/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_GFX_MATRIX_H_ #define MOZILLA_GFX_MATRIX_H_ #include "Types.h" #include "Triangle.h" #include "Rect.h" #include "Point.h" #include "Quaternion.h" #include #include #include "mozilla/Attributes.h" #include "mozilla/DebugOnly.h" #include "mozilla/FloatingPoint.h" namespace mozilla { namespace gfx { static inline bool FuzzyEqual(Float aV1, Float aV2) { // XXX - Check if fabs does the smart thing and just negates the sign bit. return fabs(aV2 - aV1) < 1e-6; } template class BaseMatrix { // Alias that maps to either Point or PointDouble depending on whether T is a // float or a double. typedef PointTyped MatrixPoint; // Same for size and rect typedef SizeTyped MatrixSize; typedef RectTyped MatrixRect; public: BaseMatrix() : _11(1.0f), _12(0), _21(0), _22(1.0f), _31(0), _32(0) {} BaseMatrix(T a11, T a12, T a21, T a22, T a31, T a32) : _11(a11), _12(a12), _21(a21), _22(a22), _31(a31), _32(a32) {} union { struct { T _11, _12; T _21, _22; T _31, _32; }; T components[6]; }; MOZ_ALWAYS_INLINE BaseMatrix Copy() const { return BaseMatrix(*this); } friend std::ostream& operator<<(std::ostream& aStream, const BaseMatrix& aMatrix) { return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; " << aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31 << " " << aMatrix._32 << "; ]"; } MatrixPoint TransformPoint(const MatrixPoint& aPoint) const { MatrixPoint retPoint; retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31; retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32; return retPoint; } MatrixSize TransformSize(const MatrixSize& aSize) const { MatrixSize retSize; retSize.width = aSize.width * _11 + aSize.height * _21; retSize.height = aSize.width * _12 + aSize.height * _22; return retSize; } /** * In most cases you probably want to use TransformBounds. This function * just transforms the top-left and size separately and constructs a rect * from those results. */ MatrixRect TransformRect(const MatrixRect& aRect) const { return MatrixRect(TransformPoint(aRect.TopLeft()), TransformSize(aRect.Size())); } GFX2D_API MatrixRect TransformBounds(const MatrixRect& aRect) const { int i; MatrixPoint quad[4]; T min_x, max_x; T min_y, max_y; quad[0] = TransformPoint(aRect.TopLeft()); quad[1] = TransformPoint(aRect.TopRight()); quad[2] = TransformPoint(aRect.BottomLeft()); quad[3] = TransformPoint(aRect.BottomRight()); min_x = max_x = quad[0].x; min_y = max_y = quad[0].y; for (i = 1; i < 4; i++) { if (quad[i].x < min_x) min_x = quad[i].x; if (quad[i].x > max_x) max_x = quad[i].x; if (quad[i].y < min_y) min_y = quad[i].y; if (quad[i].y > max_y) max_y = quad[i].y; } return MatrixRect(min_x, min_y, max_x - min_x, max_y - min_y); } static BaseMatrix Translation(T aX, T aY) { return BaseMatrix(1.0f, 0.0f, 0.0f, 1.0f, aX, aY); } static BaseMatrix Translation(MatrixPoint aPoint) { return Translation(aPoint.x, aPoint.y); } /** * Apply a translation to this matrix. * * The "Pre" in this method's name means that the translation is applied * -before- this matrix's existing transformation. That is, any vector that * is multiplied by the resulting matrix will first be translated, then be * transformed by the original transform. * * Calling this method will result in this matrix having the same value as * the result of: * * BaseMatrix::Translation(x, y) * this * * (Note that in performance critical code multiplying by the result of a * Translation()/Scaling() call is not recommended since that results in a * full matrix multiply involving 12 floating-point multiplications. Calling * this method would be preferred since it only involves four floating-point * multiplications.) */ BaseMatrix& PreTranslate(T aX, T aY) { _31 += _11 * aX + _21 * aY; _32 += _12 * aX + _22 * aY; return *this; } BaseMatrix& PreTranslate(const MatrixPoint& aPoint) { return PreTranslate(aPoint.x, aPoint.y); } /** * Similar to PreTranslate, but the translation is applied -after- this * matrix's existing transformation instead of before it. * * This method is generally less used than PreTranslate since typically code * want to adjust an existing user space to device space matrix to create a * transform to device space from a -new- user space (translated from the * previous user space). In that case consumers will need to use the Pre* * variants of the matrix methods rather than using the Post* methods, since * the Post* methods add a transform to the device space end of the * transformation. */ BaseMatrix& PostTranslate(T aX, T aY) { _31 += aX; _32 += aY; return *this; } BaseMatrix& PostTranslate(const MatrixPoint& aPoint) { return PostTranslate(aPoint.x, aPoint.y); } static BaseMatrix Scaling(T aScaleX, T aScaleY) { return BaseMatrix(aScaleX, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f); } /** * Similar to PreTranslate, but applies a scale instead of a translation. */ BaseMatrix& PreScale(T aX, T aY) { _11 *= aX; _12 *= aX; _21 *= aY; _22 *= aY; return *this; } /** * Similar to PostTranslate, but applies a scale instead of a translation. */ BaseMatrix& PostScale(T aScaleX, T aScaleY) { _11 *= aScaleX; _12 *= aScaleY; _21 *= aScaleX; _22 *= aScaleY; _31 *= aScaleX; _32 *= aScaleY; return *this; } GFX2D_API static BaseMatrix Rotation(T aAngle); /** * Similar to PreTranslate, but applies a rotation instead of a translation. */ BaseMatrix& PreRotate(T aAngle) { return *this = BaseMatrix::Rotation(aAngle) * *this; } bool Invert() { // Compute co-factors. T A = _22; T B = -_21; T C = _21 * _32 - _22 * _31; T D = -_12; T E = _11; T F = _31 * _12 - _11 * _32; T det = Determinant(); if (!det) { return false; } T inv_det = 1 / det; _11 = inv_det * A; _12 = inv_det * D; _21 = inv_det * B; _22 = inv_det * E; _31 = inv_det * C; _32 = inv_det * F; return true; } BaseMatrix Inverse() const { BaseMatrix clone = *this; DebugOnly inverted = clone.Invert(); MOZ_ASSERT(inverted, "Attempted to get the inverse of a non-invertible matrix"); return clone; } T Determinant() const { return _11 * _22 - _12 * _21; } BaseMatrix operator*(const BaseMatrix& aMatrix) const { BaseMatrix resultMatrix; resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21; resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22; resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21; resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22; resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31; resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32; return resultMatrix; } BaseMatrix& operator*=(const BaseMatrix& aMatrix) { *this = *this * aMatrix; return *this; } /** * Multiplies *this with aMatrix and returns the result. */ Matrix4x4 operator*(const Matrix4x4& aMatrix) const; /** * Multiplies in the opposite order to operator=*. */ BaseMatrix& PreMultiply(const BaseMatrix& aMatrix) { *this = aMatrix * *this; return *this; } /** * Please explicitly use either FuzzyEquals or ExactlyEquals. */ bool operator==(const BaseMatrix& other) const = delete; bool operator!