/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: sw=4 ts=4 et : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_ipc_ProtocolUtils_h #define mozilla_ipc_ProtocolUtils_h 1 #include "base/id_map.h" #include "base/process.h" #include "base/process_util.h" #include "chrome/common/ipc_message_utils.h" #include "prenv.h" #include "IPCMessageStart.h" #include "mozilla/AlreadyAddRefed.h" #include "mozilla/Attributes.h" #include "mozilla/ipc/FileDescriptor.h" #include "mozilla/ipc/Shmem.h" #include "mozilla/ipc/Transport.h" #include "mozilla/ipc/MessageLink.h" #include "mozilla/LinkedList.h" #include "mozilla/Maybe.h" #include "mozilla/Mutex.h" #include "mozilla/NotNull.h" #include "mozilla/UniquePtr.h" #include "MainThreadUtils.h" #if defined(ANDROID) && defined(DEBUG) #include #endif template class nsTHashtable; template class nsPtrHashKey; // WARNING: this takes into account the private, special-message-type // enum in ipc_channel.h. They need to be kept in sync. namespace { // XXX the max message ID is actually kuint32max now ... when this // changed, the assumptions of the special message IDs changed in that // they're not carving out messages from likely-unallocated space, but // rather carving out messages from the end of space allocated to // protocol 0. Oops! We can get away with this until protocol 0 // starts approaching its 65,536th message. enum { CHANNEL_OPENED_MESSAGE_TYPE = kuint16max - 6, SHMEM_DESTROYED_MESSAGE_TYPE = kuint16max - 5, SHMEM_CREATED_MESSAGE_TYPE = kuint16max - 4, GOODBYE_MESSAGE_TYPE = kuint16max - 3, CANCEL_MESSAGE_TYPE = kuint16max - 2, // kuint16max - 1 is used by ipc_channel.h. }; } // namespace class nsIEventTarget; namespace mozilla { namespace dom { class ContentParent; } // namespace dom namespace net { class NeckoParent; } // namespace net namespace ipc { class MessageChannel; #ifdef XP_WIN const base::ProcessHandle kInvalidProcessHandle = INVALID_HANDLE_VALUE; // In theory, on Windows, this is a valid process ID, but in practice they are // currently divisible by four. Process IDs share the kernel handle allocation // code and they are guaranteed to be divisible by four. // As this could change for process IDs we shouldn't generally rely on this // property, however even if that were to change, it seems safe to rely on this // particular value never being used. const base::ProcessId kInvalidProcessId = kuint32max; #else const base::ProcessHandle kInvalidProcessHandle = -1; const base::ProcessId kInvalidProcessId = -1; #endif // Scoped base::ProcessHandle to ensure base::CloseProcessHandle is called. struct ScopedProcessHandleTraits { typedef base::ProcessHandle type; static type empty() { return kInvalidProcessHandle; } static void release(type aProcessHandle) { if (aProcessHandle && aProcessHandle != kInvalidProcessHandle) { base::CloseProcessHandle(aProcessHandle); } } }; typedef mozilla::Scoped ScopedProcessHandle; class ProtocolFdMapping; class ProtocolCloneContext; // Used to pass references to protocol actors across the wire. // Actors created on the parent-side have a positive ID, and actors // allocated on the child side have a negative ID. struct ActorHandle { int mId; }; // What happens if Interrupt calls race? enum RacyInterruptPolicy { RIPError, RIPChildWins, RIPParentWins }; class IToplevelProtocol; class IProtocol : public HasResultCodes { public: enum ActorDestroyReason { FailedConstructor, Deletion, AncestorDeletion, NormalShutdown, AbnormalShutdown }; typedef base::ProcessId ProcessId; typedef IPC::Message Message; typedef IPC::MessageInfo MessageInfo; IProtocol(Side aSide) : mId(0), mSide(aSide), mManager(nullptr), mChannel(nullptr) {} virtual