/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: sw=2 ts=4 et : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_ipc_ProtocolUtils_h #define mozilla_ipc_ProtocolUtils_h 1 #include "base/id_map.h" #include "base/process.h" #include "base/process_util.h" #include "chrome/common/ipc_message_utils.h" #include "prenv.h" #include "IPCMessageStart.h" #include "mozilla/AlreadyAddRefed.h" #include "mozilla/Attributes.h" #include "mozilla/ipc/ByteBuf.h" #include "mozilla/ipc/FileDescriptor.h" #include "mozilla/ipc/MessageChannel.h" #include "mozilla/ipc/Shmem.h" #include "mozilla/ipc/Transport.h" #include "mozilla/ipc/MessageLink.h" #include "mozilla/recordreplay/ChildIPC.h" #include "mozilla/LinkedList.h" #include "mozilla/Maybe.h" #include "mozilla/MozPromise.h" #include "mozilla/Mutex.h" #include "mozilla/NotNull.h" #include "mozilla/Scoped.h" #include "mozilla/UniquePtr.h" #include "MainThreadUtils.h" #if defined(ANDROID) && defined(DEBUG) # include #endif template class nsTHashtable; template class nsPtrHashKey; // WARNING: this takes into account the private, special-message-type // enum in ipc_channel.h. They need to be kept in sync. namespace { // XXX the max message ID is actually kuint32max now ... when this // changed, the assumptions of the special message IDs changed in that // they're not carving out messages from likely-unallocated space, but // rather carving out messages from the end of space allocated to // protocol 0. Oops! We can get away with this until protocol 0 // starts approaching its 65,536th message. enum { BUILD_IDS_MATCH_MESSAGE_TYPE = kuint16max - 8, BUILD_ID_MESSAGE_TYPE = kuint16max - 7, // unused CHANNEL_OPENED_MESSAGE_TYPE = kuint16max - 6, SHMEM_DESTROYED_MESSAGE_TYPE = kuint16max - 5, SHMEM_CREATED_MESSAGE_TYPE = kuint16max - 4, GOODBYE_MESSAGE_TYPE = kuint16max - 3, CANCEL_MESSAGE_TYPE = kuint16max - 2, // kuint16max - 1 is used by ipc_channel.h. }; } // namespace class nsIEventTarget; namespace mozilla { class SchedulerGroup; namespace dom { class ContentParent; } // namespace dom namespace net { class NeckoParent; } // namespace net namespace ipc { #ifdef FUZZING class ProtocolFuzzerHelper; #endif class MessageChannel; #ifdef XP_WIN const base::ProcessHandle kInvalidProcessHandle = INVALID_HANDLE_VALUE; // In theory, on Windows, this is a valid process ID, but in practice they are // currently divisible by four. Process IDs share the kernel handle allocation // code and they are guaranteed to be divisible by four. // As this could change for process IDs we shouldn't generally rely on this // property, however even if that were to change, it seems safe to rely on this // particular value never being used. const base::ProcessId kInvalidProcessId = kuint32max; #else const base::ProcessHandle kInvalidProcessHandle = -1; const base::ProcessId kInvalidProcessId = -1; #endif // Scoped base::ProcessHandle to ensure base::CloseProcessHandle is called. struct ScopedProcessHandleTraits { typedef base::ProcessHandle type; static type empty() { return kInvalidProcessHandle; } static void release(type aProcessHandle) { if (aProcessHandle && aProcessHandle != kInvalidProcessHandle) { base::CloseProcessHandle(aProcessHandle); } } }; typedef mozilla::Scoped ScopedProcessHandle; class ProtocolFdMapping; class ProtocolCloneContext; // Used to pass references to protocol actors across the wire. // Actors created on the parent-side have a positive ID, and actors // allocated on the child side have a negative ID. struct ActorHandle { int mId; }; // What happens if Interrupt calls race? enum RacyInterruptPolicy { RIPError, RIPChildWins, RIPParentWins }; enum class LinkStatus : uint8_t { // The actor has not established a link yet, or the actor is no longer in use // by IPC, and its 'Dealloc' method has been called or is being called. // // NOTE: This state is used instead of an explicit `Freed` state when IPC no // longer holds references to the current actor as we currently re-open // existing actors. Once we fix these poorly behaved actors, this loopback // state can be split to have the final state not be the same as the initial // state. Inactive, // A live link is connected to the other side of this actor. Connected, // The link has begun being destroyed. Messages may still be received, but // cannot be sent. (exception: sync/intr replies may be sent while Doomed). Doomed, // The link has been destroyed, and messages will no longer be sent or // received. Destroyed, }; typedef IPCMessageStart ProtocolId; // Generated by IPDL compiler const char* ProtocolIdToName(IPCMessageStart aId); class IToplevelProtocol; class ActorLifecycleProxy; class IProtocol : public HasResultCodes { public: enum ActorDestroyReason { FailedConstructor, Deletion, AncestorDeletion, NormalShutdown, AbnormalShutdown }; typedef base::ProcessId ProcessId; typedef IPC::Message Message; typedef IPC::MessageInfo MessageInfo; IProtocol(ProtocolId aProtoId, Side aSide) : mId(0), mProtocolId(aProtoId), mSide(aSide), mLinkStatus(LinkStatus::Inactive), mLifecycleProxy(nullptr), mManager(nullptr), mToplevel(nullptr) {} IToplevelProtocol* ToplevelProtocol() { return mToplevel; } // The following methods either directly forward to the toplevel protocol, or // almost directly do. int32_t Register(IProtocol* aRouted); int32_t RegisterID(IProtocol* aRouted, int32_t aId); IProtocol* Lookup(int32_t aId); void Unregister(int32_t aId); Shmem::SharedMemory* CreateSharedMemory(size_t aSize, SharedMemory::SharedMemoryType aType, bool aUnsafe, int32_t* aId); Shmem::SharedMemory* LookupSharedMemory(int32_t aId); bool IsTrackingSharedMemory(Shmem::SharedMemory* aSegment); bool DestroySharedMemory(Shmem& aShmem); MessageChannel* GetIPCChannel(); const MessageChannel* GetIPCChannel() const; // Sets an event target to which all messages for aActor will be // dispatched. This method must be called before right before the SendPFoo // message for aActor is sent. And SendPFoo *must* be called if // SetEventTargetForActor is called. The receiver when calling // SetEventTargetForActor must be the actor that will be the manager for // aActor. void SetEventTargetForActor(IProtocol* aActor, nsIEventTarget* aEventTarget); // Replace the event target for the messages of aActor. There must not be // any messages of aActor in the task queue, or we might run into some // unexpected behavior. void ReplaceEventTargetForActor(IProtocol* aActor, nsIEventTarget* aEventTarget); void SetEventTargetForRoute(int32_t aRoute, nsIEventTarget* aEventTarget); nsIEventTarget* GetActorEventTarget(); already_AddRefed GetActorEventTarget(IProtocol* aActor); ProcessId OtherPid() const; // Actor lifecycle and other properties. ProtocolId GetProtocolId() const { return mProtocolId; } const char* GetProtocolName() const { return ProtocolIdToName(mProtocolId); } int32_t Id() const { return mId; } IProtocol* Manager() const { return mManager; } ActorLifecycleProxy* GetLifecycleProxy() { return mLifecycleProxy; } Side GetSide() const { return mSide; } bool CanSend() const { return mLinkStatus == LinkStatus::Connected; } bool CanRecv() const { return mLinkStatus == LinkStatus::Connected || mLinkStatus == LinkStatus::Doomed; } // Remove or deallocate a managee given its type. virtual void RemoveManagee(int32_t, IProtocol*) = 0; virtual void DeallocManagee(int32_t, IProtocol*) = 0; Maybe ReadActor(const IPC::Message* aMessage, PickleIterator* aIter, bool aNullable, const char* aActorDescription, int32_t aProtocolTypeId); virtual Result OnMessageReceived(const Message& aMessage) = 0; virtual Result OnMessageReceived(const Message& aMessage, Message*& aReply) = 0; virtual Result OnCallReceived(const Message& aMessage, Message*& aReply) = 0; bool AllocShmem(size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, Shmem* aOutMem); bool AllocUnsafeShmem(size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, Shmem* aOutMem); bool DeallocShmem(Shmem& aMem); void