=(const BaseMatrix& other) const = delete; /* Returns true if the other matrix is fuzzy-equal to this matrix. * Note that this isn't a cheap comparison! */ bool FuzzyEquals(const BaseMatrix& o) const { return FuzzyEqual(_11, o._11) && FuzzyEqual(_12, o._12) && FuzzyEqual(_21, o._21) && FuzzyEqual(_22, o._22) && FuzzyEqual(_31, o._31) && FuzzyEqual(_32, o._32); } bool ExactlyEquals(const BaseMatrix& o) const { return _11 == o._11 && _12 == o._12 && _21 == o._21 && _22 == o._22 && _31 == o._31 && _32 == o._32; } /* Verifies that the matrix contains no Infs or NaNs. */ bool IsFinite() const { return mozilla::IsFinite(_11) && mozilla::IsFinite(_12) && mozilla::IsFinite(_21) && mozilla::IsFinite(_22) && mozilla::IsFinite(_31) && mozilla::IsFinite(_32); } /* Returns true if the matrix is a rectilinear transformation (i.e. * grid-aligned rectangles are transformed to grid-aligned rectangles) */ bool IsRectilinear() const { if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) { return true; } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) { return true; } return false; } /** * Returns true if the matrix is anything other than a straight * translation by integers. */ bool HasNonIntegerTranslation() const { return HasNonTranslation() || !FuzzyEqual(_31, floor(_31 + T(0.5))) || !FuzzyEqual(_32, floor(_32 + T(0.5))); } /** * Returns true if the matrix only has an integer translation. */ bool HasOnlyIntegerTranslation() const { return !HasNonIntegerTranslation(); } /** * Returns true if the matrix has any transform other * than a straight translation. */ bool HasNonTranslation() const { return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) || !FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0); } /** * Returns true if the matrix has any transform other * than a translation or a -1 y scale (y axis flip) */ bool HasNonTranslationOrFlip() const { return !FuzzyEqual(_11, 1.0) || (!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) || !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0); } /* Returns true if the matrix is an identity matrix. */ bool IsIdentity() const { return _11 == 1.0f && _12 == 0.0f && _21 == 0.0f && _22 == 1.0f && _31 == 0.0f && _32 == 0.0f; } /* Returns true if the matrix is singular. */ bool IsSingular() const { T det = Determinant(); return !mozilla::IsFinite(det) || det == 0; } GFX2D_API BaseMatrix& NudgeToIntegers() { NudgeToInteger(&_11); NudgeToInteger(&_12); NudgeToInteger(&_21); NudgeToInteger(&_22); NudgeToInteger(&_31); NudgeToInteger(&_32); return *this; } bool IsTranslation() const { return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) && FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f); } static bool FuzzyIsInteger(T aValue) { return FuzzyEqual(aValue, floorf(aValue + 0.5f)); } bool IsIntegerTranslation() const { return IsTranslation() && FuzzyIsInteger(_31) && FuzzyIsInteger(_32); } bool IsAllIntegers() const { return FuzzyIsInteger(_11) && FuzzyIsInteger(_12) && FuzzyIsInteger(_21) && FuzzyIsInteger(_22) && FuzzyIsInteger(_31) && FuzzyIsInteger(_32); } MatrixPoint GetTranslation() const { return MatrixPoint(_31, _32); } /** * Returns true if matrix is multiple of 90 degrees rotation with flipping, * scaling and translation. */ bool PreservesAxisAlignedRectangles() const { return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0)) || (FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0))); } /** * Returns true if the matrix has any transform other * than a translation or scale; this is, if there is * rotation. */ bool HasNonAxisAlignedTransform() const { return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0); } /** * Returns true if the matrix has negative scaling (i.e. flip). */ bool HasNegativeScaling() const { return (_11 < 0.0) || (_22 < 0.0); } /** * Computes the scale factors of this matrix; that is, * the amounts each basis vector is scaled by. * The xMajor parameter indicates if the larger scale is * to be assumed to be in the X direction or not. */ MatrixSize ScaleFactors(bool xMajor) const { T det = Determinant(); if (det == 0.0) { return MatrixSize(0.0, 0.0); } MatrixSize sz = xMajor ? MatrixSize(1.0, 0.0) : MatrixSize(0.0, 1.0); sz = TransformSize(sz); T major = sqrt(sz.width * sz.width + sz.height * sz.height); T minor = 0.0; // ignore mirroring if (det < 0.0) { det = -det; } if (major) { minor = det / major; } if (xMajor) { return MatrixSize(major, minor); } return MatrixSize(minor, major); } }; typedef BaseMatrix Matrix; typedef BaseMatrix MatrixDouble; // Helper functions used by Matrix4x4Typed defined in Matrix.cpp double SafeTangent(double aTheta); double FlushToZero(double aVal); template Point4DTyped ComputePerspectivePlaneIntercept( const Point4DTyped& aFirst, const Point4DTyped& aSecond) { // This function will always return a point with a w value of 0. // The X, Y, and Z components will point towards an infinite vanishing // point. // We want to interpolate aFirst and aSecond to find the point intersecting // with the w=0 plane. // Since we know what we want the w component to be, we can rearrange the // interpolation equation and solve for t. float t = -aFirst.w / (aSecond.w - aFirst.w); // Use t to find the remainder of the components return aFirst + (aSecond - aFirst) * t; } template class Matrix4x4Typed { public: typedef PointTyped SourcePoint; typedef PointTyped TargetPoint; typedef Point3DTyped SourcePoint3D; typedef Point3DTyped TargetPoint3D; typedef Point4DTyped SourcePoint4D; typedef Point4DTyped TargetPoint4D; typedef RectTyped SourceRect; typedef RectTyped TargetRect; Matrix4x4Typed() : _11(1.0f), _12(0.0f), _13(0.0f), _14(0.0f), _21(0.0f), _22(1.0f), _23(0.0f), _24(0.0f), _31(0.0f), _32(0.0f), _33(1.0f), _34(0.0f), _41(0.0f), _42(0.0f), _43(0.0f), _44(1.0f) {} Matrix4x4Typed(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22, Float a23, Float a24, Float a31, Float a32, Float a33, Float a34, Float a41, Float a42, Float a43, Float a44) : _11(a11), _12(a12), _13(a13), _14(a14), _21(a21), _22(a22), _23(a23), _24(a24), _31(a31), _32(a32), _33(a33), _34(a34), _41(a41), _42(a42), _43(a43), _44(a44) {} explicit Matrix4x4Typed(const Float aArray[16]) { memcpy(components, aArray, sizeof(components)); } Matrix4x4Typed(const Matrix4x4Typed& aOther) { memcpy(this, &aOther, sizeof(*this)); } union { struct { Float _11, _12, _13, _14; Float _21, _22, _23, _24; Float _31, _32, _33, _34; Float _41, _42, _43, _44; }; Float components[16]; }; friend std::ostream& operator<<(std::ostream& aStream, const Matrix4x4Typed& aMatrix) { const Float* f = &aMatrix._11; aStream << "[ " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4; aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4; aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4; aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ]" << std::endl; return aStream; } Point4D& operator[](int aIndex) { MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); return *reinterpret_cast((&_11) + 4 * aIndex); } const Point4D& operator[](int aIndex) const { MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); return *reinterpret_cast((&_11) + 4 * aIndex); } /** * Returns true if the matrix is isomorphic to a 2D affine transformation. */ bool Is2D() const { if (_13 != 0.0f || _14 != 0.0f || _23 != 0.0f || _24 != 0.0f || _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f || _43 != 0.0f || _44 != 1.0f) { return false; } return true; } bool Is2D(Matrix* aMatrix) const { if (!Is2D()) { return false; } if (aMatrix) { aMatrix->_11 = _11; aMatrix->_12 = _12; aMatrix->_21 = _21; aMatrix->_22 = _22; aMatrix->_31 = _41; aMatrix->_32 = _42; } return true; } Matrix As2D() const { MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform"); return Matrix(_11, _12, _21, _22, _41, _42); } bool CanDraw2D(Matrix* aMatrix = nullptr) const { if (_14 != 0.0f || _24 != 0.0f || _44 != 1.0f) { return false; } if (aMatrix) { aMatrix->_11 = _11; aMatrix->_12 = _12; aMatrix->_21 = _21; aMatrix->_22 = _22; aMatrix->_31 = _41; aMatrix->_32 = _42; } return true; } Matrix4x4Typed& ProjectTo2D() { _31 = 