/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ #ifndef mozilla_ipc_ProtocolUtils_h #define mozilla_ipc_ProtocolUtils_h 1 #include #include #include #include "IPCMessageStart.h" #include "base/basictypes.h" #include "base/process.h" #include "chrome/common/ipc_message.h" #include "mojo/core/ports/port_ref.h" #include "mozilla/AlreadyAddRefed.h" #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/FunctionRef.h" #include "mozilla/Maybe.h" #include "mozilla/Mutex.h" #include "mozilla/RefPtr.h" #include "mozilla/Scoped.h" #include "mozilla/UniquePtr.h" #include "mozilla/ipc/MessageChannel.h" #include "mozilla/ipc/MessageLink.h" #include "mozilla/ipc/SharedMemory.h" #include "mozilla/ipc/Shmem.h" #include "nsTHashMap.h" #include "nsDebug.h" #include "nsISupports.h" #include "nsTArrayForwardDeclare.h" #include "nsTHashSet.h" // XXX Things that could be replaced by a forward header #include "mozilla/ipc/Transport.h" // for Transport // XXX Things that could be moved to ProtocolUtils.cpp #include "base/process_util.h" // for CloseProcessHandle #include "prenv.h" // for PR_GetEnv #if defined(ANDROID) && defined(DEBUG) # include #endif template class nsPtrHashKey; // WARNING: this takes into account the private, special-message-type // enum in ipc_channel.h. They need to be kept in sync. namespace { // XXX the max message ID is actually kuint32max now ... when this // changed, the assumptions of the special message IDs changed in that // they're not carving out messages from likely-unallocated space, but // rather carving out messages from the end of space allocated to // protocol 0. Oops! We can get away with this until protocol 0 // starts approaching its 65,536th message. enum { // Message types used by NodeChannel ACCEPT_INVITE_MESSAGE_TYPE = kuint16max - 16, REQUEST_INTRODUCTION_MESSAGE_TYPE = kuint16max - 15, INTRODUCE_MESSAGE_TYPE = kuint16max - 14, BROADCAST_MESSAGE_TYPE = kuint16max - 13, EVENT_MESSAGE_TYPE = kuint16max - 12, // Message types used by MessageChannel MANAGED_ENDPOINT_DROPPED_MESSAGE_TYPE = kuint16max - 11, MANAGED_ENDPOINT_BOUND_MESSAGE_TYPE = kuint16max - 10, IMPENDING_SHUTDOWN_MESSAGE_TYPE = kuint16max - 9, BUILD_IDS_MATCH_MESSAGE_TYPE = kuint16max - 8, BUILD_ID_MESSAGE_TYPE = kuint16max - 7, // unused CHANNEL_OPENED_MESSAGE_TYPE = kuint16max - 6, SHMEM_DESTROYED_MESSAGE_TYPE = kuint16max - 5, SHMEM_CREATED_MESSAGE_TYPE = kuint16max - 4, GOODBYE_MESSAGE_TYPE = kuint16max - 3, CANCEL_MESSAGE_TYPE = kuint16max - 2, // kuint16max - 1 is used by ipc_channel.h. }; } // namespace class MessageLoop; class PickleIterator; class nsISerialEventTarget; namespace mozilla { class SchedulerGroup; namespace dom { class ContentParent; } // namespace dom namespace net { class NeckoParent; } // namespace net namespace ipc { #ifdef FUZZING class ProtocolFuzzerHelper; #endif #ifdef XP_WIN const base::ProcessHandle kInvalidProcessHandle = INVALID_HANDLE_VALUE; // In theory, on Windows, this is a valid process ID, but in practice they are // currently divisible by four. Process IDs share the kernel handle allocation // code and they are guaranteed to be divisible by four. // As this could change for process IDs we shouldn't generally rely on this // property, however even if that were to change, it seems safe to rely on this // particular value never being used. const base::ProcessId kInvalidProcessId = kuint32max; #else const base::ProcessHandle kInvalidProcessHandle = -1; const base::ProcessId kInvalidProcessId = -1; #endif // Scoped base::ProcessHandle to ensure base::CloseProcessHandle is called. struct ScopedProcessHandleTraits { typedef base::ProcessHandle type; static type empty() { return kInvalidProcessHandle; } static void release(type aProcessHandle) { if (aProcessHandle && aProcessHandle != kInvalidProcessHandle) { base::CloseProcessHandle(aProcessHandle); } } }; typedef mozilla::Scoped ScopedProcessHandle; class ProtocolFdMapping; class ProtocolCloneContext; // Used to pass references to protocol actors across the wire. // Actors created on the parent-side have a positive ID, and actors // allocated on the child side have a negative ID. struct ActorHandle { int mId; }; // What happens if Interrupt calls race? enum RacyInterruptPolicy { RIPError, RIPChildWins, RIPParentWins }; enum class LinkStatus : uint8_t { // The actor has not established a link yet, or the actor is no longer in use // by IPC, and its 'Dealloc' method has been called or is being called. // // NOTE: This state is used instead of an explicit `Freed` state when IPC no // longer holds references to the current actor