FatalError(const char* const aErrorMsg) const; virtual void HandleFatalError(const char* aErrorMsg) const; protected: virtual ~IProtocol(); friend class IToplevelProtocol; friend class ActorLifecycleProxy; void SetId(int32_t aId); // We have separate functions because the accessibility code manually // calls SetManager. void SetManager(IProtocol* aManager); // Sets the manager for the protocol and registers the protocol with // its manager, setting up channels for the protocol as well. Not // for use outside of IPDL. void SetManagerAndRegister(IProtocol* aManager); void SetManagerAndRegister(IProtocol* aManager, int32_t aId); // Helpers for calling `Send` on our underlying IPC channel. bool ChannelSend(IPC::Message* aMsg); bool ChannelSend(IPC::Message* aMsg, IPC::Message* aReply); bool ChannelCall(IPC::Message* aMsg, IPC::Message* aReply); template void ChannelSend(IPC::Message* aMsg, ResolveCallback&& aResolve, RejectCallback&& aReject) { UniquePtr msg(aMsg); if (CanSend()) { GetIPCChannel()->Send(msg.release(), this, std::move(aResolve), std::move(aReject)); } else { NS_WARNING("IPC message discarded: actor cannot send"); aReject(ResponseRejectReason::SendError); } } // Collect all actors managed by this object in an array. To make this safer // to iterate, `ActorLifecycleProxy` references are returned rather than raw // actor pointers. virtual void AllManagedActors( nsTArray>& aActors) const = 0; // Internal method called when the actor becomes connected. void ActorConnected(); // Called immediately before setting the actor state to doomed, and triggering // async actor destruction. Messages may be sent from this callback, but no // later. // FIXME(nika): This is currently unused! virtual void ActorDoom() {} void DoomSubtree(); // Called when the actor has been destroyed due to an error, a __delete__ // message, or a __doom__ reply. virtual void ActorDestroy(ActorDestroyReason aWhy) {} void DestroySubtree(ActorDestroyReason aWhy); // Called when IPC has acquired its first reference to the actor. This method // may take references which will later be freed by `ActorDealloc`. virtual void ActorAlloc() {} // Called when IPC has released its final reference to the actor. It will call // the dealloc method, causing the actor to be actually freed. // // The actor has been freed after this method returns. virtual void ActorDealloc() { if (Manager()) { Manager()->DeallocManagee(mProtocolId, this); } } static const int32_t kNullActorId = 0; static const int32_t kFreedActorId = 1; private: int32_t mId; ProtocolId mProtocolId; Side mSide; LinkStatus mLinkStatus; ActorLifecycleProxy* mLifecycleProxy; IProtocol* mManager; IToplevelProtocol* mToplevel; }; #define IPC_OK() mozilla::ipc::IPCResult::Ok() #define IPC_FAIL(actor, why) \ mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__, (why)) #define IPC_FAIL_NO_REASON(actor) \ mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__) /** * All message deserializer and message handler should return this * type via above macros. We use a less generic name here to avoid * conflict with mozilla::Result because we have quite a few using * namespace mozilla::ipc; in the code base. */ class IPCResult { public: static IPCResult Ok() { return IPCResult(true); } static IPCResult Fail(NotNull aActor, const char* aWhere, const char* aWhy = ""); MOZ_IMPLICIT operator bool() const { return mSuccess; } private: explicit IPCResult(bool aResult) : mSuccess(aResult) {} bool mSuccess; }; template class Endpoint; /** * All top-level protocols should inherit this class. * * IToplevelProtocol tracks all top-level protocol actors created from * this protocol actor. */ class IToplevelProtocol : public IProtocol { #ifdef FUZZING friend class mozilla::ipc::ProtocolFuzzerHelper; #endif template friend class Endpoint; protected: explicit IToplevelProtocol(const char* aName, ProtocolId aProtoId, Side aSide); ~IToplevelProtocol() = default; public: // Shadow methods on IProtocol which are