/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_GCVector_h #define js_GCVector_h #include "mozilla/Vector.h" #include "js/GCPolicyAPI.h" #include "js/RootingAPI.h" #include "js/TracingAPI.h" #include "js/Vector.h" namespace JS { // A GCVector is a Vector with an additional trace method that knows how // to visit all of the items stored in the Vector. For vectors that contain GC // things, this is usually more convenient than manually iterating and marking // the contents. // // Most types of GC pointers as keys and values can be traced with no extra // infrastructure. For structs and non-gc-pointer members, ensure that there is // a specialization of GCPolicy with an appropriate trace method available // to handle the custom type. Generic helpers can be found in // js/public/TracingAPI.h. // // Note that although this Vector's trace will deal correctly with moved items, // it does not itself know when to barrier or trace items. To function properly // it must either be used with Rooted, or barriered and traced manually. template class GCVector { mozilla::Vector vector; public: using ElementType = T; explicit GCVector(AllocPolicy alloc = AllocPolicy()) : vector(std::move(alloc)) {} GCVector(GCVector&& vec) : vector(std::move(vec.vector)) {} GCVector& operator=(GCVector&& vec) { vector = std::move(vec.vector); return *this; } size_t length() const { return vector.length(); } bool empty() const { return vector.empty(); } size_t capacity() const { return vector.capacity(); } T* begin() { return vector.begin(); } const T* begin() const { return vector.begin(); } T* end() { return vector.end(); } const T* end() const { return vector.end(); } T& operator[](size_t i) { return vector[i]; } const T& operator[](size_t i) const { return vector[i]; } T& back() { return vector.back(); } const T& back() const { return vector.back(); } bool initCapacity(size_t cap) { return vector.initCapacity(cap); } MOZ_MUST_USE bool reserve(size_t req) { return vector.reserve(req); } void shrinkBy(size_t amount) { return vector.shrinkBy(amount); } void shrinkTo(size_t newLen) { return vector.shrinkTo(newLen); } MOZ_MUST_USE bool growBy(size_t amount) { return vector.growBy(amount); } MOZ_MUST_USE bool resize(size_t newLen) { return vector.resize(newLen); } void clear() { return vector.clear(); } void clearAndFree() { return vector.clearAndFree(); } template bool append(U&& item) { return vector.append(std::forward(item)); } void erase(T* it) { vector.erase(it); } void erase(T* begin, T* end) { vector.erase(begin, end); } template void eraseIf(Pred pred) { vector.eraseIf(pred); } template void eraseIfEqual(const U& u) { vector.eraseIfEqual(u); } template MOZ_MUST_USE bool emplaceBack(Args&&... args) { return vector.emplaceBack(std::forward(args)...); } template void infallibleEmplaceBack(Args&&... args) { vector.infallibleEmplaceBack(std::forward(args)...); } template void infallibleAppend(U&& aU) { return vector.infallibleAppend(std::forward(aU)); } void infallibleAppendN(const T& aT, size_t aN) { return vector.infallibleAppendN(aT, aN); } template void infallibleAppend(const U* aBegin, const U* aEnd) { return vector.infallibleAppend(aBegin, aEnd); } template void infallibleAppend(const U* aBegin, size_t aLength) { return vector.infallibleAppend(aBegin, aLength); } template MOZ_MUST_USE bool appendAll(const U& aU) { return vector.append(aU.begin(), aU.end()); } MOZ_MUST_USE bool appendN(const T& val, size_t count) { return vector.appendN(val, count); } template MOZ_MUST_USE bool append(const U* aBegin, const U* aEnd) { return vector.append(aBegin, aEnd); } template MOZ_MUST_USE bool append(const U* aBegin, size_t aLength) { return vector.append(aBegin, aLength); } void popBack() { return vector.popBack(); } T popCopy() { return vector.popCopy(); } size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const { return vector.sizeOfExcludingThis(mallocSizeOf); } size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const { return vector.sizeOfIncludingThis(mallocSizeOf); } void trace(JSTracer* trc) { for (auto& elem : vector) { GCPolicy::trace(trc, &elem, "vector element"); } } bool needsSweep() const { return !this->empty(); } void sweep() { T* src = begin(); T* dst = begin(); while (src != end()) { if (!GCPolicy::needsSweep(src)) { if (src != dst) { *dst = std::move(*src); } dst++; } src++; } MOZ_ASSERT(dst <= end()); shrinkBy(end() - dst); } }; // AllocPolicy is optional. It has a default value declared in TypeDecls.h template class MOZ_STACK_CLASS StackGCVector : public GCVector { public: using Base = GCVector; private: // Inherit constructor