/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_TimeStamp_h #define mozilla_TimeStamp_h #include #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "nscore.h" namespace IPC { template struct ParamTraits; } #ifdef XP_WIN // defines TimeStampValue as a complex value keeping both // GetTickCount and QueryPerformanceCounter values #include "TimeStamp_windows.h" #endif namespace mozilla { #ifndef XP_WIN typedef uint64_t TimeStampValue; #endif class TimeStamp; /** * Instances of this class represent the length of an interval of time. * Negative durations are allowed, meaning the end is before the start. * * Internally the duration is stored as a int64_t in units of * PR_TicksPerSecond() when building with NSPR interval timers, or a * system-dependent unit when building with system clocks. The * system-dependent unit must be constant, otherwise the semantics of * this class would be broken. */ class TimeDuration { public: // The default duration is 0. MOZ_CONSTEXPR TimeDuration() : mValue(0) {} // Allow construction using '0' as the initial value, for readability, // but no other numbers (so we don't have any implicit unit conversions). struct _SomethingVeryRandomHere; TimeDuration(_SomethingVeryRandomHere* aZero) : mValue(0) { MOZ_ASSERT(!aZero, "Who's playing funny games here?"); } // Default copy-constructor and assignment are OK double ToSeconds() const; // Return a duration value that includes digits of time we think to // be significant. This method should be used when displaying a // time to humans. double ToSecondsSigDigits() const; double ToMilliseconds() const { return ToSeconds() * 1000.0; } double ToMicroseconds() const { return ToMilliseconds() * 1000.0; } // Using a double here is safe enough; with 53 bits we can represent // durations up to over 280,000 years exactly. If the units of // mValue do not allow us to represent durations of that length, // long durations are clamped to the max/min representable value // instead of overflowing. static inline TimeDuration FromSeconds(double aSeconds) { return FromMilliseconds(aSeconds * 1000.0); } static TimeDuration FromMilliseconds(double aMilliseconds); static inline TimeDuration FromMicroseconds(double aMicroseconds) { return FromMilliseconds(aMicroseconds / 1000.0); } static TimeDuration Forever() { return FromTicks(INT64_MAX); } TimeDuration operator+(const TimeDuration& aOther) const { return TimeDuration::FromTicks(mValue + aOther.mValue); } TimeDuration operator-(const TimeDuration& aOther) const { return TimeDuration::FromTicks(mValue - aOther.mValue); } TimeDuration& operator+=(const TimeDuration& aOther) { mValue += aOther.mValue; return *this; } TimeDuration& operator-=(const TimeDuration& aOther) { mValue -= aOther.mValue; return *this; } private: // Block double multiplier (slower, imprecise if long duration) - Bug 853398. // If required, use MultDouble explicitly and with care. TimeDuration operator*(const double aMultiplier) const MOZ_DELETE; public: TimeDuration MultDouble(double aMultiplier) const { return TimeDuration::FromTicks(static_cast(mValue * aMultiplier)); } TimeDuration operator*(const int32_t aMultiplier) const { return TimeDuration::FromTicks(mValue * int64_t(aMultiplier)); } TimeDuration operator*(const uint32_t aMultiplier) const { return TimeDuration::FromTicks(mValue * int64_t(aMultiplier)); } TimeDuration operator*(const int64_t aMultiplier) const { return TimeDuration::FromTicks(mValue * int64_t(aMultiplier)); } TimeDuration operator/(const int64_t aDivisor) const { return TimeDuration::FromTicks(mValue / aDivisor); } double operator/(const TimeDuration& aOther) const { return static_cast(mValue) / aOther.mValue; } bool operator<(const TimeDuration& aOther) const { return mValue < aOther.mValue; } bool operator<=(const TimeDuration& aOther) const { return mValue <= aOther.mValue; } bool operator>=(const TimeDuration& aOther) const { return mValue >= aOther.mValue; } bool operator>(const TimeDuration& aOther) const { return mValue > aOther.mValue; } bool operator==(const TimeDuration& aOther) const { return mValue == aOther.mValue; } // Return a best guess at the system's current timing resolution, // which might be variable. TimeDurations below this order of // magnitude are meaningless, and those at the same order of // magnitude or just above are suspect. static TimeDuration Resolution(); // We could define additional operators here: // -- convert to/from other time units // -- scale duration by a float // but let's do that on demand. // Comparing durations for equality will only lead to bugs on // platforms with high-resolution timers. private: friend class TimeStamp; friend struct IPC::ParamTraits; static TimeDuration FromTicks(int64_t aTicks) { TimeDuration t; t.mValue = aTicks; return t; } static TimeDuration FromTicks(double aTicks) { // NOTE: this MUST be a >= test, because int64_t(double(INT64_MAX)) // overflows and gives INT64_MIN. if (aTicks >= double(INT64_MAX)) return TimeDuration::FromTicks(INT64_MAX); // This MUST be a <= test. if (aTicks <= double(INT64_MIN)) return TimeDuration::FromTicks(INT64_MIN); return TimeDuration::FromTicks(int64_t(aTicks)); } // Duration, result is implementation-specific difference of two TimeStamps int64_t mValue; }; /** * Instances of this class represent moments in time, or a special * "null" moment. We do not use the non-monotonic system clock or * local time, since they can be reset, causing apparent backward * travel in time, which can confuse algorithms. Instead we measure * elapsed time according to the system. This time can never go * backwards (i.e. it never wraps around, at least not in less than * five million years of system elapsed time). It might not advance * while the system is sleeping. If TimeStamp::SetNow() is not called * at all for hours or days, we might not notice the passage