implemented directly on toplevel // actors. int32_t Register(IProtocol* aRouted); int32_t RegisterID(IProtocol* aRouted, int32_t aId); IProtocol* Lookup(int32_t aId); void Unregister(int32_t aId); Shmem::SharedMemory* CreateSharedMemory(size_t aSize, SharedMemory::SharedMemoryType aType, bool aUnsafe, int32_t* aId); Shmem::SharedMemory* LookupSharedMemory(int32_t aId); bool IsTrackingSharedMemory(Shmem::SharedMemory* aSegment); bool DestroySharedMemory(Shmem& aShmem); MessageChannel* GetIPCChannel() { if (mMiddlemanChannelOverride) { return mMiddlemanChannelOverride; } return &mChannel; } const MessageChannel* GetIPCChannel() const { if (mMiddlemanChannelOverride) { return mMiddlemanChannelOverride; } return &mChannel; } // NOTE: The target actor's Manager must already be set. void SetEventTargetForActorInternal(IProtocol* aActor, nsIEventTarget* aEventTarget); void ReplaceEventTargetForActor(IProtocol* aActor, nsIEventTarget* aEventTarget); void SetEventTargetForRoute(int32_t aRoute, nsIEventTarget* aEventTarget); nsIEventTarget* GetActorEventTarget(); already_AddRefed GetActorEventTarget(IProtocol* aActor); ProcessId OtherPid() const; void SetOtherProcessId(base::ProcessId aOtherPid); virtual void OnChannelClose() = 0; virtual void OnChannelError() = 0; virtual void ProcessingError(Result aError, const char* aMsgName) {} virtual void OnChannelConnected(int32_t peer_pid) {} bool Open(UniquePtr aTransport, base::ProcessId aOtherPid, MessageLoop* aThread = nullptr, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); bool Open(MessageChannel* aChannel, MessageLoop* aMessageLoop, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); bool Open(MessageChannel* aChannel, nsIEventTarget* aEventTarget, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); // Open a toplevel actor such that both ends of the actor's channel are on // the same thread. This method should be called on the thread to perform // the link. // // WARNING: Attempting to send a sync or intr message on the same thread // will crash. bool OpenOnSameThread(MessageChannel* aChannel, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); void Close(); void SetReplyTimeoutMs(int32_t aTimeoutMs); void DeallocShmems(); bool ShmemCreated(const Message& aMsg); bool ShmemDestroyed(const Message& aMsg); virtual bool ShouldContinueFromReplyTimeout() { return false; } // WARNING: This function is called with the MessageChannel monitor held. virtual void IntentionalCrash() { MOZ_CRASH("Intentional IPDL crash"); } // The code here is only useful for fuzzing. It should not be used for any // other purpose. #ifdef DEBUG // Returns true if we should simulate a timeout. // WARNING: This is a testing-only function that is called with the // MessageChannel monitor held. Don't do anything fancy here or we could // deadlock. virtual bool ArtificialTimeout() { return false; } // Returns true if we want to cause the worker thread to sleep with the // monitor unlocked. virtual bool NeedArtificialSleep() { return false; } // This function should be implemented to sleep for some amount of time on // the worker thread. Will only be called if NeedArtificialSleep() returns // true. virtual void ArtificialSleep() {} #else bool ArtificialTimeout() { return false; } bool NeedArtificialSleep() { return false; } void ArtificialSleep() {} #endif virtual void EnteredCxxStack() {} virtual void ExitedCxxStack() {} virtual void EnteredCall() {} virtual void ExitedCall() {} bool IsOnCxxStack() const; virtual RacyInterruptPolicy MediateInterruptRace(const MessageInfo& parent, const MessageInfo& child) { return RIPChildWins; } /** * Return true if windows messages can be handled while waiting for a reply * to a sync IPDL message. */ virtual bool HandleWindowsMessages(const Message& aMsg) const { return true; } virtual void OnEnteredSyncSend() {} virtual void OnExitedSyncSend() {} virtual void ProcessRemoteNativeEventsInInterruptCall() {} virtual void OnChannelReceivedMessage(const