from GCVector. using Base::Base; }; } // namespace JS namespace js { template class WrappedPtrOperations, Wrapper> { using Vec = JS::GCVector; const Vec& vec() const { return static_cast(this)->get(); } public: const AllocPolicy& allocPolicy() const { return vec().allocPolicy(); } size_t length() const { return vec().length(); } bool empty() const { return vec().empty(); } size_t capacity() const { return vec().capacity(); } const T* begin() const { return vec().begin(); } const T* end() const { return vec().end(); } const T& back() const { return vec().back(); } JS::Handle operator[](size_t aIndex) const { return JS::Handle::fromMarkedLocation(&vec().operator[](aIndex)); } }; template class MutableWrappedPtrOperations, Wrapper> : public WrappedPtrOperations, Wrapper> { using Vec = JS::GCVector; const Vec& vec() const { return static_cast(this)->get(); } Vec& vec() { return static_cast(this)->get(); } public: const AllocPolicy& allocPolicy() const { return vec().allocPolicy(); } AllocPolicy& allocPolicy() { return vec().allocPolicy(); } const T* begin() const { return vec().begin(); } T* begin() { return vec().begin(); } const T* end() const { return vec().end(); } T* end() { return vec().end(); } const T& back() const { return vec().back(); } T& back() { return vec().back(); } JS::Handle operator[](size_t aIndex) const { return JS::Handle::fromMarkedLocation(&vec().operator[](aIndex)); } JS::MutableHandle operator[](size_t aIndex) { return JS::MutableHandle::fromMarkedLocation(&vec().operator[](aIndex)); } MOZ_MUST_USE bool initCapacity(size_t aRequest) { return vec().initCapacity(aRequest); } MOZ_MUST_USE bool reserve(size_t aRequest) { return vec().reserve(aRequest); } void shrinkBy(size_t aIncr) { vec().shrinkBy(aIncr); } MOZ_MUST_USE bool growBy(size_t aIncr) { return vec().growBy(aIncr); } MOZ_MUST_USE bool resize(size_t aNewLength) { return vec().resize(aNewLength); } MOZ_MUST_USE bool growByUninitialized(size_t aIncr) { return vec().growByUninitialized(aIncr); } void infallibleGrowByUninitialized(size_t aIncr) { vec().infallibleGrowByUninitialized(aIncr); } MOZ_MUST_USE bool resizeUninitialized(size_t aNewLength) { return vec().resizeUninitialized(aNewLength); } void clear() { vec().clear(); } void clearAndFree() { vec().clearAndFree(); } template MOZ_MUST_USE bool append(U&& aU) { return vec().append(std::forward(aU)); } template MOZ_MUST_USE bool emplaceBack(Args&&... aArgs) { return vec().emplaceBack(std::forward(aArgs)...); } template void infallibleEmplaceBack(Args&&... args) { vec().infallibleEmplaceBack(std::forward(args)...); } template MOZ_MUST_USE bool appendAll(const U& aU) { return vec().appendAll(aU); } MOZ_MUST_USE bool appendN(const T& aT, size_t aN) { return vec().appendN(aT, aN); } template MOZ_MUST_USE bool append(const U* aBegin, const U* aEnd) { return vec().append(aBegin, aEnd); } template MOZ_MUST_USE bool append(const U* aBegin, size_t aLength) { return vec().append(aBegin, aLength); } template void infallibleAppend(U&& aU) { vec().infallibleAppend(std::forward(aU)); } void infallibleAppendN(const T& aT, size_t aN) { vec().infallibleAppendN(aT, aN); } template void infallibleAppend(const U* aBegin, const U* aEnd) { vec().infallibleAppend(aBegin, aEnd); } template void infallibleAppend(const U* aBegin, size_t aLength) { vec().infallibleAppend(aBegin, aLength); } void popBack() { vec().popBack(); } T popCopy() { return vec().popCopy(); } template T* insert(T* aP, U&& aVal) { return vec().insert(aP, std::forward(aVal)); } void erase(T* aT) { vec().erase(aT); } void erase(T* aBegin, T* aEnd) { vec().erase(aBegin, aEnd); } template void eraseIf(Pred pred) { vec().eraseIf(pred); } template void eraseIfEqual(const U& u) { vec().eraseIfEqual(u); } }; template class WrappedPtrOperations, Wrapper> : public WrappedPtrOperations< typename JS::StackGCVector::Base, Wrapper> {}; template class MutableWrappedPtrOperations, Wrapper> : public MutableWrappedPtrOperations< typename JS::StackGCVector::Base, Wrapper> {}; } // namespace js namespace JS { // An automatically rooted GCVector for stack use. template class RootedVector : public Rooted> { using Vec = StackGCVector; using Base = Rooted; public: explicit RootedVector(JSContext* cx) : Base(cx, Vec(cx)) {} }; // For use in rust code, an analog to RootedVector that doesn't require // instances to be destroyed in LIFO order. template class PersistentRootedVector : public PersistentRooted> { using Vec = StackGCVector; using Base = PersistentRooted; public: explicit PersistentRootedVector(JSContext* cx) : Base(cx, Vec(cx)) {} }; } // namespace JS #endif // js_GCVector_h