0.0f; _32 = 0.0f; _13 = 0.0f; _23 = 0.0f; _33 = 1.0f; _43 = 0.0f; _34 = 0.0f; // Some matrices, such as those derived from perspective transforms, // can modify _44 from 1, while leaving the rest of the fourth column // (_14, _24) at 0. In this case, after resetting the third row and // third column above, the value of _44 functions only to scale the // coordinate transform divide by W. The matrix can be converted to // a true 2D matrix by normalizing out the scaling effect of _44 on // the remaining components ahead of time. if (_14 == 0.0f && _24 == 0.0f && _44 != 1.0f && _44 != 0.0f) { Float scale = 1.0f / _44; _11 *= scale; _12 *= scale; _21 *= scale; _22 *= scale; _41 *= scale; _42 *= scale; _44 = 1.0f; } return *this; } template Point4DTyped ProjectPoint( const PointTyped& aPoint) const { // Find a value for z that will transform to 0. // The transformed value of z is computed as: // z' = aPoint.x * _13 + aPoint.y * _23 + z * _33 + _43; // Solving for z when z' = 0 gives us: F z = -(aPoint.x * _13 + aPoint.y * _23 + _43) / _33; // Compute the transformed point return this->TransformPoint( Point4DTyped(aPoint.x, aPoint.y, z, 1)); } template RectTyped ProjectRectBounds( const RectTyped& aRect, const RectTyped& aClip) const { // This function must never return std::numeric_limits::max() or any // other arbitrary large value in place of inifinity. This often occurs // when aRect is an inversed projection matrix or when aRect is transformed // to be partly behind and in front of the camera (w=0 plane in homogenous // coordinates) - See Bug 1035611 // Some call-sites will call RoundGfxRectToAppRect which clips both the // extents and dimensions of the rect to be bounded by nscoord_MAX. // If we return a Rect that, when converted to nscoords, has a width or // height greater than nscoord_MAX, RoundGfxRectToAppRect will clip the // overflow off both the min and max end of the rect after clipping the // extents of the rect, resulting in a translation of the rect towards the // infinite end. // The bounds returned by ProjectRectBounds are expected to be clipped only // on the edges beyond the bounds of the coordinate system; otherwise, the // clipped bounding box would be smaller than the correct one and result // bugs such as incorrect culling (eg. Bug 1073056) // To address this without requiring all code to work in homogenous // coordinates or interpret infinite values correctly, a specialized // clipping function is integrated into ProjectRectBounds. // Callers should pass an aClip value that represents the extents to clip // the result to, in the same coordinate system as aRect. Point4DTyped points[4]; points[0] = ProjectPoint(aRect.TopLeft()); points[1] = ProjectPoint(aRect.TopRight()); points[2] = ProjectPoint(aRect.BottomRight()); points[3] = ProjectPoint(aRect.BottomLeft()); F min_x = std::numeric_limits::max(); F min_y = std::numeric_limits::max(); F max_x = -std::numeric_limits::max(); F max_y = -std::numeric_limits::max(); for (int i = 0; i < 4; i++) { // Only use points that exist above the w=0 plane if (points[i].HasPositiveWCoord()) { PointTyped point2d = aClip.ClampPoint(points[i].As2DPoint()); min_x = std::min(point2d.x, min_x); max_x = std::max(point2d.x, max_x); min_y = std::min(point2d.y, min_y); max_y = std::max(point2d.y, max_y); } int next = (i == 3) ? 0 : i + 1; if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) { // If the line between two points crosses the w=0 plane, then // interpolate to find the point of intersection with the w=0 plane and // use that instead. Point4DTyped intercept = ComputePerspectivePlaneIntercept(points[i], points[next]); // Since intercept.w will always be 0 here, we interpret x,y,z as a // direction towards an infinite vanishing point. if (intercept.x < 0.0f) { min_x = aClip.X(); } else if (intercept.x > 0.0f) { max_x = aClip.XMost(); } if (intercept.y < 0.0f) { min_y = aClip.Y(); } else if (intercept.y > 0.0f) { max_y = aClip.YMost(); } } } if (max_x < min_x || max_y < min_y) { return RectTyped(0, 0, 0, 0); } return RectTyped(min_x, min_y, max_x - min_x, max_y - min_y); } /** * TransformAndClipBounds transforms aRect as a bounding box, while clipping * the transformed bounds to the extents of aClip. */ template RectTyped TransformAndClipBounds( const RectTyped& aRect, const RectTyped& aClip) const { PointTyped verts[kTransformAndClipRectMaxVerts]; size_t vertCount = TransformAndClipRect(aRect, aClip, verts); F min_x = std::numeric_limits::max(); F min_y = std::numeric_limits::max(); F max_x = -std::numeric_limits::max(); F max_y = -std::numeric_limits::max(); for (size_t i = 0; i < vertCount; i++) { min_x = std::min(min_x, verts[i].x); max_x = std::max(max_x, verts[i].x); min_y = std::min(min_y, verts[i].y); max_y = std::max(max_y, verts[i].y); } if (max_x < min_x || max_y < min_y) { return RectTyped(0, 0, 0, 0); } return RectTyped(min_x, min_y, max_x - min_x, max_y - min_y); } template RectTyped TransformAndClipBounds( const TriangleTyped& aTriangle, const RectTyped& aClip) const { return TransformAndClipBounds(aTriangle.BoundingBox(), aClip); } /** * TransformAndClipRect projects a rectangle and clips against view frustum * clipping planes in homogenous space so that its projected vertices are * constrained within the 2d rectangle passed in aClip. * The resulting vertices are populated in aVerts. aVerts must be * pre-allocated to hold at least kTransformAndClipRectMaxVerts Points. * The vertex count is returned by TransformAndClipRect. It is possible to * emit fewer that 3 vertices, indicating that aRect will not be visible * within aClip. */ template size_t TransformAndClipRect(const RectTyped& aRect, const RectTyped& aClip, PointTyped* aVerts) const { // Initialize a double-buffered array of points in homogenous space with // the input rectangle, aRect. Point4DTyped points[2][kTransformAndClipRectMaxVerts]; Point4DTyped* dstPoint = points[0]; *dstPoint++ = TransformPoint( Point4DTyped(aRect.X(), aRect.Y(), 0, 1)); *dstPoint++ = TransformPoint( Point4DTyped(aRect.XMost(), aRect.Y(), 0, 1)); *dstPoint++ = TransformPoint( Point4DTyped(aRect.XMost(), aRect.YMost(), 0, 1)); *dstPoint++ = TransformPoint( Point4DTyped(aRect.X(), aRect.YMost(), 0, 1)); // View frustum clipping planes are described as normals originating from // the 0,0,0,0 origin. Point4DTyped planeNormals[4]; planeNormals[0] = Point4DTyped(1.0, 0.0, 0.0, -aClip.X()); planeNormals[1] = Point4DTyped(-1.0, 0.0, 0.0, aClip.XMost()); planeNormals[2] = Point4DTyped(0.0, 1.0, 0.0, -aClip.Y()); planeNormals[3] = Point4DTyped(0.0, -1.0, 0.0, aClip.YMost()); // Iterate through each clipping plane and clip the polygon. // In each pass, we double buffer, alternating between points[0] and // points[1]. for (int plane = 0; plane < 4; plane++) { planeNormals[plane].Normalize(); Point4DTyped* srcPoint = points[plane & 1]; Point4DTyped* srcPointEnd = dstPoint; dstPoint = points[~plane & 1]; Point4DTyped* dstPointStart = dstPoint; Point4DTyped* prevPoint = srcPointEnd - 1; F prevDot = planeNormals[plane].DotProduct(*prevPoint); while (srcPoint < srcPointEnd && ((dstPoint - dstPointStart) < kTransformAndClipRectMaxVerts)) { F nextDot = planeNormals[plane].DotProduct(*srcPoint); if ((nextDot >= 0.0) != (prevDot >= 0.0)) { // An intersection with the clipping plane has been detected. // Interpolate to find the intersecting point and emit it. F t = -prevDot / (nextDot - prevDot); *dstPoint++ = *srcPoint * t + *prevPoint * (1.0 - t); } if (nextDot >= 0.0) { // Emit any source points that are on the