Message& aMsg) {} void OnIPCChannelOpened() { ActorConnected(); } already_AddRefed GetMessageEventTarget(const Message& aMsg); void SetMiddlemanIPCChannel(MessageChannel* aChannel) { // Middleman processes sometimes need to change the channel used by a // protocol. MOZ_RELEASE_ASSERT(recordreplay::IsMiddleman()); mMiddlemanChannelOverride = aChannel; } protected: // Override this method in top-level protocols to change the event target // for a new actor (and its sub-actors). virtual already_AddRefed GetConstructedEventTarget( const Message& aMsg) { return nullptr; } // Override this method in top-level protocols to change the event target // for specific messages. virtual already_AddRefed GetSpecificMessageEventTarget( const Message& aMsg) { return nullptr; } private: base::ProcessId OtherPidMaybeInvalid() const { return mOtherPid; } int32_t NextId(); base::ProcessId mOtherPid; // NOTE NOTE NOTE // Used to be on mState int32_t mLastLocalId; IDMap mActorMap; IDMap mShmemMap; // XXX: We no longer need mEventTargetMap for Quantum DOM, so it may be // worthwhile to remove it before people start depending on it for other weird // things. Mutex mEventTargetMutex; IDMap> mEventTargetMap; // In the middleman process for recordreplay, we override the channel which // should be used by an actor. Due to this, we need to hold a separate pointer // here which can be used to specify that we shouldn't send messages to our // mChannel actor member. FIXME: This should probably be removed. MessageChannel* mMiddlemanChannelOverride; MessageChannel mChannel; }; class IShmemAllocator { public: virtual bool AllocShmem(size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, mozilla::ipc::Shmem* aShmem) = 0; virtual bool AllocUnsafeShmem( size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, mozilla::ipc::Shmem* aShmem) = 0; virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) = 0; }; #define FORWARD_SHMEM_ALLOCATOR_TO(aImplClass) \ virtual bool AllocShmem( \ size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \ mozilla::ipc::Shmem* aShmem) override { \ return aImplClass::AllocShmem(aSize, aShmType, aShmem); \ } \ virtual bool AllocUnsafeShmem( \ size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \ mozilla::ipc::Shmem* aShmem) override { \ return aImplClass::AllocUnsafeShmem(aSize, aShmType, aShmem); \ } \ virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) override { \ return aImplClass::DeallocShmem(aShmem); \ } inline bool LoggingEnabled() { #if defined(DEBUG) || defined(FUZZING) return !!PR_GetEnv("MOZ_IPC_MESSAGE_LOG"); #else return false; #endif } inline bool LoggingEnabledFor(const char* aTopLevelProtocol) { #if defined(DEBUG) || defined(FUZZING) const char* filter = PR_GetEnv("MOZ_IPC_MESSAGE_LOG"); if (!filter) { return false; } return strcmp(filter, "1") == 0 || strcmp(filter, aTopLevelProtocol) == 0; #else return false; #endif } MOZ_NEVER_INLINE void LogMessageForProtocol(const char* aTopLevelProtocol, base::ProcessId aOtherPid, const char* aContextDescription, uint32_t aMessageId, MessageDirection aDirection); MOZ_NEVER_INLINE void ProtocolErrorBreakpoint(const char* aMsg); // The code generator calls this function for errors which come from the // methods of protocols. Doing this saves codesize by making the error // cases significantly smaller. MOZ_NEVER_INLINE void FatalError(const char* aMsg, bool aIsParent); // The code generator calls this function for errors which are not // protocol-specific: errors in generated struct methods or errors in // transition functions, for instance. Doing this saves codesize by // by making the error cases significantly smaller. MOZ_NEVER_INLINE void LogicError(const char* aMsg); MOZ_NEVER_INLINE void ActorIdReadError(const char* aActorDescription); MOZ_NEVER_INLINE void BadActorIdError(const char* aActorDescription); MOZ_NEVER_INLINE void ActorLookupError(const char* aActorDescription); MOZ_NEVER_INLINE void MismatchedActorTypeError(const