelfType& aOther) const { return (mStart - mFuzz <= aOther.mEnd + aOther.mFuzz) && (aOther.mStart - aOther.mFuzz <= mEnd + mFuzz); } // Returns true if aOther is strictly to the right of this and contiguous. // This operation isn't commutative. bool Contiguous(const SelfType& aOther) const { return mEnd <= aOther.mStart && aOther.mStart - mEnd <= mFuzz + aOther.mFuzz; } bool RightOf(const SelfType& aOther) const { return aOther.mEnd - aOther.mFuzz <= mStart + mFuzz; } bool LeftOf(const SelfType& aOther) const { return mEnd - mFuzz <= aOther.mStart + aOther.mFuzz; } SelfType Span(const SelfType& aOther) const { if (IsEmpty()) { return aOther; } SelfType result(*this); if (aOther.mStart < mStart) { result.mStart = aOther.mStart; } if (mEnd < aOther.mEnd) { result.mEnd = aOther.mEnd; } if (mFuzz < aOther.mFuzz) { result.mFuzz = aOther.mFuzz; } return result; } SelfType Intersection(const SelfType& aOther) const { const T& s = std::max(mStart, aOther.mStart); const T& e = std::min(mEnd, aOther.mEnd); const T& f = std::max(mFuzz, aOther.mFuzz); if (s < e) { return SelfType(s, e, f); } // Return an empty interval. return SelfType(); } T Length() const { return mEnd - mStart; } bool IsEmpty() const { return mStart == mEnd; } void SetFuzz(const T& aFuzz) { mFuzz = aFuzz; } // Returns true if the two intervals intersect with this being on the right // of aOther bool TouchesOnRight(const SelfType& aOther) const { return aOther.mStart <= mStart && (mStart - mFuzz <= aOther.mEnd + aOther.mFuzz) && (aOther.mStart - aOther.mFuzz <= mEnd + mFuzz); } // Returns true if the two intervals intersect with this being on the right // of aOther, ignoring fuzz. bool TouchesOnRightStrict(const SelfType& aOther) const { return aOther.mStart <= mStart && mStart <= aOther.mEnd; } T mStart; T mEnd; T mFuzz; private: }; // An IntervalSet in a collection of Intervals. The IntervalSet is always // normalized. template class IntervalSet { public: typedef IntervalSet SelfType; typedef Interval ElemType; typedef AutoTArray ContainerType; typedef typename ContainerType::index_type IndexType; IntervalSet() {} virtual ~IntervalSet() {} IntervalSet(const SelfType& aOther) : mIntervals(aOther.mIntervals) {} IntervalSet(SelfType&& aOther) { mIntervals.AppendElements(std::move(aOther.mIntervals)); } explicit IntervalSet(const ElemType& aOther) { if (!aOther.IsEmpty()) { mIntervals.AppendElement(aOther); } } explicit IntervalSet(ElemType&& aOther) { if (!aOther.IsEmpty()) { mIntervals.AppendElement(std::move(aOther)); } } bool operator==(const SelfType& aOther) const { return mIntervals == aOther.mIntervals; } bool operator!=(const SelfType& aOther) const { return mIntervals != aOther.mIntervals; } SelfType& operator=(const SelfType& aOther) { mIntervals = aOther.mIntervals; return *this; } SelfType& operator=(SelfType&& aOther) { MOZ_ASSERT(&aOther != this, "self-moves are prohibited"); this->~IntervalSet(); new (this) IntervalSet(std::move(aOther)); return *this; } SelfType& operator=(const ElemType& aInterval) { mIntervals.Clear(); if (!aInterval.IsEmpty()) { mIntervals.AppendElement(aInterval); } return *this; } SelfType& operator=(ElemType&& aInterval) { mIntervals.Clear(); if (!aInterval.IsEmpty()) { mIntervals.AppendElement(std::move(aInterval)); } return *this; } SelfType& Add(const SelfType& aIntervals) { if (aIntervals.mIntervals.Length() == 1) { Add(aIntervals.mIntervals[0]); } else { mIntervals.AppendElements(aIntervals.mIntervals); Normalize(); } return *this; } SelfType& Add(const ElemType& aInterval) { if (aInterval.IsEmpty()) { return *this; } if (mIntervals.IsEmpty()) { mIntervals.AppendElement(aInterval); return *this; } ElemType& last = mIntervals.LastElement(); if (aInterval.TouchesOnRight(last)) { last = last.Span(aInterval); return *this; } // Most of our actual usage is adding an interval that will be outside the // range. We can speed up normalization here. if (aInterval.RightOf(last)) { mIntervals.AppendElement(aInterval); return *this; } ContainerType normalized; ElemType current(aInterval); IndexType i = 0; for (; i < mIntervals.Length(); i++) { ElemType& interval = mIntervals[i]; if (current.Touches(interval)) { current = current.Span(interval); } else if (current.LeftOf(interval)) { break; } else { normalized.AppendElement(std::move(interval)); } } normalized.AppendElement(std::move(current)); for (; i < mIntervals.Length(); i++) { normalized.AppendElement(std::move(mIntervals[i])); } mIntervals.Clear(); mIntervals.AppendElements(std::move(normalized)); return *this; } SelfType& operator+=(const SelfType& aIntervals) { Add(aIntervals); return *this; } SelfType& operator+=(const ElemType& aInterval) { Add(aInterval); return *this; } SelfType operator+(const SelfType& aIntervals) const { SelfType intervals(*this); intervals.Add(aIntervals); return intervals; } SelfType operator+(const ElemType& aInterval) const { SelfType intervals(*this); intervals.Add(aInterval); return intervals; } friend SelfType operator+(const ElemType& aInterval, const SelfType& aIntervals) { SelfType intervals; intervals.Add(aInterval); intervals.Add(aIntervals); return intervals; } // Excludes an interval from an IntervalSet. SelfType& operator-=(const ElemType& aInterval) { if (aInterval.IsEmpty() || mIntervals.IsEmpty()) { return *this; } if (mIntervals.Length() == 1 && mIntervals[0].TouchesOnRightStrict(aInterval)) { // Fast path when we're removing from the front of a set with a // single interval. This is common for the buffered time ranges // we see on Twitch. if (aInterval.mEnd >= mIntervals[0].mEnd) { mIntervals.RemoveElementAt(0); } else { mIntervals[0].mStart = aInterval.mEnd; mIntervals[0].mFuzz = std::max(mIntervals[0].mFuzz, aInterval.mFuzz); } return *this; } // General case performed by inverting aInterval within the bounds of // mIntervals and then doing the intersection. T firstEnd = std::max(mIntervals[0].mStart, aInterval.mStart); T secondStart = std::min(mIntervals.LastElement().mEnd, aInterval.mEnd); ElemType startInterval(mIntervals[0].mStart, firstEnd); ElemType endInterval(secondStart, mIntervals.LastElement().mEnd); SelfType intervals(std::move(startInterval)); intervals += std::move(endInterval); return Intersection(intervals); } SelfType& operator-=(const SelfType& aIntervals) { for (const auto& interval : aIntervals.mIntervals) { *this -= interval; } return *this; } SelfType operator-(const SelfType& aInterval) const { SelfType intervals(*this); intervals -= aInterval; return intervals; } SelfType operator-(const ElemType& aInterval) const { SelfType intervals(*this); intervals -= aInterval; return intervals; } // Mutate this IntervalSet to be the union of this and aOther. SelfType& Union(const SelfType& aOther) { Add(aOther); return *this; } SelfType& Union(const ElemType& aInterval) { Add(aInterval); return *this; } // Mutate this TimeRange to be the intersection of this and aOther. SelfType& Intersection(const SelfType& aOther) { ContainerType intersection; // Ensure the intersection has enough capacity to store the upper bound on // the intersection size. This ensures that we don't spend time reallocating // the storage as we append, at the expense of extra memory. intersection.SetCapacity(std::max(aOther.Length(), mIntervals.Length())); const ContainerType& other = aOther.mIntervals; IndexType i = 0, j = 0; for (; i < mIntervals.Length() && j < other.Length();) { if (mIntervals[i].IntersectsStrict(other[j])) { intersection.AppendElement(mIntervals[i].Intersection(other[j])); } if (mIntervals[i].mEnd < other[j].mEnd) { i++; } else { j++; } } mIntervals = std::move(intersection); return *this; } SelfType& Intersection(const ElemType& aInterval) { SelfType intervals(aInterval); return Intersection(intervals); } const ElemType& operator[](IndexType aIndex) const { return mIntervals[aIndex]; } // Returns the start boundary of the first interval. Or a default constructed // T if IntervalSet is empty (and aExists if provided will be set to false). T GetStart(bool* aExists = nullptr) const { bool exists = !mIntervals.IsEmpty(); if (aExists) { *aExists = exists; } if (exists) { return mIntervals[0].mStart; } else { return T(); } } // Returns the end boundary of the last interval. Or a default constructed T // if IntervalSet is empty (and aExists if provided will be set to false). T GetEnd(bool* aExists = nullptr) const { bool exists = !mIntervals.IsEmpty(); if (aExists) { *aExists = exists; } if (exists) { return mIntervals.LastElement().mEnd; } else { return T(); } } IndexType Length() const { return mIntervals.Length(); } bool IsEmpty() const { return mIntervals.IsEmpty(); } T Start(IndexType aIndex) const { return mIntervals[aIndex].mStart; } T Start(IndexType aIndex, bool& aExists) const { aExists = aIndex < mIntervals.Length(); if (aExists) { return mIntervals[aIndex].mStart; } else { return T(); } } T End(IndexType aIndex) const { return mIntervals[aIndex].mEnd; } T End(IndexType aIndex, bool& aExists) const { aExists = aIndex < mIntervals.Length(); if (aExists) { return mIntervals[aIndex].mEnd; } else { return T(); } } bool Contains(const ElemType& aInterval) const { for (const auto& interval : mIntervals) { if (interval.Contains(aInterval)) { return true; } } return false; } bool ContainsStrict(const ElemType& aInterval) const { for (const auto& interval : mIntervals) { if (interval.ContainsStrict(aInterval)) { return true; } } return false; } bool Contains(const T& aX) const { for (const auto& interval : mIntervals) { if (interval.Contains(aX)) { return true; } } return false; } bool ContainsStrict(const T& aX) const { for (const auto& interval : mIntervals) { if (interval.ContainsStrict(aX)) { return true; } } return false; } bool ContainsWithStrictEnd(const T& aX) const { for (const auto& interval : mIntervals) { if (interval.ContainsWithStrictEnd(aX)) { return true; } } return false; } bool ContainsWithStrictEnd(const ElemType& aInterval) const { for (const auto& interval : mIntervals) { if (interval.ContainsWithStrictEnd(aInterval)) { return true; } } return false; } bool Intersects(const ElemType& aInterval) const { for (const auto& interval : mIntervals) { if (interval.Intersects(aInterval)) { return true; } } return false; } bool IntersectsStrict(const ElemType& aInterval) const { for (const auto& interval : mIntervals) { if (interval.IntersectsStrict(aInterval)) { return true; } } return false; } bool IntersectsWithStrictEnd(const ElemType& aInterval) const { for (const auto& interval : mIntervals) { if (interval.IntersectsWithStrictEnd(aInterval)) { return true; } } return false; } // Shift all values by aOffset. SelfType& Shift(const T& aOffset) { for (auto& interval : mIntervals) { interval.mStart = interval.mStart + aOffset; interval.mEnd = interval.mEnd + aOffset; } return *this; } void SetFuzz(const T& aFuzz) { for (auto& interval : mIntervals) { interval.SetFuzz(aFuzz); } MergeOverlappingIntervals(); } static const IndexType NoIndex = IndexType(-1); IndexType Find(const T& aValue) const { for (IndexType i = 0; i < mIntervals.Length(); i++) { if (mIntervals[i].Contains(aValue)) { return i; } } return NoIndex; } // Methods for range-based for loops. typename ContainerType::iterator begin() { return mIntervals.begin(); } typename ContainerType::const_iterator begin() const { return mIntervals.begin(); } typename ContainerType::iterator end() { return mIntervals.end(); } typename ContainerType::const_iterator end() const { return mIntervals.end(); } ElemType& LastInterval() { MOZ_ASSERT(!mIntervals.IsEmpty()); return mIntervals.LastElement(); } const ElemType& LastInterval() const { MOZ_ASSERT(!mIntervals.IsEmpty()); return mIntervals.LastElement(); } void Clear() { mIntervals.Clear(); } protected: ContainerType mIntervals; private: void Normalize() { if (mIntervals.Length() < 2) { return; } mIntervals.Sort(CompareIntervals()); MergeOverlappingIntervals(); } void MergeOverlappingIntervals() { if (mIntervals.Length() < 2) { return; } // This merges the intervals in place. IndexType read = 0; IndexType write = 0; while (read < mIntervals.Length()) { ElemType current(mIntervals[read]); read++; while (read < mIntervals.Length() && current.Touches(mIntervals[read])) { current = current.Span(mIntervals[read]); read++; } mIntervals[write] = current; write++; } mIntervals.SetLength(write); } struct CompareIntervals { bool Equals(const ElemType& aT1, const ElemType& aT2) const { return aT1.mStart == aT2.mStart && aT1.mEnd == aT2.mEnd; } bool LessThan(const ElemType& aT1, const ElemType& aT2) const { return aT1.mStart - aT1.mFuzz < aT2.mStart + aT2.mFuzz; } }; }; // clang doesn't allow for this to be defined inline of IntervalSet. template IntervalSet Union(const IntervalSet& aIntervals1, const IntervalSet& aIntervals2) { IntervalSet intervals(aIntervals1); intervals.Union(aIntervals2); return intervals; } template IntervalSet Intersection(const IntervalSet& aIntervals1, const IntervalSet& aIntervals2) { IntervalSet intersection(aIntervals1); intersection.Intersection(aIntervals2); return intersection; } } // namespace media } // namespace mozilla #endif // DOM_MEDIA_INTERVALS_H_