/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "FilterNodeD2D1.h" #include "Logging.h" #include "SourceSurfaceD2D1.h" #include "DrawTargetD2D1.h" #include "ExtendInputEffectD2D1.h" namespace mozilla { namespace gfx { D2D1_COLORMATRIX_ALPHA_MODE D2DAlphaMode(uint32_t aMode) { switch (aMode) { case ALPHA_MODE_PREMULTIPLIED: return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED; case ALPHA_MODE_STRAIGHT: return D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT; default: MOZ_CRASH("GFX: Unknown enum value D2DAlphaMode!"); } return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED; } D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE D2DAffineTransformInterpolationMode(SamplingFilter aSamplingFilter) { switch (aSamplingFilter) { case SamplingFilter::GOOD: return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR; case SamplingFilter::LINEAR: return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR; case SamplingFilter::POINT: return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_NEAREST_NEIGHBOR; default: MOZ_CRASH("GFX: Unknown enum value D2DAffineTIM!"); } return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR; } D2D1_BLEND_MODE D2DBlendMode(uint32_t aMode) { switch (aMode) { case BLEND_MODE_DARKEN: return D2D1_BLEND_MODE_DARKEN; case BLEND_MODE_LIGHTEN: return D2D1_BLEND_MODE_LIGHTEN; case BLEND_MODE_MULTIPLY: return D2D1_BLEND_MODE_MULTIPLY; case BLEND_MODE_SCREEN: return D2D1_BLEND_MODE_SCREEN; case BLEND_MODE_OVERLAY: return D2D1_BLEND_MODE_OVERLAY; case BLEND_MODE_COLOR_DODGE: return D2D1_BLEND_MODE_COLOR_DODGE; case BLEND_MODE_COLOR_BURN: return D2D1_BLEND_MODE_COLOR_BURN; case BLEND_MODE_HARD_LIGHT: return D2D1_BLEND_MODE_HARD_LIGHT; case BLEND_MODE_SOFT_LIGHT: return D2D1_BLEND_MODE_SOFT_LIGHT; case BLEND_MODE_DIFFERENCE: return D2D1_BLEND_MODE_DIFFERENCE; case BLEND_MODE_EXCLUSION: return D2D1_BLEND_MODE_EXCLUSION; case BLEND_MODE_HUE: return D2D1_BLEND_MODE_HUE; case BLEND_MODE_SATURATION: return D2D1_BLEND_MODE_SATURATION; case BLEND_MODE_COLOR: return D2D1_BLEND_MODE_COLOR; case BLEND_MODE_LUMINOSITY: return D2D1_BLEND_MODE_LUMINOSITY; default: MOZ_CRASH("GFX: Unknown enum value D2DBlendMode!"); } return D2D1_BLEND_MODE_DARKEN; } D2D1_MORPHOLOGY_MODE D2DMorphologyMode(uint32_t aMode) { switch (aMode) { case MORPHOLOGY_OPERATOR_DILATE: return D2D1_MORPHOLOGY_MODE_DILATE; case MORPHOLOGY_OPERATOR_ERODE: return D2D1_MORPHOLOGY_MODE_ERODE; } MOZ_CRASH("GFX: Unknown enum value D2DMorphologyMode!"); return D2D1_MORPHOLOGY_MODE_DILATE; } D2D1_TURBULENCE_NOISE D2DTurbulenceNoise(uint32_t aMode) { switch (aMode) { case TURBULENCE_TYPE_FRACTAL_NOISE: return D2D1_TURBULENCE_NOISE_FRACTAL_SUM; case TURBULENCE_TYPE_TURBULENCE: return D2D1_TURBULENCE_NOISE_TURBULENCE; } MOZ_CRASH("GFX: Unknown enum value D2DTurbulenceNoise!"); return D2D1_TURBULENCE_NOISE_TURBULENCE; } D2D1_COMPOSITE_MODE D2DFilterCompositionMode(uint32_t aMode) { switch (aMode) { case COMPOSITE_OPERATOR_OVER: return D2D1_COMPOSITE_MODE_SOURCE_OVER; case COMPOSITE_OPERATOR_IN: return D2D1_COMPOSITE_MODE_SOURCE_IN; case COMPOSITE_OPERATOR_OUT: return D2D1_COMPOSITE_MODE_SOURCE_OUT; case COMPOSITE_OPERATOR_ATOP: return D2D1_COMPOSITE_MODE_SOURCE_ATOP; case COMPOSITE_OPERATOR_XOR: return D2D1_COMPOSITE_MODE_XOR; } MOZ_CRASH("GFX: Unknown enum value D2DFilterCompositionMode!"); return D2D1_COMPOSITE_MODE_SOURCE_OVER; } D2D1_CHANNEL_SELECTOR D2DChannelSelector(uint32_t aMode) { switch (aMode) { case COLOR_CHANNEL_R: return D2D1_CHANNEL_SELECTOR_R; case COLOR_CHANNEL_G: return D2D1_CHANNEL_SELECTOR_G; case COLOR_CHANNEL_B: return D2D1_CHANNEL_SELECTOR_B; case COLOR_CHANNEL_A: return D2D1_CHANNEL_SELECTOR_A; } MOZ_CRASH("GFX: Unknown enum value D2DChannelSelector!"); return D2D1_CHANNEL_SELECTOR_R; } already_AddRefed GetImageForSourceSurface(DrawTarget *aDT, SourceSurface *aSurface) { if (aDT->IsTiledDrawTarget() || aDT->IsDualDrawTarget()) { gfxDevCrash(LogReason::FilterNodeD2D1Target) << "Incompatible draw target type! " << (int)aDT->IsTiledDrawTarget() << " " << (int)aDT->IsDualDrawTarget(); return nullptr; } switch (aDT->GetBackendType()) { case BackendType::DIRECT2D1_1: return