char* aActorDescription); MOZ_NEVER_INLINE void UnionTypeReadError(const char* aUnionName); MOZ_NEVER_INLINE void ArrayLengthReadError(const char* aElementName); MOZ_NEVER_INLINE void SentinelReadError(const char* aElementName); struct PrivateIPDLInterface {}; #if defined(XP_WIN) // This is a restricted version of Windows' DuplicateHandle() function // that works inside the sandbox and can send handles but not retrieve // them. Unlike DuplicateHandle(), it takes a process ID rather than // a process handle. It returns true on success, false otherwise. bool DuplicateHandle(HANDLE aSourceHandle, DWORD aTargetProcessId, HANDLE* aTargetHandle, DWORD aDesiredAccess, DWORD aOptions); #endif /** * Annotate the crash reporter with the error code from the most recent system * call. Returns the system error. */ void AnnotateSystemError(); /** * An endpoint represents one end of a partially initialized IPDL channel. To * set up a new top-level protocol: * * Endpoint parentEp; * Endpoint childEp; * nsresult rv; * rv = PFoo::CreateEndpoints(parentPid, childPid, &parentEp, &childEp); * * You're required to pass in parentPid and childPid, which are the pids of the * processes in which the parent and child endpoints will be used. * * Endpoints can be passed in IPDL messages or sent to other threads using * PostTask. Once an Endpoint has arrived at its destination process and thread, * you need to create the top-level actor and bind it to the endpoint: * * FooParent* parent = new FooParent(); * bool rv1 = parentEp.Bind(parent, processActor); * bool rv2 = parent->SendBar(...); * * (See Bind below for an explanation of processActor.) Once the actor is bound * to the endpoint, it can send and receive messages. */ template class Endpoint { public: typedef base::ProcessId ProcessId; Endpoint() : mValid(false), mMode(static_cast(0)), mMyPid(0), mOtherPid(0) {} Endpoint(const PrivateIPDLInterface&, mozilla::ipc::Transport::Mode aMode, TransportDescriptor aTransport, ProcessId aMyPid, ProcessId aOtherPid) : mValid(true), mMode(aMode), mTransport(aTransport), mMyPid(aMyPid), mOtherPid(aOtherPid) {} Endpoint(Endpoint&& aOther) : mValid(aOther.mValid), mTransport(aOther.mTransport), mMyPid(aOther.mMyPid), mOtherPid(aOther.mOtherPid) { if (aOther.mValid) { mMode = aOther.mMode; } aOther.mValid = false; } Endpoint& operator=(Endpoint&& aOther) { mValid = aOther.mValid; if (aOther.mValid) { mMode = aOther.mMode; } mTransport = aOther.mTransport; mMyPid = aOther.mMyPid; mOtherPid = aOther.mOtherPid; aOther.mValid = false; return *this; } ~Endpoint() { if (mValid) { CloseDescriptor(mTransport); } } ProcessId OtherPid() const { return mOtherPid; } // This method binds aActor to this endpoint. After this call, the actor can // be used to send and receive messages. The endpoint becomes invalid. bool Bind(PFooSide* aActor) { MOZ_RELEASE_ASSERT(mValid); if (mMyPid != base::GetCurrentProcId()) { // These pids must match, unless we are recording or replaying, in // which case the parent process will have supplied the pid for the // middleman process instead. Fix this here. If we're replaying // we'll see the pid of the middleman used while recording. MOZ_RELEASE_ASSERT(recordreplay::IsRecordingOrReplaying()); MOZ_RELEASE_ASSERT(recordreplay::IsReplaying() || mMyPid == recordreplay::child::MiddlemanProcessId()); mMyPid = base::GetCurrentProcId(); } UniquePtr transport = mozilla::ipc::OpenDescriptor(mTransport, mMode); if (!transport) { return false; } if (!aActor->Open( std::move(transport), mOtherPid, XRE_GetIOMessageLoop(), mMode == Transport::MODE_SERVER ? ParentSide : ChildSide)) { return false; } mValid = false; return true; } bool IsValid() const { return mValid; } private: friend struct IPC::ParamTraits>; Endpoint(const Endpoint&) = delete; Endpoint& operator=(const Endpoint&) = delete; bool mValid; mozilla::ipc::Transport::Mode mMode; TransportDescriptor mTransport; ProcessId mMyPid, mOtherPid; }; #if