positive side of the // clipping plane. *dstPoint++ = *srcPoint; } prevPoint = srcPoint++; prevDot = nextDot; } if (dstPoint == dstPointStart) { break; } } size_t dstPointCount = 0; size_t srcPointCount = dstPoint - points[0]; for (Point4DTyped* srcPoint = points[0]; srcPoint < points[0] + srcPointCount; srcPoint++) { PointTyped p; if (srcPoint->w == 0.0) { // If a point lies on the intersection of the clipping planes at // (0,0,0,0), we must avoid a division by zero w component. p = PointTyped(0.0, 0.0); } else { p = srcPoint->As2DPoint(); } // Emit only unique points if (dstPointCount == 0 || p != aVerts[dstPointCount - 1]) { aVerts[dstPointCount++] = p; } } return dstPointCount; } static const int kTransformAndClipRectMaxVerts = 32; static Matrix4x4Typed From2D(const Matrix& aMatrix) { Matrix4x4Typed matrix; matrix._11 = aMatrix._11; matrix._12 = aMatrix._12; matrix._21 = aMatrix._21; matrix._22 = aMatrix._22; matrix._41 = aMatrix._31; matrix._42 = aMatrix._32; return matrix; } bool Is2DIntegerTranslation() const { return Is2D() && As2D().IsIntegerTranslation(); } TargetPoint4D TransposeTransform4D(const SourcePoint4D& aPoint) const { Float x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14; Float y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24; Float z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34; Float w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44; return TargetPoint4D(x, y, z, w); } template Point4DTyped TransformPoint( const Point4DTyped& aPoint) const { Point4DTyped retPoint; retPoint.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41; retPoint.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42; retPoint.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43; retPoint.w = aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44; return retPoint; } template Point3DTyped TransformPoint( const Point3DTyped& aPoint) const { Point3DTyped result; result.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41; result.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42; result.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43; result /= (aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44); return result; } template PointTyped TransformPoint( const PointTyped& aPoint) const { Point4DTyped temp(aPoint.x, aPoint.y, 0, 1); return TransformPoint(temp).As2DPoint(); } template GFX2D_API RectTyped TransformBounds( const RectTyped& aRect) const { PointTyped quad[4]; F min_x, max_x; F min_y, max_y; quad[0] = TransformPoint(aRect.TopLeft()); quad[1] = TransformPoint(aRect.TopRight()); quad[2] = TransformPoint(aRect.BottomLeft()); quad[3] = TransformPoint(aRect.BottomRight()); min_x = max_x = quad[0].x; min_y = max_y = quad[0].y; for (int i = 1; i < 4; i++) { if (quad[i].x < min_x) { min_x = quad[i].x; } if (quad[i].x > max_x) { max_x = quad[i].x; } if (quad[i].y < min_y) { min_y = quad[i].y; } if (quad[i].y > max_y) { max_y = quad[i].y; } } return RectTyped(min_x, min_y, max_x - min_x, max_y - min_y); } static Matrix4x4Typed Translation(Float aX, Float aY, Float aZ) { return Matrix4x4Typed(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, aX, aY, aZ, 1.0f); } static Matrix4x4Typed Translation(const TargetPoint3D& aP) { return Translation(aP.x, aP.y, aP.z); } static Matrix4x4Typed Translation(const TargetPoint& aP) { return Translation(aP.x, aP.y, 0); } /** * Apply a translation to this matrix. * * The "Pre" in this method's name means that the translation is applied * -before- this matrix's existing transformation. That is, any vector that * is multiplied by the resulting matrix will first be translated, then be * transformed by the original transform. * * Calling this method will result in this matrix having the same value as * the result of: * * Matrix4x4::Translation(x, y) * this * * (Note that in performance critical code multiplying by the result of a * Translation()/Scaling() call is not recommended since that results in a * full matrix multiply involving 64 floating-point multiplications. Calling * this method would be preferred since it only involves 12 floating-point * multiplications.) */ Matrix4x4Typed& PreTranslate(Float aX, Float aY, Float aZ) { _41 += aX * _11 + aY * _21 + aZ * _31; _42 += aX * _12 + aY * _22 + aZ * _32; _43 += aX * _13 + aY * _23 + aZ * _33; _44 += aX * _14 + aY * _24 + aZ * _34; return *this; } Matrix4x4Typed& PreTranslate(const Point3D& aPoint) { return PreTranslate(aPoint.x, aPoint.y, aPoint.z); } /** * Similar to PreTranslate, but the translation is applied -after- this * matrix's existing transformation instead of before it. * * This method is generally less used than PreTranslate since typically code * wants to adjust an existing user space to device space matrix to create a * transform to device space from a -new- user space (translated from the * previous user space). In that case consumers will need to use the Pre* * variants of the matrix methods rather than using the Post* methods, since * the Post* methods add a transform to the device space end of the * transformation. */ Matrix4x4Typed& PostTranslate(Float aX, Float aY, Float aZ) { _11 += _14 * aX; _21 += _24 * aX; _31 += _34 * aX; _41 += _44 * aX; _12 += _14 * aY; _22 += _24 * aY; _32 += _34 * aY; _42 += _44 * aY; _13 += _14 * aZ; _23 += _24 * aZ; _33 += _34 * aZ; _43 += _44 * aZ; return *this; } Matrix4x4Typed& PostTranslate(const TargetPoint3D& aPoint) { return PostTranslate(aPoint.x, aPoint.y, aPoint.z); } Matrix4x4Typed& PostTranslate(const TargetPoint& aPoint) { return PostTranslate(aPoint.x, aPoint.y, 0); } static Matrix4x4Typed Scaling(Float aScaleX, Float aScaleY, float aScaleZ) { return Matrix4x4Typed(aScaleX, 0.0f, 0.0f, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f, 0.0f, 0.0f, aScaleZ, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } /** * Similar to PreTranslate, but applies a scale instead of a translation. */ Matrix4x4Typed& PreScale(Float aX, Float aY, Float aZ) { _11 *= aX; _12 *= aX; _13 *= aX; _14 *= aX; _21 *= aY; _22 *= aY; _23 *= aY; _24 *= aY; _31 *= aZ; _32 *= aZ; _33 *= aZ; _34 *= aZ; return *this; } /** * Similar to PostTranslate, but applies a scale instead of a translation. */ Matrix4x4Typed& PostScale(Float aScaleX, Float aScaleY, Float aScaleZ) { _11 *= aScaleX; _21 *= aScaleX; _31 *= aScaleX; _41 *= aScaleX; _12 *= aScaleY; _22 *= aScaleY; _32 *= aScaleY; _42 *= aScaleY; _13 *= aScaleZ; _23 *= aScaleZ; _33 *= aScaleZ; _43 *= aScaleZ; return *this; } void SkewXY(Float aSkew) { (*this)[1] += (*this)[0] * aSkew; } void SkewXZ(Float aSkew) { (*this)[2] += (*this)[0] * aSkew; } void SkewYZ(Float aSkew) { (*this)[2] += (*this)[1] * aSkew; } Matrix4x4Typed& ChangeBasis(const Point3D& aOrigin) { return ChangeBasis(aOrigin.x, aOrigin.y, aOrigin.z); } Matrix4x4Typed& ChangeBasis(Float aX, Float aY, Float aZ) { // Translate to the origin before applying this matrix PreTranslate(-aX, -aY, -aZ); // Translate back into position after applying this matrix PostTranslate(aX, aY, aZ); return *this; } Matrix4x4Typed& Transpose() { std::swap(_12, _21); std::swap(_13, _31); std::swap(_14, _41); std::swap(_23, _32); std::swap(_24, _42); std::swap(_34, _43); return *this; } bool operator==(const Matrix4x4Typed& o) const { // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 && _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 && _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 && _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44; } bool operator!=(const Matrix4x4Typed& o) const { return !