static_cast(aDT)->GetImageForSurface(aSurface, ExtendMode::CLAMP); default: gfxDevCrash(LogReason::FilterNodeD2D1Backend) << "Unknown draw target type! " << (int)aDT->GetBackendType(); return nullptr; } } uint32_t ConvertValue(FilterType aType, uint32_t aAttribute, uint32_t aValue) { switch (aType) { case FilterType::COLOR_MATRIX: if (aAttribute == ATT_COLOR_MATRIX_ALPHA_MODE) { aValue = D2DAlphaMode(aValue); } break; case FilterType::TRANSFORM: if (aAttribute == ATT_TRANSFORM_FILTER) { aValue = D2DAffineTransformInterpolationMode(SamplingFilter(aValue)); } break; case FilterType::BLEND: if (aAttribute == ATT_BLEND_BLENDMODE) { aValue = D2DBlendMode(aValue); } break; case FilterType::MORPHOLOGY: if (aAttribute == ATT_MORPHOLOGY_OPERATOR) { aValue = D2DMorphologyMode(aValue); } break; case FilterType::DISPLACEMENT_MAP: if (aAttribute == ATT_DISPLACEMENT_MAP_X_CHANNEL || aAttribute == ATT_DISPLACEMENT_MAP_Y_CHANNEL) { aValue = D2DChannelSelector(aValue); } break; case FilterType::TURBULENCE: if (aAttribute == ATT_TURBULENCE_TYPE) { aValue = D2DTurbulenceNoise(aValue); } break; case FilterType::COMPOSITE: if (aAttribute == ATT_COMPOSITE_OPERATOR) { aValue = D2DFilterCompositionMode(aValue); } break; } return aValue; } void ConvertValue(FilterType aType, uint32_t aAttribute, IntSize &aValue) { switch (aType) { case FilterType::MORPHOLOGY: if (aAttribute == ATT_MORPHOLOGY_RADII) { aValue.width *= 2; aValue.width += 1; aValue.height *= 2; aValue.height += 1; } break; } } UINT32 GetD2D1InputForInput(FilterType aType, uint32_t aIndex) { return aIndex; } #define CONVERT_PROP(moz2dname, d2dname) \ case ATT_##moz2dname: \ return D2D1_##d2dname UINT32 GetD2D1PropForAttribute(FilterType aType, uint32_t aIndex) { switch (aType) { case FilterType::COLOR_MATRIX: switch (aIndex) { CONVERT_PROP(COLOR_MATRIX_MATRIX, COLORMATRIX_PROP_COLOR_MATRIX); CONVERT_PROP(COLOR_MATRIX_ALPHA_MODE, COLORMATRIX_PROP_ALPHA_MODE); } break; case FilterType::TRANSFORM: switch (aIndex) { CONVERT_PROP(TRANSFORM_MATRIX, 2DAFFINETRANSFORM_PROP_TRANSFORM_MATRIX); CONVERT_PROP(TRANSFORM_FILTER, 2DAFFINETRANSFORM_PROP_INTERPOLATION_MODE); } case FilterType::BLEND: switch (aIndex) { CONVERT_PROP(BLEND_BLENDMODE, BLEND_PROP_MODE); } break; case FilterType::MORPHOLOGY: switch (aIndex) { CONVERT_PROP(MORPHOLOGY_OPERATOR, MORPHOLOGY_PROP_MODE); } break; case FilterType::FLOOD: switch (aIndex) { CONVERT_PROP(FLOOD_COLOR, FLOOD_PROP_COLOR); } break; case FilterType::TILE: switch (aIndex) { CONVERT_PROP(TILE_SOURCE_RECT, TILE_PROP_RECT); } break; case FilterType::TABLE_TRANSFER: switch (aIndex) { CONVERT_PROP(TABLE_TRANSFER_DISABLE_R, TABLETRANSFER_PROP_RED_DISABLE); CONVERT_PROP(TABLE_TRANSFER_DISABLE_G, TABLETRANSFER_PROP_GREEN_DISABLE); CONVERT_PROP(TABLE_TRANSFER_DISABLE_B, TABLETRANSFER_PROP_BLUE_DISABLE); CONVERT_PROP(TABLE_TRANSFER_DISABLE_A, TABLETRANSFER_PROP_ALPHA_DISABLE); CONVERT_PROP(TABLE_TRANSFER_TABLE_R, TABLETRANSFER_PROP_RED_TABLE); CONVERT_PROP(TABLE_TRANSFER_TABLE_G, TABLETRANSFER_PROP_GREEN_TABLE); CONVERT_PROP(TABLE_TRANSFER_TABLE_B, TABLETRANSFER_PROP_BLUE_TABLE); CONVERT_PROP(TABLE_TRANSFER_TABLE_A, TABLETRANSFER_PROP_ALPHA_TABLE); } break; case FilterType::DISCRETE_TRANSFER: switch (aIndex) { CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_R, DISCRETETRANSFER_PROP_RED_DISABLE); CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_G, DISCRETETRANSFER_PROP_GREEN_DISABLE); CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_B, DISCRETETRANSFER_PROP_BLUE_DISABLE); CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_A, DISCRETETRANSFER_PROP_ALPHA_DISABLE); CONVERT_PROP(DISCRETE_TRANSFER_TABLE_R, DISCRETETRANSFER_PROP_RED_TABLE); CONVERT_PROP(DISCRETE_TRANSFER_TABLE_G, DISCRETETRANSFER_PROP_GREEN_TABLE); CONVERT_PROP(DISCRETE_TRANSFER_TABLE_B, DISCRETETRANSFER_PROP_BLUE_TABLE); CONVERT_PROP(DISCRETE_TRANSFER_TABLE_A, DISCRETETRANSFER_PROP_ALPHA_TABLE); } break; case FilterType::LINEAR_TRANSFER: switch (aIndex) { CONVERT_PROP(LINEAR_TRANSFER_DISABLE_R, LINEARTRANSFER_PROP_RED_DISABLE); CONVERT_PROP(LINEAR_TRANSFER_DISABLE_G, LINEARTRANSFER_PROP_GREEN_DISABLE); CONVERT_PROP(LINEAR_TRANSFER_DISABLE_B, LINEARTRANSFER_PROP_BLUE_DISABLE); CONVERT_PROP(LINEAR_TRANSFER_DISABLE_A, LINEARTRANSFER_PROP_ALPHA_DISABLE); CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_R, LINEARTRANSFER_PROP_RED_Y_INTERCEPT); CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_G, LINEARTRANSFER_PROP_GREEN_Y_INTERCEPT); CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_B, LINEARTRANSFER_PROP_BLUE_Y_INTERCEPT); CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_A, LINEARTRANSFER_PROP_ALPHA_Y_INTERCEPT); CONVERT_PROP(LINEAR_TRANSFER_SLOPE_R, LINEARTRANSFER_PROP_RED_SLOPE); CONVERT_PROP(LINEAR_TRANSFER_SLOPE_G, LINEARTRANSFER_PROP_GREEN_SLOPE); CONVERT_PROP(LINEAR_TRANSFER_SLOPE_B, LINEARTRANSFER_PROP_BLUE_SLOPE); CONVERT_PROP(LINEAR_TRANSFER_SLOPE_A, LINEARTRANSFER_PROP_ALPHA_SLOPE); } break; case FilterType::GAMMA_TRANSFER: switch (aIndex) { CONVERT_PROP(GAMMA_TRANSFER_DISABLE_R, GAMMATRANSFER_PROP_RED_DISABLE); CONVERT_PROP(GAMMA_TRANSFER_DISABLE_G, GAMMATRANSFER_PROP_GREEN_DISABLE); CONVERT_PROP(GAMMA_TRANSFER_DISABLE_B, GAMMATRANSFER_PROP_BLUE_DISABLE); CONVERT_PROP(GAMMA_TRANSFER_DISABLE_A, GAMMATRANSFER_PROP_ALPHA_DISABLE); CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_R, GAMMATRANSFER_PROP_RED_AMPLITUDE); CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_G, GAMMATRANSFER_PROP_GREEN_AMPLITUDE); CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_B, GAMMATRANSFER_PROP_BLUE_AMPLITUDE); CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_A, GAMMATRANSFER_PROP_ALPHA_AMPLITUDE); CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_R, GAMMATRANSFER_PROP_RED_EXPONENT); CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_G, GAMMATRANSFER_PROP_GREEN_EXPONENT); CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_B, GAMMATRANSFER_PROP_BLUE_EXPONENT); CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_A, GAMMATRANSFER_PROP_ALPHA_EXPONENT); CONVERT_PROP(GAMMA_TRANSFER_OFFSET_R, GAMMATRANSFER_PROP_RED_OFFSET); CONVERT_PROP(GAMMA_TRANSFER_OFFSET_G, GAMMATRANSFER_PROP_GREEN_OFFSET); CONVERT_PROP(GAMMA_TRANSFER_OFFSET_B, GAMMATRANSFER_PROP_BLUE_OFFSET); CONVERT_PROP(GAMMA_TRANSFER_OFFSET_A, GAMMATRANSFER_PROP_ALPHA_OFFSET); } break; case FilterType::CONVOLVE_MATRIX: switch (aIndex) { CONVERT_PROP(CONVOLVE_MATRIX_BIAS, CONVOLVEMATRIX_PROP_BIAS); CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_MATRIX, CONVOLVEMATRIX_PROP_KERNEL_MATRIX); CONVERT_PROP(CONVOLVE_MATRIX_DIVISOR, CONVOLVEMATRIX_PROP_DIVISOR); CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH, CONVOLVEMATRIX_PROP_KERNEL_UNIT_LENGTH); CONVERT_PROP(CONVOLVE_MATRIX_PRESERVE_ALPHA, CONVOLVEMATRIX_PROP_PRESERVE_ALPHA); } case FilterType::DISPLACEMENT_MAP: switch (aIndex) { CONVERT_PROP(DISPLACEMENT_MAP_SCALE, DISPLACEMENTMAP_PROP_SCALE); CONVERT_PROP(DISPLACEMENT_MAP_X_CHANNEL, DISPLACEMENTMAP_PROP_X_CHANNEL_SELECT); CONVERT_PROP(DISPLACEMENT_MAP_Y_CHANNEL, DISPLACEMENTMAP_PROP_Y_CHANNEL_SELECT); } break; case FilterType::TURBULENCE: switch (aIndex) { CONVERT_PROP(TURBULENCE_BASE_FREQUENCY, TURBULENCE_PROP_BASE_FREQUENCY); CONVERT_PROP(TURBULENCE_NUM_OCTAVES, TURBULENCE_PROP_NUM_OCTAVES); CONVERT_PROP(TURBULENCE_SEED, TURBULENCE_PROP_SEED); CONVERT_PROP(TURBULENCE_STITCHABLE, TURBULENCE_PROP_STITCHABLE); CONVERT_PROP(TURBULENCE_TYPE, TURBULENCE_PROP_NOISE); } break; case FilterType::ARITHMETIC_COMBINE: switch (aIndex) { CONVERT_PROP(ARITHMETIC_COMBINE_COEFFICIENTS, ARITHMETICCOMPOSITE_PROP_COEFFICIENTS); } break; case FilterType::COMPOSITE: switch (aIndex) { CONVERT_PROP(COMPOSITE_OPERATOR, COMPOSITE_PROP_MODE); } break; case FilterType::GAUSSIAN_BLUR: switch (aIndex) { CONVERT_PROP(GAUSSIAN_BLUR_STD_DEVIATION, GAUSSIANBLUR_PROP_STANDARD_DEVIATION); } break; case FilterType::DIRECTIONAL_BLUR: switch (aIndex) { CONVERT_PROP(DIRECTIONAL_BLUR_STD_DEVIATION, DIRECTIONALBLUR_PROP_STANDARD_DEVIATION); CONVERT_PROP(DIRECTIONAL_BLUR_DIRECTION, DIRECTIONALBLUR_PROP_ANGLE); } break; case FilterType::POINT_DIFFUSE: switch (aIndex) { CONVERT_PROP(POINT_DIFFUSE_DIFFUSE_CONSTANT, POINTDIFFUSE_PROP_DIFFUSE_CONSTANT); CONVERT_PROP(POINT_DIFFUSE_POSITION, POINTDIFFUSE_PROP_LIGHT_POSITION); CONVERT_PROP(POINT_DIFFUSE_COLOR, POINTDIFFUSE_PROP_COLOR); CONVERT_PROP(POINT_DIFFUSE_SURFACE_SCALE, POINTDIFFUSE_PROP_SURFACE_SCALE); CONVERT_PROP(POINT_DIFFUSE_KERNEL_UNIT_LENGTH, POINTDIFFUSE_PROP_KERNEL_UNIT_LENGTH); } break; case