as we currently re-open // existing actors. Once we fix these poorly behaved actors, this loopback // state can be split to have the final state not be the same as the initial // state. Inactive, // A live link is connected to the other side of this actor. Connected, // The link has begun being destroyed. Messages may still be received, but // cannot be sent. (exception: sync/intr replies may be sent while Doomed). Doomed, // The link has been destroyed, and messages will no longer be sent or // received. Destroyed, }; typedef IPCMessageStart ProtocolId; // Generated by IPDL compiler const char* ProtocolIdToName(IPCMessageStart aId); class IToplevelProtocol; class ActorLifecycleProxy; class WeakActorLifecycleProxy; class IPDLResolverInner; class UntypedManagedEndpoint; class IProtocol : public HasResultCodes { public: enum ActorDestroyReason { FailedConstructor, Deletion, AncestorDeletion, NormalShutdown, AbnormalShutdown, ManagedEndpointDropped }; typedef base::ProcessId ProcessId; typedef IPC::Message Message; typedef IPC::MessageInfo MessageInfo; IProtocol(ProtocolId aProtoId, Side aSide) : mId(0), mProtocolId(aProtoId), mSide(aSide), mLinkStatus(LinkStatus::Inactive), mLifecycleProxy(nullptr), mManager(nullptr), mToplevel(nullptr) {} IToplevelProtocol* ToplevelProtocol() { return mToplevel; } // The following methods either directly forward to the toplevel protocol, or // almost directly do. int32_t Register(IProtocol* aRouted); int32_t RegisterID(IProtocol* aRouted, int32_t aId); IProtocol* Lookup(int32_t aId); void Unregister(int32_t aId); Shmem::SharedMemory* CreateSharedMemory(size_t aSize, SharedMemory::SharedMemoryType aType, bool aUnsafe, int32_t* aId); Shmem::SharedMemory* LookupSharedMemory(int32_t aId); bool IsTrackingSharedMemory(Shmem::SharedMemory* aSegment); bool DestroySharedMemory(Shmem& aShmem); MessageChannel* GetIPCChannel(); const MessageChannel* GetIPCChannel() const; // Sets an event target to which all messages for aActor will be // dispatched. This method must be called before right before the SendPFoo // message for aActor is sent. And SendPFoo *must* be called if // SetEventTargetForActor is called. The receiver when calling // SetEventTargetForActor must be the actor that will be the manager for // aActor. void SetEventTargetForActor(IProtocol* aActor, nsISerialEventTarget* aEventTarget); // Replace the event target for the messages of aActor. There must not be // any messages of aActor in the task queue, or we might run into some // unexpected behavior. void ReplaceEventTargetForActor(IProtocol* aActor, nsISerialEventTarget* aEventTarget); nsISerialEventTarget* GetActorEventTarget(); already_AddRefed GetActorEventTarget(IProtocol* aActor); ProcessId OtherPid() const; // Actor lifecycle and other properties. ProtocolId GetProtocolId() const { return mProtocolId; } const char* GetProtocolName() const { return ProtocolIdToName(mProtocolId); } int32_t Id() const { return mId; } IProtocol* Manager() const { return mManager; } ActorLifecycleProxy* GetLifecycleProxy() { return mLifecycleProxy; } WeakActorLifecycleProxy* GetWeakLifecycleProxy(); Side GetSide() const { return mSide; } bool CanSend() const { return mLinkStatus == LinkStatus::Connected; } bool CanRecv() const { return mLinkStatus == LinkStatus::Connected || mLinkStatus == LinkStatus::Doomed; } // Remove or deallocate a managee given its type. virtual void RemoveManagee(int32_t, IProtocol*) = 0; virtual void DeallocManagee(int32_t, IProtocol*) = 0; Maybe ReadActor(const IPC::Message* aMessage, PickleIterator* aIter, bool aNullable, const char* aActorDescription, int32_t aProtocolTypeId); virtual Result OnMessageReceived(const Message& aMessage) = 0; virtual Result OnMessageReceived(const Message& aMessage, Message*& aReply) = 0; virtual Result OnCallReceived(const Message& aMessage, Message*& aReply) = 0; bool AllocShmem(size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, Shmem* aOutMem); bool AllocUnsafeShmem(size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, Shmem* aOutMem); bool DeallocShmem(Shmem& aMem); void FatalError(const char* const aErrorMsg) const; virtual void HandleFatalError(const char* aErrorMsg) const; protected: virtual ~IProtocol(); friend class IToplevelProtocol; friend class ActorLifecycleProxy; friend class IPDLResolverInner; friend class UntypedManagedEndpoint; void SetId(int32_t aId); // We have separate functions because the accessibility code manually // calls SetManager. void SetManager(IProtocol* aManager); // Sets the manager for the protocol and registers the protocol