defined(XP_MACOSX) void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag, int error); #else static inline void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag, int error) {} #endif // This function is used internally to create a pair of Endpoints. See the // comment above Endpoint for a description of how it might be used. template nsresult CreateEndpoints(const PrivateIPDLInterface& aPrivate, base::ProcessId aParentDestPid, base::ProcessId aChildDestPid, Endpoint* aParentEndpoint, Endpoint* aChildEndpoint) { MOZ_RELEASE_ASSERT(aParentDestPid); MOZ_RELEASE_ASSERT(aChildDestPid); TransportDescriptor parentTransport, childTransport; nsresult rv; if (NS_FAILED(rv = CreateTransport(aParentDestPid, &parentTransport, &childTransport))) { AnnotateCrashReportWithErrno( CrashReporter::Annotation::IpcCreateEndpointsNsresult, int(rv)); return rv; } *aParentEndpoint = Endpoint(aPrivate, mozilla::ipc::Transport::MODE_SERVER, parentTransport, aParentDestPid, aChildDestPid); *aChildEndpoint = Endpoint(aPrivate, mozilla::ipc::Transport::MODE_CLIENT, childTransport, aChildDestPid, aParentDestPid); return NS_OK; } /** * A managed endpoint represents one end of a partially initialized managed * IPDL actor. It is used for situations where the usual IPDL Constructor * methods do not give sufficient control over the construction of actors, such * as when constructing actors within replies, or constructing multiple related * actors simultaneously. * * FooParent* parent = new FooParent(); * ManagedEndpoint childEp = parentMgr->OpenPFooEndpoint(parent); * * ManagedEndpoints should be sent using IPDL messages or other mechanisms to * the other side of the manager channel. Once the ManagedEndpoint has arrived * at its destination, you can create the actor, and bind it to the endpoint. * * FooChild* child = new FooChild(); * childMgr->BindPFooEndpoint(childEp, child); * * WARNING: If the remote side of an endpoint has not been bound before it * begins to receive messages, an IPC routing error will occur, likely causing * a browser crash. */ template class ManagedEndpoint { public: ManagedEndpoint() : mId(0) {} ManagedEndpoint(const PrivateIPDLInterface&, int32_t aId) : mId(aId) {} ManagedEndpoint(ManagedEndpoint&& aOther) : mId(aOther.mId) { aOther.mId = 0; } ManagedEndpoint& operator=(ManagedEndpoint&& aOther) { mId = aOther.mId; aOther.mId = 0; return *this; } bool IsValid() const { return mId != 0; } Maybe ActorId() const { return IsValid() ? Some(mId) : Nothing(); } bool operator==(const ManagedEndpoint& _o) const { return mId == _o.mId; } private: friend struct IPC::ParamTraits>; ManagedEndpoint(const ManagedEndpoint&) = delete; ManagedEndpoint& operator=(const ManagedEndpoint&) = delete; // The routing ID for the to-be-created endpoint. int32_t mId; // XXX(nika): Might be nice to have other info for assertions? // e.g. mManagerId, mManagerType, etc. }; // The ActorLifecycleProxy is a helper type used internally by IPC to maintain a // maybe-owning reference to an IProtocol object. For well-behaved actors // which are not freed until after their `Dealloc` method is called, a // reference to an actor's `ActorLifecycleProxy` object is an owning one, as the // `Dealloc` method will only be called when all references to the // `ActorLifecycleProxy` are released. // // Unfortunately, some actors may be destroyed before their `Dealloc` method // is called. For these actors, `ActorLifecycleProxy` acts as a weak pointer, // and will begin to return `nullptr` from its `Get()` method once the // corresponding actor object has been destroyed. // // When calling a `Recv` method, IPC will hold a `ActorLifecycleProxy` reference // to the target actor, meaning that well-behaved actors can behave as though a // strong reference is being held. // // Generic IPC code MUST treat ActorLifecycleProxy references as weak // references! class ActorLifecycleProxy { public: NS_INLINE_DECL_REFCOUNTING(ActorLifecycleProxy) IProtocol* Get() { return mActor; } private: friend class IProtocol; explicit ActorLifecycleProxy(IProtocol* aActor); ~ActorLifecycleProxy(); ActorLifecycleProxy(const ActorLifecycleProxy&) = delete; ActorLifecycleProxy& operator=(const ActorLifecycleProxy&) = delete; IProtocol* MOZ_NON_OWNING_REF mActor; // Hold a reference to the actor's manager's ActorLifecycleProxy to help // prevent it from dying while we're still alive! RefPtr mManager; }; void TableToArray(const nsTHashtable>& aTable, nsTArray& aArray); } // namespace ipc template class ManagedContainer : public nsTHashtable> { typedef nsTHashtable> BaseClass; public: // Having the core logic work on void pointers, rather than typed pointers, // means that we can have one instance of this code out-of-line, rather // than several hundred instances of this code out-of-lined. (Those // repeated instances don't necessarily get folded together by the linker // because they contain member offsets and such that differ between the // functions.) We do have to pay for it with some eye-bleedingly bad casts, // though. void ToArray(nsTArray& aArray) const { ::mozilla::ipc::TableToArray( *reinterpret_cast>*>( static_cast(this)), reinterpret_cast&>(aArray)); } }; template Protocol* LoneManagedOrNullAsserts( const ManagedContainer& aManagees) { if (aManagees.IsEmpty()) { return nullptr; } MOZ_ASSERT(aManagees.Count() == 1); return aManagees.ConstIter().Get()->GetKey(); } template Protocol* SingleManagedOrNull(const ManagedContainer& aManagees) { if (aManagees.Count() != 1) { return nullptr; } return aManagees.ConstIter().Get()->GetKey(); } } // namespace mozilla namespace IPC { template <> struct ParamTraits { typedef mozilla::ipc::ActorHandle paramType; static void Write(Message* aMsg, const paramType& aParam) { IPC::WriteParam(aMsg, aParam.mId); } static bool Read(const Message* aMsg, PickleIterator* aIter, paramType* aResult) { int id; if (IPC::ReadParam(aMsg, aIter, &id)) { aResult->mId = id; return true; } return false; } static void Log(const paramType& aParam, std::wstring* aLog) { aLog->append(StringPrintf(L"(%d)", aParam.mId)); } }; template struct ParamTraits> { typedef mozilla::ipc::Endpoint paramType; static void Write(Message* aMsg, const paramType& aParam) { IPC::WriteParam(aMsg, aParam.mValid); if (!aParam.mValid) { return; } IPC::WriteParam(aMsg, static_cast(aParam.mMode)); // We duplicate the descriptor so that our own file descriptor remains // valid after the write. An alternative would be to set // aParam.mTransport.mValid to false, but that won't work because aParam // is const. mozilla::ipc::TransportDescriptor desc = mozilla::ipc::DuplicateDescriptor(aParam.mTransport); IPC::WriteParam(aMsg, desc); IPC::WriteParam(aMsg, aParam.mMyPid); IPC::WriteParam(aMsg, aParam.mOtherPid); } static bool Read(const Message* aMsg, PickleIterator* aIter, paramType* aResult) { MOZ_RELEASE_ASSERT(!aResult->mValid); if (!IPC::ReadParam(aMsg, aIter, &aResult->mValid)) { return false; } if (!aResult->mValid) { // Object is empty, but read succeeded. return true; } uint32_t mode; if (!IPC::ReadParam(aMsg, aIter, &mode) || !IPC::ReadParam(aMsg, aIter, &aResult->mTransport) || !IPC::ReadParam(aMsg, aIter, &aResult->mMyPid) || !IPC::ReadParam(aMsg, aIter, &aResult->mOtherPid)) { return false; } aResult->mMode = Channel::Mode(mode); return true; } static void Log(const paramType& aParam, std::wstring* aLog) { aLog->append(StringPrintf(L"Endpoint")); } }; template struct ParamTraits> { typedef mozilla::ipc::ManagedEndpoint paramType; static void Write(Message* aMsg, const paramType& aParam) { IPC::WriteParam(aMsg, aParam.mId); } static bool Read(const Message* aMsg, PickleIterator* aIter, paramType* aResult) { MOZ_RELEASE_ASSERT(aResult->mId == 0); if (!IPC::ReadParam(aMsg, aIter, &aResult->mId)) { return false; } return true; } static void Log(const paramType& aParam, std::wstring* aLog) { aLog->append(StringPrintf(L"ManagedEndpoint")); } }; } // namespace IPC #endif // mozilla_ipc_ProtocolUtils_h