((*this) == o); } template Matrix4x4Typed operator*( const Matrix4x4Typed& aMatrix) const { Matrix4x4Typed matrix; matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 + _14 * aMatrix._41; matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 + _24 * aMatrix._41; matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 + _34 * aMatrix._41; matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 + _44 * aMatrix._41; matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 + _14 * aMatrix._42; matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 + _24 * aMatrix._42; matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 + _34 * aMatrix._42; matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 + _44 * aMatrix._42; matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 + _14 * aMatrix._43; matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 + _24 * aMatrix._43; matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 + _34 * aMatrix._43; matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 + _44 * aMatrix._43; matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 + _14 * aMatrix._44; matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 + _24 * aMatrix._44; matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 + _34 * aMatrix._44; matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 + _44 * aMatrix._44; return matrix; } Matrix4x4Typed& operator*=( const Matrix4x4Typed& aMatrix) { *this = *this * aMatrix; return *this; } /* Returns true if the matrix is an identity matrix. */ bool IsIdentity() const { return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f && _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f && _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f && _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f; } bool IsSingular() const { return Determinant() == 0.0; } Float Determinant() const { return _14 * _23 * _32 * _41 - _13 * _24 * _32 * _41 - _14 * _22 * _33 * _41 + _12 * _24 * _33 * _41 + _13 * _22 * _34 * _41 - _12 * _23 * _34 * _41 - _14 * _23 * _31 * _42 + _13 * _24 * _31 * _42 + _14 * _21 * _33 * _42 - _11 * _24 * _33 * _42 - _13 * _21 * _34 * _42 + _11 * _23 * _34 * _42 + _14 * _22 * _31 * _43 - _12 * _24 * _31 * _43 - _14 * _21 * _32 * _43 + _11 * _24 * _32 * _43 + _12 * _21 * _34 * _43 - _11 * _22 * _34 * _43 - _13 * _22 * _31 * _44 + _12 * _23 * _31 * _44 + _13 * _21 * _32 * _44 - _11 * _23 * _32 * _44 - _12 * _21 * _33 * _44 + _11 * _22 * _33 * _44; } // Invert() is not unit-correct. Prefer Inverse() where possible. bool Invert() { Float det = Determinant(); if (!det) { return false; } Matrix4x4Typed result; result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 - _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44; result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 + _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44; result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 - _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44; result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 + _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34; result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 + _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44; result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 - _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44; result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 + _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44; result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 - _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34; result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 - _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44; result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 + _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44; result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44; result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 + _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34; result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 + _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43; result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 - _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43; result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 + _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43; result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 - _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33; result._11 /= det; result._12 /= det; result._13 /= det; result._14 /= det; result._21 /= det; result._22 /= det; result._23 /= det; result._24 /= det; result._31 /= det; result._32 /= det; result._33 /= det; result._34 /= det; result._41 /= det; result._42 /= det; result._43 /= det; result._44 /= det; *this = result; return true; } Matrix4x4Typed Inverse() const { typedef Matrix4x4Typed InvertedMatrix; InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix()); DebugOnly inverted = clone.Invert(); MOZ_ASSERT(inverted, "Attempted to get the inverse of a non-invertible matrix"); return clone; } Maybe> MaybeInverse() const { typedef Matrix4x4Typed InvertedMatrix; InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix()); if (clone.Invert()) { return Some(clone); } return Nothing(); } void Normalize() { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { (*this)[i][j] /= (*this)[3][3]; } } } bool FuzzyEqual(const Matrix4x4Typed& o) const { return gfx::FuzzyEqual(_11, o._11) && gfx::FuzzyEqual(_12, o._12) && gfx::FuzzyEqual(_13, o._13) && gfx::FuzzyEqual(_14, o._14) && gfx::FuzzyEqual(_21, o._21) && gfx::FuzzyEqual(_22, o._22) && gfx::FuzzyEqual(_23, o._23) && gfx::FuzzyEqual(_24, o._24) && gfx::FuzzyEqual(_31, o._31) && gfx::FuzzyEqual(_32, o._32) && gfx::FuzzyEqual(_33, o._33) && gfx::FuzzyEqual(_34, o._34) && gfx::FuzzyEqual(_41, o._41) && gfx::FuzzyEqual(_42, o._42) && gfx::FuzzyEqual(_43, o._43) && gfx::FuzzyEqual(_44, o._44); } bool FuzzyEqualsMultiplicative(const Matrix4x4Typed& o) const { return ::mozilla::FuzzyEqualsMultiplicative(_11, o._11) && ::mozilla::FuzzyEqualsMultiplicative(_12, o._12) && ::mozilla::FuzzyEqualsMultiplicative(_13, o._13) && ::mozilla::FuzzyEqualsMultiplicative(_14, o._14) && ::mozilla::FuzzyEqualsMultiplicative(_21, o._21) && ::mozilla::FuzzyEqualsMultiplicative(_22, o._22) && ::mozilla::FuzzyEqualsMultiplicative(_23, o._23) && ::mozilla::FuzzyEqualsMultiplicative(_24, o._24) && ::mozilla::FuzzyEqualsMultiplicative(_31, o._31) && ::mozilla::FuzzyEqualsMultiplicative(_32, o._32) && ::mozilla::FuzzyEqualsMultiplicative(_33, o._33) && ::mozilla::FuzzyEqualsMultiplicative(_34, o._34) && ::mozilla::FuzzyEqualsMultiplicative(_41, o._41) && ::mozilla::FuzzyEqualsMultiplicative(_42, o._42) && ::mozilla::FuzzyEqualsMultiplicative(_43, o._43) && ::mozilla::FuzzyEqualsMultiplicative(_44, o._44); } bool IsBackfaceVisible() const { // Inverse()._33 < 0; Float det = Determinant(); Float __33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44; return (__33 * det) < 0; } Matrix4x4Typed& NudgeToIntegersFixedEpsilon() { NudgeToInteger(&_11); NudgeToInteger(&_12); NudgeToInteger(&_13); NudgeToInteger(&_14); NudgeToInteger(&_21); NudgeToInteger(&_22); NudgeToInteger(&_23); NudgeToInteger(&_24); NudgeToInteger(&_31); NudgeToInteger(&_32); NudgeToInteger(&_33); NudgeToInteger(&_34); static const float error = 1e-5f; NudgeToInteger(&_41, error); NudgeToInteger(&_42, error); NudgeToInteger(&_43, error); NudgeToInteger(&_44, error); return *this; } Point4D TransposedVector(int