of some * of that time. * * We deliberately do not expose a way to convert TimeStamps to some * particular unit. All you can do is compute a difference between two * TimeStamps to get a TimeDuration. You can also add a TimeDuration * to a TimeStamp to get a new TimeStamp. You can't do something * meaningless like add two TimeStamps. * * Internally this is implemented as either a wrapper around * - high-resolution, monotonic, system clocks if they exist on this * platform * - PRIntervalTime otherwise. We detect wraparounds of * PRIntervalTime and work around them. * * This class is similar to C++11's time_point, however it is * explicitly nullable and provides an IsNull() method. time_point * is initialized to the clock's epoch and provides a * time_since_epoch() method that functions similiarly. i.e. * t.IsNull() is equivalent to t.time_since_epoch() == decltype(t)::duration::zero(); */ class TimeStamp { public: /** * Initialize to the "null" moment */ MOZ_CONSTEXPR TimeStamp() : mValue(0) {} // Default copy-constructor and assignment are OK /** * Return true if this is the "null" moment */ bool IsNull() const { return mValue == 0; } /** * Return a timestamp reflecting the current elapsed system time. This * is monotonically increasing (i.e., does not decrease) over the * lifetime of this process' XPCOM session. * * Now() is trying to ensure the best possible precision on each platform, * at least one millisecond. * * NowLoRes() has been introduced to workaround performance problems of * QueryPerformanceCounter on the Windows platform. NowLoRes() is giving * lower precision, usually 15.6 ms, but with very good performance benefit. * Use it for measurements of longer times, like >200ms timeouts. */ static TimeStamp Now() { return Now(true); } static TimeStamp NowLoRes() { return Now(false); } /** * Return a timestamp representing the time when the current process was * created which will be comparable with other timestamps taken with this * class. If the actual process creation time is detected to be inconsistent * the @a aIsInconsistent parameter will be set to true, the returned * timestamp however will still be valid though inaccurate. * * @param aIsInconsistent Set to true if an inconsistency was detected in the * process creation time * @returns A timestamp representing the time when the process was created, * this timestamp is always valid even when errors are reported */ static TimeStamp ProcessCreation(bool& aIsInconsistent); /** * Records a process restart. After this call ProcessCreation() will return * the time when the browser was restarted instead of the actual time when * the process was created. */ static void RecordProcessRestart(); /** * Compute the difference between two timestamps. Both must be non-null. */ TimeDuration operator-(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); static_assert(-INT64_MAX > INT64_MIN, "int64_t sanity check"); int64_t ticks = int64_t(mValue - aOther.mValue); // Check for overflow. if (mValue > aOther.mValue) { if (ticks < 0) { ticks = INT64_MAX; } } else { if (ticks > 0) { ticks = INT64_MIN; } } return TimeDuration::FromTicks(ticks); } TimeStamp operator+(const TimeDuration& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); return TimeStamp(mValue + aOther.mValue); } TimeStamp operator-(const TimeDuration& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); return TimeStamp(mValue - aOther.mValue); } TimeStamp& operator+=(const TimeDuration& aOther) { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); mValue += aOther.mValue; return *this; } TimeStamp& operator-=(const TimeDuration& aOther) { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); mValue -= aOther.mValue; return *this; } bool operator<(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue < aOther.mValue; } bool operator<=(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue <= aOther.mValue; } bool operator>=(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue >= aOther.mValue; } bool operator>(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue > aOther.mValue; } bool operator==(const TimeStamp& aOther) const { // Maybe it's ok to check == with null timestamps? MOZ_ASSERT(!IsNull() && "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue == aOther.mValue; } bool operator!=(const TimeStamp& aOther) const { // Maybe it's ok to check != with null timestamps? MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue != aOther.mValue; } // Comparing TimeStamps for equality should be discouraged. Adding // two TimeStamps, or scaling TimeStamps, is nonsense and must never // be allowed. static NS_HIDDEN_(nsresult) Startup(); static NS_HIDDEN_(void) Shutdown(); private: friend struct IPC::ParamTraits; friend void StartupTimelineRecordExternal(int, uint64_t); TimeStamp(TimeStampValue aValue) : mValue(aValue) {} static TimeStamp Now(bool aHighResolution); /** * Computes the uptime of the current process in microseconds. The result * is platform-dependent and needs to be checked against existing timestamps * for consistency. * * @returns The number of microseconds since the calling process was started * or 0 if an error was encountered while computing the uptime */ static uint64_t ComputeProcessUptime(); /** * When built with PRIntervalTime, a value of 0 means this instance * is "null". Otherwise, the low 32 bits represent a PRIntervalTime, * and the high 32 bits represent a counter of the number of * rollovers of PRIntervalTime that we've seen. This counter starts * at 1 to avoid a real time colliding with the "null" value. * * PR_INTERVAL_MAX is set at 100,000 ticks per second. So the minimum * time to wrap around is about 2^64/100000 seconds, i.e. about * 5,849,424 years. * * When using a system clock, a value is system dependent. */ TimeStampValue mValue; }; } #endif /* mozilla_TimeStamp_h */