FilterType::SPOT_DIFFUSE: switch (aIndex) { CONVERT_PROP(SPOT_DIFFUSE_DIFFUSE_CONSTANT, SPOTDIFFUSE_PROP_DIFFUSE_CONSTANT); CONVERT_PROP(SPOT_DIFFUSE_POINTS_AT, SPOTDIFFUSE_PROP_POINTS_AT); CONVERT_PROP(SPOT_DIFFUSE_FOCUS, SPOTDIFFUSE_PROP_FOCUS); CONVERT_PROP(SPOT_DIFFUSE_LIMITING_CONE_ANGLE, SPOTDIFFUSE_PROP_LIMITING_CONE_ANGLE); CONVERT_PROP(SPOT_DIFFUSE_POSITION, SPOTDIFFUSE_PROP_LIGHT_POSITION); CONVERT_PROP(SPOT_DIFFUSE_COLOR, SPOTDIFFUSE_PROP_COLOR); CONVERT_PROP(SPOT_DIFFUSE_SURFACE_SCALE, SPOTDIFFUSE_PROP_SURFACE_SCALE); CONVERT_PROP(SPOT_DIFFUSE_KERNEL_UNIT_LENGTH, SPOTDIFFUSE_PROP_KERNEL_UNIT_LENGTH); } break; case FilterType::DISTANT_DIFFUSE: switch (aIndex) { CONVERT_PROP(DISTANT_DIFFUSE_DIFFUSE_CONSTANT, DISTANTDIFFUSE_PROP_DIFFUSE_CONSTANT); CONVERT_PROP(DISTANT_DIFFUSE_AZIMUTH, DISTANTDIFFUSE_PROP_AZIMUTH); CONVERT_PROP(DISTANT_DIFFUSE_ELEVATION, DISTANTDIFFUSE_PROP_ELEVATION); CONVERT_PROP(DISTANT_DIFFUSE_COLOR, DISTANTDIFFUSE_PROP_COLOR); CONVERT_PROP(DISTANT_DIFFUSE_SURFACE_SCALE, DISTANTDIFFUSE_PROP_SURFACE_SCALE); CONVERT_PROP(DISTANT_DIFFUSE_KERNEL_UNIT_LENGTH, DISTANTDIFFUSE_PROP_KERNEL_UNIT_LENGTH); } break; case FilterType::POINT_SPECULAR: switch (aIndex) { CONVERT_PROP(POINT_SPECULAR_SPECULAR_CONSTANT, POINTSPECULAR_PROP_SPECULAR_CONSTANT); CONVERT_PROP(POINT_SPECULAR_SPECULAR_EXPONENT, POINTSPECULAR_PROP_SPECULAR_EXPONENT); CONVERT_PROP(POINT_SPECULAR_POSITION, POINTSPECULAR_PROP_LIGHT_POSITION); CONVERT_PROP(POINT_SPECULAR_COLOR, POINTSPECULAR_PROP_COLOR); CONVERT_PROP(POINT_SPECULAR_SURFACE_SCALE, POINTSPECULAR_PROP_SURFACE_SCALE); CONVERT_PROP(POINT_SPECULAR_KERNEL_UNIT_LENGTH, POINTSPECULAR_PROP_KERNEL_UNIT_LENGTH); } break; case FilterType::SPOT_SPECULAR: switch (aIndex) { CONVERT_PROP(SPOT_SPECULAR_SPECULAR_CONSTANT, SPOTSPECULAR_PROP_SPECULAR_CONSTANT); CONVERT_PROP(SPOT_SPECULAR_SPECULAR_EXPONENT, SPOTSPECULAR_PROP_SPECULAR_EXPONENT); CONVERT_PROP(SPOT_SPECULAR_POINTS_AT, SPOTSPECULAR_PROP_POINTS_AT); CONVERT_PROP(SPOT_SPECULAR_FOCUS, SPOTSPECULAR_PROP_FOCUS); CONVERT_PROP(SPOT_SPECULAR_LIMITING_CONE_ANGLE, SPOTSPECULAR_PROP_LIMITING_CONE_ANGLE); CONVERT_PROP(SPOT_SPECULAR_POSITION, SPOTSPECULAR_PROP_LIGHT_POSITION); CONVERT_PROP(SPOT_SPECULAR_COLOR, SPOTSPECULAR_PROP_COLOR); CONVERT_PROP(SPOT_SPECULAR_SURFACE_SCALE, SPOTSPECULAR_PROP_SURFACE_SCALE); CONVERT_PROP(SPOT_SPECULAR_KERNEL_UNIT_LENGTH, SPOTSPECULAR_PROP_KERNEL_UNIT_LENGTH); } break; case FilterType::DISTANT_SPECULAR: switch (aIndex) { CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_CONSTANT, DISTANTSPECULAR_PROP_SPECULAR_CONSTANT); CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_EXPONENT, DISTANTSPECULAR_PROP_SPECULAR_EXPONENT); CONVERT_PROP(DISTANT_SPECULAR_AZIMUTH, DISTANTSPECULAR_PROP_AZIMUTH); CONVERT_PROP(DISTANT_SPECULAR_ELEVATION, DISTANTSPECULAR_PROP_ELEVATION); CONVERT_PROP(DISTANT_SPECULAR_COLOR, DISTANTSPECULAR_PROP_COLOR); CONVERT_PROP(DISTANT_SPECULAR_SURFACE_SCALE, DISTANTSPECULAR_PROP_SURFACE_SCALE); CONVERT_PROP(DISTANT_SPECULAR_KERNEL_UNIT_LENGTH, DISTANTSPECULAR_PROP_KERNEL_UNIT_LENGTH); } break; case FilterType::CROP: switch (aIndex) { CONVERT_PROP(CROP_RECT, CROP_PROP_RECT); } break; } return UINT32_MAX; } bool GetD2D1PropsForIntSize(FilterType aType, uint32_t aIndex, UINT32 *aPropWidth, UINT32 *aPropHeight) { switch (aType) { case FilterType::MORPHOLOGY: if (aIndex == ATT_MORPHOLOGY_RADII) { *aPropWidth = D2D1_MORPHOLOGY_PROP_WIDTH; *aPropHeight = D2D1_MORPHOLOGY_PROP_HEIGHT; return true; } break; } return false; } static inline REFCLSID GetCLDIDForFilterType(FilterType aType) { switch (aType) { case FilterType::COLOR_MATRIX: return CLSID_D2D1ColorMatrix; case FilterType::TRANSFORM: return CLSID_D2D12DAffineTransform; case FilterType::BLEND: return CLSID_D2D1Blend; case FilterType::MORPHOLOGY: return CLSID_D2D1Morphology; case FilterType::FLOOD: return CLSID_D2D1Flood; case FilterType::TILE: return CLSID_D2D1Tile; case FilterType::TABLE_TRANSFER: return CLSID_D2D1TableTransfer; case FilterType::LINEAR_TRANSFER: return CLSID_D2D1LinearTransfer; case FilterType::DISCRETE_TRANSFER: return CLSID_D2D1DiscreteTransfer; case FilterType::GAMMA_TRANSFER: return CLSID_D2D1GammaTransfer; case FilterType::DISPLACEMENT_MAP: return CLSID_D2D1DisplacementMap; case FilterType::TURBULENCE: return CLSID_D2D1Turbulence; case FilterType::ARITHMETIC_COMBINE: return CLSID_D2D1ArithmeticComposite; case FilterType::COMPOSITE: return CLSID_D2D1Composite; case FilterType::GAUSSIAN_BLUR: return CLSID_D2D1GaussianBlur; case FilterType::DIRECTIONAL_BLUR: return CLSID_D2D1DirectionalBlur; case FilterType::POINT_DIFFUSE: return CLSID_D2D1PointDiffuse; case FilterType::POINT_SPECULAR: return CLSID_D2D1PointSpecular; case FilterType::SPOT_DIFFUSE: return CLSID_D2D1SpotDiffuse; case FilterType::SPOT_SPECULAR: return CLSID_D2D1SpotSpecular; case FilterType::DISTANT_DIFFUSE: return CLSID_D2D1DistantDiffuse; case FilterType::DISTANT_SPECULAR: return CLSID_D2D1DistantSpecular; case FilterType::CROP: return CLSID_D2D1Crop; case FilterType::PREMULTIPLY: return CLSID_D2D1Premultiply; case FilterType::UNPREMULTIPLY: return CLSID_D2D1UnPremultiply; } return GUID_NULL; } static bool IsTransferFilterType(FilterType aType) { switch (aType) { case FilterType::LINEAR_TRANSFER: case FilterType::GAMMA_TRANSFER: case FilterType::TABLE_TRANSFER: case FilterType::DISCRETE_TRANSFER: return true; default: return false; } } static bool HasUnboundedOutputRegion(FilterType aType) { if (IsTransferFilterType(aType)) { return true; } switch (aType) { case FilterType::COLOR_MATRIX: case FilterType::POINT_DIFFUSE: case FilterType::SPOT_DIFFUSE: case FilterType::DISTANT_DIFFUSE: case FilterType::POINT_SPECULAR: case FilterType::SPOT_SPECULAR: case FilterType::DISTANT_SPECULAR: return true; default: return false; } } /* static */ already_AddRefed FilterNodeD2D1::Create(ID2D1DeviceContext *aDC, FilterType aType) { if (aType == FilterType::CONVOLVE_MATRIX) { return MakeAndAddRef(aDC); } RefPtr effect; HRESULT hr; hr = aDC->CreateEffect(GetCLDIDForFilterType(aType), getter_AddRefs(effect)); if (FAILED(hr) || !effect) { gfxCriticalErrorOnce() << "Failed to create effect for FilterType: " << hexa(hr); return nullptr; } if (aType == FilterType::ARITHMETIC_COMBINE) { effect->SetValue(D2D1_ARITHMETICCOMPOSITE_PROP_CLAMP_OUTPUT, TRUE); } RefPtr filter = new FilterNodeD2D1(effect, aType); if (HasUnboundedOutputRegion(aType)) { // These filters can produce non-transparent output from transparent // input pixels, and we want them to have an unbounded output region. filter = new FilterNodeExtendInputAdapterD2D1(aDC, filter, aType); } if (IsTransferFilterType(aType)) { // Component transfer filters should appear to apply on unpremultiplied // colors, but the D2D1 effects apply on premultiplied colors. filter = new FilterNodePremultiplyAdapterD2D1(aDC, filter, aType); } return filter.forget(); } void FilterNodeD2D1::InitUnmappedProperties() { switch (mType) { case FilterType::TRANSFORM: mEffect->SetValue(D2D1_2DAFFINETRANSFORM_PROP_BORDER_MODE, D2D1_BORDER_MODE_HARD); break; default: break; } } void FilterNodeD2D1::SetInput(uint32_t aIndex, SourceSurface *aSurface) { UINT32 input = GetD2D1InputForInput(mType, aIndex); ID2D1Effect* effect = InputEffect(); MOZ_ASSERT(input < effect->GetInputCount()); if (mType == FilterType::COMPOSITE) { UINT32 inputCount = effect->GetInputCount(); if (aIndex == inputCount - 1 && aSurface == nullptr) { effect->SetInputCount(inputCount - 1); } else if (aIndex >= inputCount && aSurface) { effect->SetInputCount(aIndex + 1); } } MOZ_ASSERT(input < effect->GetInputCount()); mInputSurfaces.resize(effect->GetInputCount()); mInputFilters.resize(effect->GetInputCount()); // In order to convert aSurface into an ID2D1Image, we need to know what // DrawTarget we paint into. However, the same FilterNode object can be // used on different DrawTargets, so we need to hold on to the SourceSurface // objects and delay the conversion until we're actually painted and know // our target DrawTarget. // The conversion happens in WillDraw(). mInputSurfaces[input] = aSurface; mInputFilters[input] = nullptr; // Clear the existing image from the effect. effect->SetInput(input, nullptr); } void