aIndex) const { MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); return Point4D(*((&_11) + aIndex), *((&_21) + aIndex), *((&_31) + aIndex), *((&_41) + aIndex)); } void SetTransposedVector(int aIndex, Point4D& aVector) { MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); *((&_11) + aIndex) = aVector.x; *((&_21) + aIndex) = aVector.y; *((&_31) + aIndex) = aVector.z; *((&_41) + aIndex) = aVector.w; } bool Decompose(Point3D& translation, Quaternion& rotation, Point3D& scale) const { // Ensure matrix can be normalized if (gfx::FuzzyEqual(_44, 0.0f)) { return false; } Matrix4x4Typed mat = *this; mat.Normalize(); if (HasPerspectiveComponent()) { // We do not support projection matrices return false; } // Extract translation translation.x = mat._41; translation.y = mat._42; translation.z = mat._43; // Remove translation mat._41 = 0.0f; mat._42 = 0.0f; mat._43 = 0.0f; // Extract scale scale.x = sqrtf(_11 * _11 + _21 * _21 + _31 * _31); scale.y = sqrtf(_12 * _12 + _22 * _22 + _32 * _32); scale.z = sqrtf(_13 * _13 + _23 * _23 + _33 * _33); // Remove scale if (gfx::FuzzyEqual(scale.x, 0.0f) || gfx::FuzzyEqual(scale.y, 0.0f) || gfx::FuzzyEqual(scale.z, 0.0f)) { // We do not support matrices with a zero scale component return false; } Float invXS = 1.0f / scale.x; Float invYS = 1.0f / scale.y; Float invZS = 1.0f / scale.z; mat._11 *= invXS; mat._21 *= invXS; mat._31 *= invXS; mat._12 *= invYS; mat._22 *= invYS; mat._32 *= invYS; mat._13 *= invZS; mat._23 *= invZS; mat._33 *= invZS; // Extract rotation rotation.SetFromRotationMatrix(mat); return true; } // Sets this matrix to a rotation matrix given by aQuat. // This quaternion *MUST* be normalized! // Implemented in Quaternion.cpp void SetRotationFromQuaternion(const Quaternion& q) { const Float x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z; const Float xx = q.x * x2, xy = q.x * y2, xz = q.x * z2; const Float yy = q.y * y2, yz = q.y * z2, zz = q.z * z2; const Float wx = q.w * x2, wy = q.w * y2, wz = q.w * z2; _11 = 1.0f - (yy + zz); _21 = xy + wz; _31 = xz - wy; _41 = 0.0f; _12 = xy - wz; _22 = 1.0f - (xx + zz); _32 = yz + wx; _42 = 0.0f; _13 = xz + wy; _23 = yz - wx; _33 = 1.0f - (xx + yy); _43 = 0.0f; _14 = _42 = _43 = 0.0f; _44 = 1.0f; } // Set all the members of the matrix to NaN void SetNAN() { _11 = UnspecifiedNaN(); _21 = UnspecifiedNaN(); _31 = UnspecifiedNaN(); _41 = UnspecifiedNaN(); _12 = UnspecifiedNaN(); _22 = UnspecifiedNaN(); _32 = UnspecifiedNaN(); _42 = UnspecifiedNaN(); _13 = UnspecifiedNaN(); _23 = UnspecifiedNaN(); _33 = UnspecifiedNaN(); _43 = UnspecifiedNaN(); _14 = UnspecifiedNaN(); _24 = UnspecifiedNaN(); _34 = UnspecifiedNaN(); _44 = UnspecifiedNaN(); } void SkewXY(double aXSkew, double aYSkew) { // XXX Is double precision really necessary here float tanX = SafeTangent(aXSkew); float tanY = SafeTangent(aYSkew); float temp; temp = _11; _11 += tanY * _21; _21 += tanX * temp; temp = _12; _12 += tanY * _22; _22 += tanX * temp; temp = _13; _13 += tanY * _23; _23 += tanX * temp; temp = _14; _14 += tanY * _24; _24 += tanX * temp; } void RotateX(double aTheta) { // XXX Is double precision really necessary here double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _21; _21 = cosTheta * _21 + sinTheta * _31; _31 = -sinTheta * temp + cosTheta * _31; temp = _22; _22 = cosTheta * _22 + sinTheta * _32; _32 = -sinTheta * temp + cosTheta * _32; temp = _23; _23 = cosTheta * _23 + sinTheta * _33; _33 = -sinTheta * temp + cosTheta * _33; temp = _24; _24 = cosTheta * _24 + sinTheta * _34; _34 = -sinTheta * temp + cosTheta * _34; } void RotateY(double aTheta) { // XXX Is double precision really necessary here double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _11; _11 = cosTheta * _11 + -sinTheta * _31; _31 = sinTheta * temp + cosTheta * _31; temp = _12; _12 = cosTheta * _12 + -sinTheta * _32; _32 = sinTheta * temp + cosTheta * _32; temp = _13; _13 = cosTheta * _13 + -sinTheta * _33; _33 = sinTheta * temp + cosTheta * _33; temp = _14; _14 = cosTheta * _14 + -sinTheta * _34; _34 = sinTheta * temp + cosTheta * _34; } void RotateZ(double aTheta) { // XXX Is double precision really necessary here double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); float temp; temp = _11; _11 = cosTheta * _11 + sinTheta * _21; _21 = -sinTheta * temp + cosTheta * _21; temp = _12; _12 = cosTheta * _12 + sinTheta * _22; _22 = -sinTheta * temp + cosTheta * _22; temp = _13; _13 = cosTheta * _13 + sinTheta * _23; _23 = -sinTheta * temp + cosTheta * _23; temp = _14; _14 = cosTheta * _14 + sinTheta * _24; _24 = -sinTheta * temp + cosTheta * _24; } // Sets this matrix to a rotation matrix about a // vector [x,y,z] by angle theta. The vector is normalized // to a unit vector. // https://drafts.csswg.org/css-transforms-2/#Rotate3dDefined void SetRotateAxisAngle(double aX, double aY, double aZ, double aTheta) { Point3D vector(aX, aY, aZ); if (!vector.Length()) { return; } vector.RobustNormalize(); double x = vector.x; double y = vector.y; double z = vector.z; double cosTheta = FlushToZero(cos(aTheta)); double sinTheta = FlushToZero(sin(aTheta)); // sin(aTheta / 2) * cos(aTheta / 2) double sc = sinTheta / 2; // pow(sin(aTheta / 2), 2) double sq = (1 - cosTheta) / 2; _11 = 1 - 2 * (y * y + z * z) * sq; _12 = 2 * (x * y * sq + z * sc); _13 = 2 * (x * z * sq - y * sc); _14 = 0.0f; _21 = 2 * (x * y * sq - z * sc); _22 = 1 - 2 * (x * x + z * z) * sq; _23 = 2 * (y * z * sq + x * sc); _24 = 0.0f; _31 = 2 * (x * z * sq + y * sc); _32 = 2 * (y * z * sq - x * sc); _33 = 1 - 2 * (x * x + y * y) * sq; _34 = 0.0f; _41 = 0.0f; _42 = 0.0f; _43 = 0.0f; _44 = 1.0f; } void Perspective(float aDepth) { MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!"); _31 += -1.0 / aDepth * _41; _32 += -1.0 / aDepth * _42; _33 += -1.0 / aDepth * _43; _34 += -1.0 / aDepth * _44; } Point3D GetNormalVector() const { // Define a plane in transformed space as the transformations // of 3 points on the z=0 screen plane. Point3D a = TransformPoint(Point3D(0, 0, 0)); Point3D b = TransformPoint(Point3D(0, 1, 0)); Point3D c = TransformPoint(Point3D(1, 0, 0)); // Convert to two vectors on the surface of the plane. Point3D ab = b - a; Point3D ac = c - a; return ac.CrossProduct(ab); } /** * Returns true if the matrix has any transform other * than a straight translation. */ bool HasNonTranslation() const { return !gfx::FuzzyEqual(_11, 1.0) || !gfx::FuzzyEqual(_22, 1.0) || !gfx::FuzzyEqual(_12, 0.0) || !gfx::FuzzyEqual(_21, 0.0) || !gfx::FuzzyEqual(_13, 0.0) || !gfx::FuzzyEqual(_23, 0.0) || !gfx::FuzzyEqual(_31, 0.0) || !gfx::FuzzyEqual(_32, 0.0) || !gfx::FuzzyEqual(_33, 1.0); } /** * Returns true if the matrix is anything other than a straight * translation by integers. */ bool HasNonIntegerTranslation() const { return HasNonTranslation() || !gfx::FuzzyEqual(_41, floor(_41 + 0.5)) || !gfx::FuzzyEqual(_42, floor(_42 + 0.5)) || !gfx::FuzzyEqual(_43, floor(_43 + 0.5)); } /** * Return true if the matrix is with perspective (w). */ bool HasPerspectiveComponent() const { return _14 != 0 || _24 != 0 || _34 != 0 || _44 != 1; } /* Returns true if the matrix is a rectilinear transformation (i.e. * grid-aligned rectangles are transformed to grid-aligned rectangles). * This should only be called on 2D matrices. */ bool IsRectilinear() const { MOZ_ASSERT(Is2D()); if (gfx::FuzzyEqual(_12, 0) && gfx::FuzzyEqual(_21, 0)) { return true; } else if (gfx::FuzzyEqual(_22, 0) && gfx::FuzzyEqual(_11, 0)) { return true; } return false; } /** * Convert between typed and untyped matrices. */ Matrix4x4 