int32_t Register(IProtocol*); virtual int32_t RegisterID(IProtocol*, int32_t); virtual IProtocol* Lookup(int32_t); virtual void Unregister(int32_t); virtual void RemoveManagee(int32_t, IProtocol*) = 0; virtual Shmem::SharedMemory* CreateSharedMemory( size_t, SharedMemory::SharedMemoryType, bool, int32_t*); virtual Shmem::SharedMemory* LookupSharedMemory(int32_t); virtual bool IsTrackingSharedMemory(Shmem::SharedMemory*); virtual bool DestroySharedMemory(Shmem&); // XXX odd ducks, acknowledged virtual ProcessId OtherPid() const; Side GetSide() const { return mSide; } virtual const char* ProtocolName() const = 0; void FatalError(const char* const aErrorMsg) const; virtual void HandleFatalError(const char* aProtocolName, const char* aErrorMsg) const; Maybe ReadActor(const IPC::Message* aMessage, PickleIterator* aIter, bool aNullable, const char* aActorDescription, int32_t aProtocolTypeId); virtual Result OnMessageReceived(const Message& aMessage) = 0; virtual Result OnMessageReceived(const Message& aMessage, Message *& aReply) = 0; virtual Result OnCallReceived(const Message& aMessage, Message *& aReply) = 0; virtual int32_t GetProtocolTypeId() = 0; int32_t Id() const { return mId; } IProtocol* Manager() const { return mManager; } virtual const MessageChannel* GetIPCChannel() const { return mChannel; } virtual MessageChannel* GetIPCChannel() { return mChannel; } bool AllocShmem(size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, Shmem* aOutMem); bool AllocUnsafeShmem(size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, Shmem* aOutMem); bool DeallocShmem(Shmem& aMem); // Sets an event target to which all messages for aActor will be // dispatched. This method must be called before right before the SendPFoo // message for aActor is sent. And SendPFoo *must* be called if // SetEventTargetForActor is called. The receiver when calling // SetEventTargetForActor must be the actor that will be the manager for // aActor. void SetEventTargetForActor(IProtocol* aActor, nsIEventTarget* aEventTarget); protected: friend class IToplevelProtocol; void SetId(int32_t aId) { mId = aId; } void SetManager(IProtocol* aManager); void SetIPCChannel(MessageChannel* aChannel) { mChannel = aChannel; } virtual void SetEventTargetForActorInternal(IProtocol* aActor, nsIEventTarget* aEventTarget); static const int32_t kNullActorId = 0; static const int32_t kFreedActorId = 1; private: int32_t mId; Side mSide; IProtocol* mManager; MessageChannel* mChannel; }; typedef IPCMessageStart ProtocolId; #define IPC_OK() mozilla::ipc::IPCResult::Ok() #define IPC_FAIL(actor, why) mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__, (why)) #define IPC_FAIL_NO_REASON(actor) mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__) /** * All message deserializer and message handler should return this * type via above macros. We use a less generic name here to avoid * conflict with mozilla::Result because we have quite a few using * namespace mozilla::ipc; in the code base. */ class IPCResult { public: static IPCResult Ok() { return IPCResult(true); } static IPCResult Fail(NotNull aActor, const char* aWhere, const char* aWhy = ""); MOZ_IMPLICIT operator bool() const { return mSuccess; } private: explicit IPCResult(bool aResult) : mSuccess(aResult) {} bool mSuccess; }; template class Endpoint; /** * All top-level protocols should inherit this class. * * IToplevelProtocol tracks all top-level protocol actors created from * this protocol actor. */ class IToplevelProtocol : public IProtocol { template friend class Endpoint; protected: explicit IToplevelProtocol(ProtocolId aProtoId, Side