FilterNodeD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter) { UINT32 input = GetD2D1InputForInput(mType, aIndex); ID2D1Effect* effect = InputEffect(); if (mType == FilterType::COMPOSITE) { UINT32 inputCount = effect->GetInputCount(); if (aIndex == inputCount - 1 && aFilter == nullptr) { effect->SetInputCount(inputCount - 1); } else if (aIndex >= inputCount && aFilter) { effect->SetInputCount(aIndex + 1); } } MOZ_ASSERT(input < effect->GetInputCount()); if (aFilter && aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) { gfxWarning() << "Unknown input FilterNode set on effect."; MOZ_ASSERT(0); return; } FilterNodeD2D1* filter = static_cast(aFilter); mInputSurfaces.resize(effect->GetInputCount()); mInputFilters.resize(effect->GetInputCount()); // We hold on to the FilterNode object so that we can call WillDraw() on it. mInputSurfaces[input] = nullptr; mInputFilters[input] = filter; if (filter) { effect->SetInputEffect(input, filter->OutputEffect()); } } void FilterNodeD2D1::WillDraw(DrawTarget *aDT) { // Convert input SourceSurfaces into ID2D1Images and set them on the effect. for (size_t inputIndex = 0; inputIndex < mInputSurfaces.size(); inputIndex++) { if (mInputSurfaces[inputIndex]) { ID2D1Effect* effect = InputEffect(); RefPtr image = GetImageForSourceSurface(aDT, mInputSurfaces[inputIndex]); effect->SetInput(inputIndex, image); } } // Call WillDraw() on our input filters. for (std::vector>::iterator it = mInputFilters.begin(); it != mInputFilters.end(); it++) { if (*it) { (*it)->WillDraw(aDT); } } } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); if (mType == FilterType::TURBULENCE && aIndex == ATT_TURBULENCE_BASE_FREQUENCY) { mEffect->SetValue(input, D2D1::Vector2F(FLOAT(aValue), FLOAT(aValue))); return; } else if (mType == FilterType::DIRECTIONAL_BLUR && aIndex == ATT_DIRECTIONAL_BLUR_DIRECTION) { mEffect->SetValue(input, aValue == BLUR_DIRECTION_X ? 0 : 90.0f); return; } mEffect->SetValue(input, ConvertValue(mType, aIndex, aValue)); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, Float aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, aValue); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point &aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2DPoint(aValue)); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix5x4 &aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2DMatrix5x4(aValue)); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point3D &aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2DVector3D(aValue)); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Size &aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2D1::Vector2F(aValue.width, aValue.height)); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue) { UINT32 widthProp, heightProp; if (!GetD2D1PropsForIntSize(mType, aIndex, &widthProp, &heightProp)) { return; } IntSize value = aValue; ConvertValue(mType, aIndex, value); mEffect->SetValue(widthProp, (UINT)value.width); mEffect->SetValue(heightProp, (UINT)value.height); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Color &aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); switch (mType) { case FilterType::POINT_DIFFUSE: case FilterType::SPOT_DIFFUSE: case FilterType::DISTANT_DIFFUSE: case FilterType::POINT_SPECULAR: case FilterType::SPOT_SPECULAR: case FilterType::DISTANT_SPECULAR: mEffect->SetValue(input, D2D1::Vector3F(aValue.r, aValue.g, aValue.b)); break; default: mEffect->SetValue(input, D2D1::Vector4F(aValue.r * aValue.a, aValue.g * aValue.a, aValue.b * aValue.a, aValue.a)); } } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Rect &aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2DRect(aValue)); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue) { if (mType == FilterType::TURBULENCE) { MOZ_ASSERT(aIndex == ATT_TURBULENCE_RECT); mEffect->SetValue(D2D1_TURBULENCE_PROP_OFFSET, D2D1::Vector2F(Float(aValue.x), Float(aValue.y))); mEffect->SetValue(D2D1_TURBULENCE_PROP_SIZE, D2D1::Vector2F(Float(aValue.Width()), Float(aValue.Height()))); return; } UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2D1::RectF(Float(aValue.x), Float(aValue.y), Float(aValue.XMost()), Float(aValue.YMost()))); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, bool aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, (BOOL)aValue); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Float *aValues, uint32_t aSize) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, (BYTE*)aValues, sizeof(Float) * aSize); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2DPoint(aValue)); } void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix &aMatrix) { UINT32 input = GetD2D1PropForAttribute(mType, aIndex); MOZ_ASSERT(input < mEffect->GetPropertyCount()); mEffect->SetValue(input, D2DMatrix(aMatrix)); } FilterNodeConvolveD2D1::FilterNodeConvolveD2D1(ID2D1DeviceContext *aDC) : FilterNodeD2D1(nullptr, FilterType::CONVOLVE_MATRIX) , mEdgeMode(EDGE_MODE_DUPLICATE) { // Correctly handling the interaction of edge mode and source rect is a bit // tricky with D2D1 effects. We want the edge mode to only apply outside of // the source rect (as specified by the ATT_CONVOLVE_MATRIX_SOURCE_RECT // attribute). So if our input surface or filter is smaller than the source // rect, we need to add transparency around it until we reach the edges of // the source rect, and only then do any repeating or edge duplicating. // Unfortunately, the border effect does not have a source rect attribute - // it only looks at the output rect of its input filter or surface. So we use // our custom ExtendInput effect to adjust the output rect of our input. // All of this is only necessary when our edge mode is not EDGE_MODE_NONE, so // we update the filter chain dynamically in UpdateChain(). HRESULT hr; hr = aDC->CreateEffect(CLSID_D2D1ConvolveMatrix, getter_AddRefs(mEffect)); if (FAILED(hr) || !mEffect) { gfxWarning() << "Failed to create ConvolveMatrix filter!"; return; } mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_BORDER_MODE, D2D1_BORDER_MODE_SOFT); hr = aDC->CreateEffect(CLSID_ExtendInputEffect, getter_AddRefs(mExtendInputEffect)); if (FAILED(hr) || !mExtendInputEffect) { gfxWarning() << "Failed to create ConvolveMatrix filter!"; return; } hr = aDC->CreateEffect(CLSID_D2D1Border, getter_AddRefs(mBorderEffect)); if (FAILED(hr) || !mBorderEffect) { gfxWarning() << "Failed to create ConvolveMatrix filter!"; return; } mBorderEffect->SetInputEffect(0, mExtendInputEffect.get()); UpdateChain(); UpdateSourceRect(); } void FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter) { FilterNodeD2D1::SetInput(aIndex, aFilter); UpdateChain(); } void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) { if (aIndex != ATT_CONVOLVE_MATRIX_EDGE_MODE) { return FilterNodeD2D1::SetAttribute(aIndex, aValue); } mEdgeMode = (ConvolveMatrixEdgeMode)aValue; UpdateChain(); } ID2D1Effect* FilterNodeConvolveD2D1::InputEffect() { return mEdgeMode == EDGE_MODE_NONE ? mEffect.get() : mExtendInputEffect.get(); } void FilterNodeConvolveD2D1::UpdateChain() { // The shape of the filter graph: // // EDGE_MODE_NONE: // input --> convolvematrix // // EDGE_MODE_DUPLICATE or EDGE_MODE_WRAP: // input --> extendinput --> border --> convolvematrix // // mEffect is convolvematrix. if (mEdgeMode != EDGE_MODE_NONE) { mEffect->SetInputEffect(0, mBorderEffect.get()); } RefPtr inputEffect; if (mInputFilters.size() > 0 && mInputFilters[0]) { inputEffect = mInputFilters[0]->OutputEffect(); } InputEffect()->SetInputEffect(0, inputEffect); if (mEdgeMode == EDGE_MODE_DUPLICATE) { mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_CLAMP); mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_CLAMP); } else if (mEdgeMode == EDGE_MODE_WRAP) { mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_WRAP); mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_WRAP); } } void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue) { if (aIndex != ATT_CONVOLVE_MATRIX_KERNEL_SIZE) { MOZ_ASSERT(false); return; } mKernelSize = aValue; mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_X, aValue.width); mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_Y, aValue.height); UpdateOffset(); } void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue) { if (aIndex != ATT_CONVOLVE_MATRIX_TARGET) { MOZ_ASSERT(false); return; } mTarget = aValue; UpdateOffset(); } void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue) { if (aIndex != ATT_CONVOLVE_MATRIX_SOURCE_RECT) { MOZ_ASSERT(false); return; } mSourceRect = aValue; UpdateSourceRect(); } void FilterNodeConvolveD2D1::UpdateOffset() { D2D1_VECTOR_2F vector = D2D1::Vector2F((Float(mKernelSize.width) - 1.0f) / 2.0f - Float(mTarget.x), (Float(mKernelSize.height) - 1.0f) / 2.0f - Float(mTarget.y)); mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_OFFSET, vector); } void FilterNodeConvolveD2D1::UpdateSourceRect() { mExtendInputEffect->SetValue(EXTENDINPUT_PROP_OUTPUT_RECT, D2D1::Vector4F(Float(mSourceRect.x), Float(mSourceRect.y), Float(mSourceRect.XMost()), Float(mSourceRect.YMost()))); } FilterNodeExtendInputAdapterD2D1::FilterNodeExtendInputAdapterD2D1(ID2D1DeviceContext *aDC, FilterNodeD2D1 *aFilterNode, FilterType aType) : FilterNodeD2D1(aFilterNode->MainEffect(), aType) , mWrappedFilterNode(aFilterNode) { // We have an mEffect that looks at the bounds of the input effect, and we // want mEffect to regard its input as unbounded. So we take the input, // pipe it through an ExtendInput effect (which has an infinite output rect // by default), and feed the resulting unbounded composition into mEffect. HRESULT hr; hr = aDC->CreateEffect(CLSID_ExtendInputEffect, getter_AddRefs(mExtendInputEffect)); if (FAILED(hr) || !mExtendInputEffect) { gfxWarning() << "Failed to create extend input effect for filter: " << hexa(hr); return; } aFilterNode->InputEffect()->SetInputEffect(0, mExtendInputEffect.get()); } FilterNodePremultiplyAdapterD2D1::FilterNodePremultiplyAdapterD2D1(ID2D1DeviceContext *aDC, FilterNodeD2D1 *aFilterNode, FilterType aType) : FilterNodeD2D1(aFilterNode->MainEffect(), aType) { // D2D1 component transfer effects do strange things when it comes to // premultiplication. // For our purposes we only need the transfer filters to apply straight to // unpremultiplied source channels and output unpremultiplied results. // However, the D2D1 effects are designed differently: They can apply to both // premultiplied and unpremultiplied inputs, and they always premultiply // their result - at least in those color channels that have not been // disabled. // In order to determine whether the input needs to be unpremultiplied as // part of the transfer, the effect consults the alpha mode metadata of the // input surface or the input effect. We don't have such a concept in Moz2D, // and giving Moz2D users different results based on something that cannot be // influenced through Moz2D APIs seems like a bad idea. // We solve this by applying a premultiply effect to the input before feeding // it into the transfer effect. The premultiply effect always premultiplies // regardless of any alpha mode metadata on inputs, and it always marks its // output as premultiplied so that the transfer effect will unpremultiply // consistently. Feeding always-premultiplied input into the transfer effect // also avoids another problem that would appear when individual color // channels disable the transfer: In that case, the disabled channels would // pass through unchanged in their unpremultiplied form and the other // channels would be premultiplied, giving a mixed result. // But since we now ensure that the input is premultiplied, disabled channels // will pass premultiplied values through to the result, which is consistent // with the enabled channels. // We also add an unpremultiply effect that postprocesses the result of the // transfer effect because getting unpremultiplied results from the transfer // filters is part of the FilterNode API. HRESULT hr; hr = aDC->CreateEffect(CLSID_D2D1Premultiply, getter_AddRefs(mPrePremultiplyEffect)); if (FAILED(hr) || !mPrePremultiplyEffect) { gfxWarning() << "Failed to create ComponentTransfer filter!"; return; } hr = aDC->CreateEffect(CLSID_D2D1UnPremultiply, getter_AddRefs(mPostUnpremultiplyEffect)); if (FAILED(hr) || !mPostUnpremultiplyEffect) { gfxWarning() << "Failed to create ComponentTransfer filter!"; return; } aFilterNode->InputEffect()->SetInputEffect(0, mPrePremultiplyEffect.get()); mPostUnpremultiplyEffect->SetInputEffect(0, aFilterNode->OutputEffect()); } } }