ToUnknownMatrix() const { return Matrix4x4{_11, _12, _13, _14, _21, _22, _23, _24, _31, _32, _33, _34, _41, _42, _43, _44}; } static Matrix4x4Typed FromUnknownMatrix(const Matrix4x4& aUnknown) { return Matrix4x4Typed{ aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14, aUnknown._21, aUnknown._22, aUnknown._23, aUnknown._24, aUnknown._31, aUnknown._32, aUnknown._33, aUnknown._34, aUnknown._41, aUnknown._42, aUnknown._43, aUnknown._44}; } }; typedef Matrix4x4Typed Matrix4x4; class Matrix5x4 { public: Matrix5x4() : _11(1.0f), _12(0), _13(0), _14(0), _21(0), _22(1.0f), _23(0), _24(0), _31(0), _32(0), _33(1.0f), _34(0), _41(0), _42(0), _43(0), _44(1.0f), _51(0), _52(0), _53(0), _54(0) {} Matrix5x4(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22, Float a23, Float a24, Float a31, Float a32, Float a33, Float a34, Float a41, Float a42, Float a43, Float a44, Float a51, Float a52, Float a53, Float a54) : _11(a11), _12(a12), _13(a13), _14(a14), _21(a21), _22(a22), _23(a23), _24(a24), _31(a31), _32(a32), _33(a33), _34(a34), _41(a41), _42(a42), _43(a43), _44(a44), _51(a51), _52(a52), _53(a53), _54(a54) {} bool operator==(const Matrix5x4& o) const { return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 && _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 && _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 && _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44 && _51 == o._51 && _52 == o._52 && _53 == o._53 && _54 == o._54; } bool operator!=(const Matrix5x4& aMatrix) const { return !(*this == aMatrix); } Matrix5x4 operator*(const Matrix5x4& aMatrix) const { Matrix5x4 resultMatrix; resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21 + this->_13 * aMatrix._31 + this->_14 * aMatrix._41; resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22 + this->_13 * aMatrix._32 + this->_14 * aMatrix._42; resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23 + this->_13 * aMatrix._33 + this->_14 * aMatrix._43; resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24 + this->_13 * aMatrix._34 + this->_14 * aMatrix._44; resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21 + this->_23 * aMatrix._31 + this->_24 * aMatrix._41; resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22 + this->_23 * aMatrix._32 + this->_24 * aMatrix._42; resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23 + this->_23 * aMatrix._33 + this->_24 * aMatrix._43; resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24 + this->_23 * aMatrix._34 + this->_24 * aMatrix._44; resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + this->_33 * aMatrix._31 + this->_34 * aMatrix._41; resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + this->_33 * aMatrix._32 + this->_34 * aMatrix._42; resultMatrix._33 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 + this->_33 * aMatrix._33 + this->_34 * aMatrix._43; resultMatrix._34 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 + this->_33 * aMatrix._34 + this->_34 * aMatrix._44; resultMatrix._41 = this->_41 * aMatrix._11 + this->_42 * aMatrix._21 + this->_43 * aMatrix._31 + this->_44 * aMatrix._41; resultMatrix._42 = this->_41 * aMatrix._12 + this->_42 * aMatrix._22 + this->_43 * aMatrix._32 + this->_44 * aMatrix._42; resultMatrix._43 = this->_41 * aMatrix._13 + this->_42 * aMatrix._23 + this->_43 * aMatrix._33 + this->_44 * aMatrix._43; resultMatrix._44 = this->_41 * aMatrix._14 + this->_42 * aMatrix._24 + this->_43 * aMatrix._34 + this->_44 * aMatrix._44; resultMatrix._51 = this->_51 * aMatrix._11 + this->_52 * aMatrix._21 + this->_53 * aMatrix._31 + this->_54 * aMatrix._41 + aMatrix._51; resultMatrix._52 = this->_51 * aMatrix._12 + this->_52 * aMatrix._22 + this->_53 * aMatrix._32 + this->_54 * aMatrix._42 + aMatrix._52; resultMatrix._53 = this->_51 * aMatrix._13 + this->_52 * aMatrix._23 + this->_53 * aMatrix._33 + this->_54 * aMatrix._43 + aMatrix._53; resultMatrix._54 = this->_51 * aMatrix._14 + this->_52 * aMatrix._24 + this->_53 * aMatrix._34 + this->_54 * aMatrix._44 + aMatrix._54; return resultMatrix; } Matrix5x4& operator*=(const Matrix5x4& aMatrix) { *this = *this * aMatrix; return *this; } union { struct { Float _11, _12, _13, _14; Float _21, _22, _23, _24; Float _31, _32, _33, _34; Float _41, _42, _43, _44; Float _51, _52, _53, _54; }; Float components[20]; }; }; /* This Matrix class will carry one additional type field in order to * track what type of 4x4 matrix we're dealing with, it can then execute * simplified versions of certain operations when applicable. * This does not allow access to the parent class directly, as a caller * could then mutate the parent class without updating the type. */ template class Matrix4x4TypedFlagged : protected Matrix4x4Typed { public: using Parent = Matrix4x4Typed; using TargetPoint = PointTyped; using Parent::_11; using Parent::_12; using Parent::_13; using Parent::_14; using Parent::_21; using Parent::_22; using Parent::_23; using Parent::_24; using Parent::_31; using Parent::_32; using Parent::_33; using Parent::_34; using Parent::_41; using Parent::_42; using Parent::_43; using Parent::_44; Matrix4x4TypedFlagged() : mType(MatrixType::Identity) {} Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22, Float a23, Float a24, Float a31, Float a32, Float a33, Float a34, Float a41, Float a42, Float a43, Float a44) : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41, a42, a43, a44) { Analyze(); } MOZ_IMPLICIT Matrix4x4TypedFlagged(const Parent& aOther) : Parent(aOther) { Analyze(); } template PointTyped TransformPoint( const PointTyped& aPoint) const { if (mType == MatrixType::Identity) { return aPoint; } if (mType == MatrixType::Simple) { return TransformPointSimple(aPoint); } return Parent::TransformPoint(aPoint); } template RectTyped TransformAndClipBounds( const RectTyped& aRect, const RectTyped& aClip) const { if (mType == MatrixType::Identity) { const RectTyped& clipped = aRect.Intersect(aClip); return RectTyped(clipped.X(), clipped.Y(), clipped.Width(), clipped.Height()); } if (mType == MatrixType::Simple) { PointTyped p1 = TransformPointSimple(aRect.TopLeft()); PointTyped p2 = TransformPointSimple(aRect.TopRight()); PointTyped p3 = TransformPointSimple(aRect.BottomLeft()); PointTyped p4 = TransformPointSimple(aRect.BottomRight()); F min_x = std::min(std::min(std::min(p1.x, p2.x), p3.x), p4.x); F max_x = std::max(std::max(std::max(p1.x, p2.x), p3.x), p4.x); F min_y = std::min(std::min(std::min(p1.y, p2.y), p3.y), p4.y); F max_y = std::max(std::max(std::max(p1.y, p2.y), p3.y), p4.y); TargetPoint topLeft(std::max(min_x, aClip.x), std::max(min_y, aClip.y)); F xMost = std::min(max_x, aClip.XMost()) - topLeft.x; F yMost = std::min(max_y, aClip.YMost()) - topLeft.y; return RectTyped(topLeft.x, topLeft.y, xMost, yMost); } return Parent::TransformAndClipBounds(aRect, aClip); } bool FuzzyEqual(const Parent& o) const { return Parent::FuzzyEqual(o); } bool FuzzyEqual(const Matrix4x4TypedFlagged& o) const { if (mType == MatrixType::Identity && o.mType == MatrixType::Identity) { return true; } return Parent::FuzzyEqual(o); } Matrix4x4TypedFlagged& PreTranslate(Float aX, Float aY, Float aZ) { if (mType == MatrixType::Identity) { _41 = aX; _42 = aY; _43 = aZ; if (!aZ) { mType = MatrixType::Simple; return *this; } mType = MatrixType::Full; return *this; } Parent::PreTranslate(aX, aY, aZ); if (aZ != 0) { mType = MatrixType::Full; } return *this; } Matrix4x4TypedFlagged& PostTranslate(Float aX, Float aY, Float aZ) { if (mType == MatrixType::Identity) { _41 = aX; _42 = aY; _43 = aZ; if (!aZ) { mType = MatrixType::Simple; return *this; } mType = MatrixType::Full; return *this; } Parent::PostTranslate(aX, aY, aZ); if (aZ != 0) { mType = MatrixType::Full; } return *this; } Matrix4x4TypedFlagged& ChangeBasis(Float aX, Float aY, Float aZ) { // Translate to the origin before applying this matrix PreTranslate(-aX, -aY, -aZ); // Translate back into position after applying this matrix PostTranslate(aX, aY, aZ); return *this; } bool IsIdentity() const { return mType == MatrixType::Identity; } template Point4DTyped ProjectPoint( const PointTyped& aPoint) const { if (mType == MatrixType::Identity) { return Point4DTyped(aPoint.x, aPoint.y, 0, 1); } if (mType == MatrixType::Simple) { TargetPoint point = TransformPointSimple(aPoint); return Point4DTyped(point.x, point.y, 0, 1); } return Parent::ProjectPoint(aPoint); } Matrix4x4TypedFlagged& ProjectTo2D() { if (mType == MatrixType::Full) { Parent::ProjectTo2D(); } return *this; } bool IsSingular() const { if (mType == MatrixType::Identity) { return false; } return Parent::Determinant() == 0.0; } bool Invert() { if (mType == MatrixType::Identity) { return true; } return Parent::Invert(); } Matrix4x4TypedFlagged Inverse() const { typedef Matrix4x4TypedFlagged InvertedMatrix; InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix()); if (mType == MatrixType::Identity) { return clone; } DebugOnly inverted = clone.Invert(); MOZ_ASSERT(inverted, "Attempted to get the inverse of a non-invertible matrix"); // Inverting a 2D Matrix should result in a 2D matrix, ergo mType doesn't // change. return clone; } template bool operator==( const Matrix4x4TypedFlagged& aMatrix) const { if (mType == MatrixType::Identity && aMatrix.mType == MatrixType::Identity) { return true; } // Depending on the usage it may make sense to compare more flags. return Parent::operator==(aMatrix); } template bool operator!=( const Matrix4x4TypedFlagged& aMatrix) const { if (mType == MatrixType::Identity && aMatrix.mType == MatrixType::Identity) { return false; } // Depending on the usage it may make sense to compare more flags. return Parent::operator!=(aMatrix); } template Matrix4x4TypedFlagged operator*( const Matrix4x4Typed& aMatrix) const { if (mType == MatrixType::Identity) { return aMatrix; } if (mType == MatrixType::Simple) { Matrix4x4TypedFlagged matrix; matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; matrix._31 = aMatrix._31; matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21; matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; matrix._32 = aMatrix._32; matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22; matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23; matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23; matrix._33 = aMatrix._33; matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23; matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24; matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24; matrix._34 = aMatrix._34; matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24; matrix.Analyze(); return matrix; } return Parent::operator*(aMatrix); } template Matrix4x4TypedFlagged operator*( const Matrix4x4TypedFlagged& aMatrix) const { if (mType == MatrixType::Identity) { return aMatrix; } if (aMatrix.mType == MatrixType::Identity) { return Matrix4x4TypedFlagged:: FromUnknownMatrix(this->ToUnknownMatrix()); } if (mType == MatrixType::Simple && aMatrix.mType == MatrixType::Simple) { Matrix4x4TypedFlagged matrix; matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41; matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42; matrix.mType = MatrixType::Simple; return matrix; } else if (mType == MatrixType::Simple) { Matrix4x4TypedFlagged matrix; matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; matrix._31 = aMatrix._31; matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41; matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; matrix._32 = aMatrix._32; matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42; matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23; matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23; matrix._33 = aMatrix._33; matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43; matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24; matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24; matrix._34 = aMatrix._34; matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44; matrix.mType = MatrixType::Full; return matrix; } else if (aMatrix.mType == MatrixType::Simple) { Matrix4x4TypedFlagged matrix; matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _14 * aMatrix._41; matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _24 * aMatrix._41; matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _34 * aMatrix._41; matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _44 * aMatrix._41; matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _14 * aMatrix._42; matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _24 * aMatrix._42; matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _34 * aMatrix._42; matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _44 * aMatrix._42; matrix._13 = _13; matrix._23 = _23; matrix._33 = _33; matrix._43 = _43; matrix._14 = _14; matrix._24 = _24; matrix._34 = _34; matrix._44 = _44; matrix.mType = MatrixType::Full; return matrix; } return Parent::operator*(aMatrix); } bool Is2D() const { return mType != MatrixType::Full; } bool CanDraw2D(Matrix* aMatrix = nullptr) const { if (mType != MatrixType::Full) { if (aMatrix) { aMatrix->_11 = _11; aMatrix->_12 = _12; aMatrix->_21 = _21; aMatrix->_22 = _22; aMatrix->_31 = _41; aMatrix->_32 = _42; } return true; } return Parent::CanDraw2D(aMatrix); } bool Is2D(Matrix* aMatrix) const { if (!Is2D()) { return false; } if (aMatrix) { aMatrix->_11 = _11; aMatrix->_12 = _12; aMatrix->_21 = _21; aMatrix->_22 = _22; aMatrix->_31 = _41; aMatrix->_32 = _42; } return true; } template RectTyped ProjectRectBounds( const RectTyped& aRect, const RectTyped& aClip) const { return Parent::ProjectRectBounds(aRect, aClip); } const Parent& GetMatrix() const { return *this; } private: enum class MatrixType : uint8_t { Identity, Simple, // 2x3 Matrix Full // 4x4 Matrix }; Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22, Float a23, Float a24, Float a31, Float a32, Float a33, Float a34, Float a41, Float a42, Float a43, Float a44, typename Matrix4x4TypedFlagged::MatrixType aType) : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41, a42, a43, a44) { mType = aType; } static Matrix4x4TypedFlagged FromUnknownMatrix( const Matrix4x4Flagged& aUnknown) { return Matrix4x4TypedFlagged{ aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14, aUnknown._21, aUnknown._22, aUnknown._23, aUnknown._24, aUnknown._31, aUnknown._32, aUnknown._33, aUnknown._34, aUnknown._41, aUnknown._42, aUnknown._43, aUnknown._44, aUnknown.mType}; } Matrix4x4Flagged ToUnknownMatrix() const { return Matrix4x4Flagged{_11, _12, _13, _14, _21, _22, _23, _24, _31, _32, _33, _34, _41, _42, _43, _44, mType}; } template PointTyped TransformPointSimple( const PointTyped& aPoint) const { PointTyped temp; temp.x = aPoint.x * _11 + aPoint.y * +_21 + _41; temp.y = aPoint.x * _12 + aPoint.y * +_22 + _42; return temp; } void Analyze() { if (Parent::IsIdentity()) { mType = MatrixType::Identity; return; } if (Parent::Is2D()) { mType = MatrixType::Simple; return; } mType = MatrixType::Full; } MatrixType mType; }; using Matrix4x4Flagged = Matrix4x4TypedFlagged; } // namespace gfx } // namespace mozilla #endif /* MOZILLA_GFX_MATRIX_H_ */