aSide); ~IToplevelProtocol(); public: void SetTransport(UniquePtr aTrans) { mTrans = Move(aTrans); } Transport* GetTransport() const { return mTrans.get(); } ProtocolId GetProtocolId() const { return mProtocolId; } base::ProcessId OtherPid() const; void SetOtherProcessId(base::ProcessId aOtherPid); bool TakeMinidump(nsIFile** aDump, uint32_t* aSequence); virtual void OnChannelClose() = 0; virtual void OnChannelError() = 0; virtual void ProcessingError(Result aError, const char* aMsgName) {} virtual void OnChannelConnected(int32_t peer_pid) {} bool Open(mozilla::ipc::Transport* aTransport, base::ProcessId aOtherPid, MessageLoop* aThread = nullptr, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); bool Open(MessageChannel* aChannel, MessageLoop* aMessageLoop, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); void Close(); void SetReplyTimeoutMs(int32_t aTimeoutMs); virtual int32_t Register(IProtocol*); virtual int32_t RegisterID(IProtocol*, int32_t); virtual IProtocol* Lookup(int32_t); virtual void Unregister(int32_t); virtual Shmem::SharedMemory* CreateSharedMemory( size_t, SharedMemory::SharedMemoryType, bool, int32_t*); virtual Shmem::SharedMemory* LookupSharedMemory(int32_t); virtual bool IsTrackingSharedMemory(Shmem::SharedMemory*); virtual bool DestroySharedMemory(Shmem&); void DeallocShmems(); bool ShmemCreated(const Message& aMsg); bool ShmemDestroyed(const Message& aMsg); virtual bool ShouldContinueFromReplyTimeout() { return false; } // WARNING: This function is called with the MessageChannel monitor held. virtual void IntentionalCrash() { MOZ_CRASH("Intentional IPDL crash"); } // The code here is only useful for fuzzing. It should not be used for any // other purpose. #ifdef DEBUG // Returns true if we should simulate a timeout. // WARNING: This is a testing-only function that is called with the // MessageChannel monitor held. Don't do anything fancy here or we could // deadlock. virtual bool ArtificialTimeout() { return false; } // Returns true if we want to cause the worker thread to sleep with the // monitor unlocked. virtual bool NeedArtificialSleep() { return false; } // This function should be implemented to sleep for some amount of time on // the worker thread. Will only be called if NeedArtificialSleep() returns // true. virtual void ArtificialSleep() {} #else bool ArtificialTimeout() { return false; } bool NeedArtificialSleep() { return false; } void ArtificialSleep() {} #endif virtual void EnteredCxxStack() {} virtual void ExitedCxxStack() {} virtual void EnteredCall() {} virtual void ExitedCall() {} bool IsOnCxxStack() const; virtual RacyInterruptPolicy MediateInterruptRace(const MessageInfo& parent, const MessageInfo& child) { return RIPChildWins; } /** * Return true if windows messages can be handled while waiting for a reply * to a sync IPDL message. */ virtual bool HandleWindowsMessages(const Message& aMsg) const { return true; } virtual void OnEnteredSyncSend() { } virtual void OnExitedSyncSend() { } virtual void ProcessRemoteNativeEventsInInterruptCall() { } virtual already_AddRefed GetMessageEventTarget(const Message& aMsg); protected: virtual already_AddRefed GetConstructedEventTarget(const Message& aMsg) { return nullptr; } virtual void SetEventTargetForActorInternal(IProtocol* aActor, nsIEventTarget* aEventTarget); private: ProtocolId mProtocolId; UniquePtr mTrans; base::ProcessId mOtherPid; IDMap mActorMap; int32_t mLastRouteId; IDMap mShmemMap; Shmem::id_t mLastShmemId; Mutex mEventTargetMutex; IDMap> mEventTargetMap; }; class IShmemAllocator { public: virtual bool AllocShmem(size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, mozilla::ipc::Shmem* aShmem) = 0; virtual bool AllocUnsafeShmem(size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, mozilla::ipc::Shmem* aShmem) = 0; virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) = 0; }; #define FORWARD_SHMEM_ALLOCATOR_TO(aImplClass) \ virtual bool AllocShmem(size_t aSize, \ mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \ mozilla::ipc::Shmem* aShmem) override \ { return aImplClass::AllocShmem(aSize, aShmType, aShmem); } \ virtual bool AllocUnsafeShmem(size_t aSize, \ mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \ mozilla::ipc::Shmem* aShmem) override \ { return aImplClass::AllocUnsafeShmem(aSize, aShmType, aShmem); } \ virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) override \ { return aImplClass::DeallocShmem(aShmem); } inline bool LoggingEnabled() { #if defined(DEBUG) return !!PR_GetEnv("MOZ_IPC_MESSAGE_LOG"); #else return false; #endif } inline bool LoggingEnabledFor(const char *aTopLevelProtocol) { #if defined(DEBUG) const char *filter = PR_GetEnv("MOZ_IPC_MESSAGE_LOG"); if (!filter) { return false; } return strcmp(filter, "1") == 0 || strcmp(filter, aTopLevelProtocol) == 0; #else return false; #endif } enum class MessageDirection { eSending, eReceiving, }; MOZ_NEVER_INLINE void LogMessageForProtocol(const char* aTopLevelProtocol, base::ProcessId aOtherPid, const char* aContextDescription, uint32_t aMessageId, MessageDirection aDirection); MOZ_NEVER_INLINE void ProtocolErrorBreakpoint(const char* aMsg); // The code generator calls this function for errors which come from the // methods of protocols. Doing this saves codesize by making the error // cases significantly smaller. MOZ_NEVER_INLINE void FatalError(const char* aProtocolName, const char* aMsg, bool aIsParent); // The code generator calls this function for errors which are not // protocol-specific: errors in generated struct methods or errors in // transition functions, for instance. Doing this saves codesize by // by making the error cases significantly smaller. MOZ_NEVER_INLINE void LogicError(const char* aMsg); MOZ_NEVER_INLINE void ActorIdReadError(const char* aActorDescription); MOZ_NEVER_INLINE void BadActorIdError(const char* aActorDescription); MOZ_NEVER_INLINE void ActorLookupError(const char* aActorDescription); MOZ_NEVER_INLINE void MismatchedActorTypeError(const char* aActorDescription); MOZ_NEVER_INLINE void UnionTypeReadError(const char* aUnionName); MOZ_NEVER_INLINE void ArrayLengthReadError(const char* aElementName); struct PrivateIPDLInterface {}; nsresult Bridge(const PrivateIPDLInterface&, MessageChannel*, base::ProcessId, MessageChannel*, base::ProcessId, ProtocolId, ProtocolId); bool Open(const PrivateIPDLInterface&, MessageChannel*, base::ProcessId, Transport::Mode, ProtocolId, ProtocolId); bool UnpackChannelOpened(const PrivateIPDLInterface&, const IPC::Message&, TransportDescriptor*, base::ProcessId*, ProtocolId*); #if defined(XP_WIN) // This is a restricted version of Windows' DuplicateHandle() function // that works inside the sandbox and can send handles but not retrieve // them. Unlike DuplicateHandle(), it takes a process ID rather than // a process handle. It returns true on success, false otherwise. bool DuplicateHandle(HANDLE aSourceHandle, DWORD aTargetProcessId, HANDLE* aTargetHandle, DWORD aDesiredAccess, DWORD aOptions); #endif /** * Annotate the crash reporter with the error code from the most recent system * call. Returns the system error. */ #ifdef MOZ_CRASHREPORTER void AnnotateSystemError(); #else #define AnnotateSystemError() do { } while (0) #endif /** * An endpoint represents one end of a partially initialized IPDL channel. To * set up a new top-level protocol: * * Endpoint parentEp; * Endpoint childEp; * nsresult rv; * rv = PFoo::CreateEndpoints(parentPid, childPid, &parentEp, &childEp); * * You're required to pass in parentPid and childPid, which are the pids of the * processes in which the parent and child endpoints will be used. * * Endpoints can be passed in IPDL messages or sent to other threads using * PostTask. Once an Endpoint has arrived at its destination process and thread, * you need to create the top-level actor and bind it to the endpoint: * * FooParent* parent = new FooParent(); * bool rv1 = parentEp.Bind(parent, processActor); * bool rv2 = parent->SendBar(...); * * (See Bind below for an explanation of processActor.) Once the actor is bound * to the endpoint, it can send and receive messages. */ template class Endpoint { public: typedef base::ProcessId ProcessId; Endpoint() : mValid(false) {} Endpoint(const PrivateIPDLInterface&, mozilla::ipc::Transport::Mode aMode, TransportDescriptor aTransport, ProcessId aMyPid, ProcessId aOtherPid, ProtocolId aProtocolId) : mValid(true) , mMode(aMode) , mTransport(aTransport) , mMyPid(aMyPid) , mOtherPid(aOtherPid) , mProtocolId(aProtocolId) {} Endpoint(Endpoint&& aOther) : mValid(aOther.mValid) , mMode(aOther.mMode) , mTransport(aOther.mTransport) , mMyPid(aOther.mMyPid) , mOtherPid(aOther.mOtherPid) , mProtocolId(aOther.mProtocolId) { aOther.mValid = false; } Endpoint& operator=(Endpoint&& aOther) { mValid = aOther.mValid; mMode = aOther.mMode; mTransport = aOther.mTransport; mMyPid = aOther.mMyPid; mOtherPid = aOther.mOtherPid; mProtocolId = aOther.mProtocolId; aOther.mValid = false; return *this; } ~Endpoint() { if (mValid) { CloseDescriptor(mTransport); } } ProcessId OtherPid() const { return mOtherPid; } // This method binds aActor to this endpoint. After this call, the actor can // be used to send and receive messages. The endpoint becomes invalid. bool Bind(PFooSide* aActor) { MOZ_RELEASE_ASSERT(mValid); MOZ_RELEASE_ASSERT(mMyPid == base::GetCurrentProcId()); UniquePtr t = mozilla::ipc::OpenDescriptor(mTransport, mMode); if (!t) { return false; } if (!aActor->Open(t.get(), mOtherPid, XRE_GetIOMessageLoop(), mMode == Transport::MODE_SERVER ? ParentSide : ChildSide)) { return false; } mValid = false; aActor->SetTransport(Move(t)); return true; } bool IsValid() const { return mValid; } private: friend struct IPC::ParamTraits>; Endpoint(const Endpoint&) = delete; Endpoint& operator=(const Endpoint&) = delete; bool mValid; mozilla::ipc::Transport::Mode mMode; TransportDescriptor mTransport; ProcessId mMyPid, mOtherPid; ProtocolId mProtocolId; }; #if defined(MOZ_CRASHREPORTER) && defined(XP_MACOSX) void AnnotateCrashReportWithErrno(const char* tag, int error); #else static inline void AnnotateCrashReportWithErrno(const char* tag, int error) {} #endif // This function is used internally to create a pair of Endpoints. See the // comment above Endpoint for a description of how it might be used. template nsresult CreateEndpoints(const PrivateIPDLInterface& aPrivate, base::ProcessId aParentDestPid, base::ProcessId aChildDestPid, ProtocolId aProtocol, ProtocolId aChildProtocol, Endpoint* aParentEndpoint, Endpoint* aChildEndpoint) { MOZ_RELEASE_ASSERT(aParentDestPid); MOZ_RELEASE_ASSERT(aChildDestPid); TransportDescriptor parentTransport, childTransport; nsresult rv; if (NS_FAILED(rv = CreateTransport(aParentDestPid, &parentTransport, &childTransport))) { AnnotateCrashReportWithErrno("IpcCreateEndpointsNsresult", int(rv)); return rv; } *aParentEndpoint = Endpoint(aPrivate, mozilla::ipc::Transport::MODE_SERVER, parentTransport, aParentDestPid, aChildDestPid, aProtocol); *aChildEndpoint = Endpoint(aPrivate, mozilla::ipc::Transport::MODE_CLIENT, childTransport, aChildDestPid, aParentDestPid, aChildProtocol); return NS_OK; } void TableToArray(const nsTHashtable>& aTable, nsTArray& aArray); const char* StringFromIPCMessageType(uint32_t aMessageType); } // namespace ipc template class ManagedContainer : public nsTHashtable> { typedef nsTHashtable> BaseClass; public: // Having the core logic work on void pointers, rather than typed pointers, // means that we can have one instance of this code out-of-line, rather // than several hundred instances of this code out-of-lined. (Those // repeated instances don't necessarily get folded together by the linker // because they contain member offsets and such that differ between the // functions.) We do have to pay for it with some eye-bleedingly bad casts, // though. void ToArray(nsTArray& aArray) const { ::mozilla::ipc::TableToArray(*reinterpret_cast>*> (static_cast(this)), reinterpret_cast&>(aArray)); } }; template Protocol* LoneManagedOrNullAsserts(const ManagedContainer& aManagees) { if (aManagees.IsEmpty()) { return nullptr; } MOZ_ASSERT(aManagees.Count() == 1); return aManagees.ConstIter().Get()->GetKey(); } // appId's are for B2G only currently, where managees.Count() == 1. This is // not guaranteed currently in Desktop, so for paths used for desktop, // don't assert there's one managee. template Protocol* SingleManagedOrNull(const ManagedContainer& aManagees) { if (aManagees.Count() != 1) { return nullptr; } return aManagees.ConstIter().Get()->GetKey(); } } // namespace mozilla namespace IPC { template <> struct ParamTraits { typedef mozilla::ipc::ActorHandle paramType; static void Write(Message* aMsg, const paramType& aParam) { IPC::WriteParam(aMsg, aParam.mId); } static bool Read(const Message* aMsg, PickleIterator* aIter, paramType* aResult) { int id; if (IPC::ReadParam(aMsg, aIter, &id)) { aResult->mId = id; return true; } return false; } static void Log(const paramType& aParam, std::wstring* aLog) { aLog->append(StringPrintf(L"(%d)", aParam.mId)); } }; template struct ParamTraits> { typedef mozilla::ipc::Endpoint paramType; static void Write(Message* aMsg, const paramType& aParam) { IPC::WriteParam(aMsg, aParam.mValid); if (!aParam.mValid) { return; } IPC::WriteParam(aMsg, static_cast(aParam.mMode)); // We duplicate the descriptor so that our own file descriptor remains // valid after the write. An alternative would be to set // aParam.mTransport.mValid to false, but that won't work because aParam // is const. mozilla::ipc::TransportDescriptor desc = mozilla::ipc::DuplicateDescriptor(aParam.mTransport); IPC::WriteParam(aMsg, desc); IPC::WriteParam(aMsg, aParam.mMyPid); IPC::WriteParam(aMsg, aParam.mOtherPid); IPC::WriteParam(aMsg, static_cast(aParam.mProtocolId)); } static bool Read(const Message* aMsg, PickleIterator* aIter, paramType* aResult) { MOZ_RELEASE_ASSERT(!aResult->mValid); if (!IPC::ReadParam(aMsg, aIter, &aResult->mValid)) { return false; } if (!aResult->mValid) { // Object is empty, but read succeeded. return true; } uint32_t mode, protocolId; if (!IPC::ReadParam(aMsg, aIter, &mode) || !IPC::ReadParam(aMsg, aIter, &aResult->mTransport) || !IPC::ReadParam(aMsg, aIter, &aResult->mMyPid) || !IPC::ReadParam(aMsg, aIter, &aResult->mOtherPid) || !IPC::ReadParam(aMsg, aIter, &protocolId)) { return false; } aResult->mMode = Channel::Mode(mode); aResult->mProtocolId = mozilla::ipc::ProtocolId(protocolId); return true; } static void Log(const paramType& aParam, std::wstring* aLog) { aLog->append(StringPrintf(L"Endpoint")); } }; } // namespace IPC #endif // mozilla_ipc_ProtocolUtils_h