with // its manager, setting up channels for the protocol as well. Not // for use outside of IPDL. void SetManagerAndRegister(IProtocol* aManager); void SetManagerAndRegister(IProtocol* aManager, int32_t aId); // Helpers for calling `Send` on our underlying IPC channel. bool ChannelSend(IPC::Message* aMsg); bool ChannelSend(IPC::Message* aMsg, IPC::Message* aReply); bool ChannelCall(IPC::Message* aMsg, IPC::Message* aReply); template void ChannelSend(IPC::Message* aMsg, ResolveCallback&& aResolve, RejectCallback&& aReject) { UniquePtr msg(aMsg); if (CanSend()) { GetIPCChannel()->Send(std::move(msg), this, std::move(aResolve), std::move(aReject)); } else { WarnMessageDiscarded(msg.get()); aReject(ResponseRejectReason::SendError); } } // Collect all actors managed by this object in an array. To make this safer // to iterate, `ActorLifecycleProxy` references are returned rather than raw // actor pointers. virtual void AllManagedActors( nsTArray>& aActors) const = 0; // Internal method called when the actor becomes connected. void ActorConnected(); // Called immediately before setting the actor state to doomed, and triggering // async actor destruction. Messages may be sent from this callback, but no // later. // FIXME(nika): This is currently unused! virtual void ActorDoom() {} void DoomSubtree(); // Called when the actor has been destroyed due to an error, a __delete__ // message, or a __doom__ reply. virtual void ActorDestroy(ActorDestroyReason aWhy) {} void DestroySubtree(ActorDestroyReason aWhy); // Called when IPC has acquired its first reference to the actor. This method // may take references which will later be freed by `ActorDealloc`. virtual void ActorAlloc() {} // Called when IPC has released its final reference to the actor. It will call // the dealloc method, causing the actor to be actually freed. // // The actor has been freed after this method returns. virtual void ActorDealloc() { if (Manager()) { Manager()->DeallocManagee(mProtocolId, this); } } static const int32_t kNullActorId = 0; static const int32_t kFreedActorId = 1; private: #ifdef DEBUG void WarnMessageDiscarded(IPC::Message* aMsg); #else void WarnMessageDiscarded(IPC::Message*) {} #endif int32_t mId; ProtocolId mProtocolId; Side mSide; LinkStatus mLinkStatus; ActorLifecycleProxy* mLifecycleProxy; IProtocol* mManager; IToplevelProtocol* mToplevel; }; #define IPC_OK() mozilla::ipc::IPCResult::Ok() #define IPC_FAIL(actor, why) \ mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__, (why)) #define IPC_FAIL_NO_REASON(actor) \ mozilla::ipc::IPCResult::Fail(WrapNotNull(actor), __func__) /** * All message deserializer and message handler should return this * type via above macros. We use a less generic name here to avoid * conflict with mozilla::Result because we have quite a few using * namespace mozilla::ipc; in the code base. */ class IPCResult { public: static IPCResult Ok() { return IPCResult(true); } static IPCResult Fail(NotNull aActor, const char* aWhere, const char* aWhy = ""); MOZ_IMPLICIT operator bool() const { return mSuccess; } private: explicit IPCResult(bool aResult) : mSuccess(aResult) {} bool mSuccess; }; template class Endpoint; template class ManagedEndpoint; /** * All top-level protocols should inherit this class. * * IToplevelProtocol tracks all top-level protocol actors created from * this protocol actor. */ class IToplevelProtocol : public IProtocol { #ifdef FUZZING friend class mozilla::ipc::ProtocolFuzzerHelper; #endif template friend class Endpoint; protected: explicit IToplevelProtocol(const char* aName, ProtocolId aProtoId, Side aSide); ~IToplevelProtocol() = default; public: // Shadow methods on IProtocol which are implemented directly on toplevel // actors. int32_t Register(IProtocol* aRouted); int32_t RegisterID(IProtocol* aRouted, int32_t aId); IProtocol* Lookup(int32_t aId); void Unregister(int32_t aId); Shmem::SharedMemory* CreateSharedMemory(size_t aSize, SharedMemory::SharedMemoryType aType, bool aUnsafe, int32_t* aId); Shmem::SharedMemory* LookupSharedMemory(int32_t aId); bool IsTrackingSharedMemory(Shmem::SharedMemory* aSegment); bool DestroySharedMemory(Shmem& aShmem); MessageChannel* GetIPCChannel() { return &mChannel; } const MessageChannel* GetIPCChannel() const { return &mChannel; } // NOTE: The target actor's Manager must already be set. void SetEventTargetForActorInternal(IProtocol* aActor, nsISerialEventTarget* aEventTarget); void ReplaceEventTargetForActor(IProtocol* aActor, nsISerialEventTarget* aEventTarget); nsISerialEventTarget* GetActorEventTarget(); already_AddRefed GetActorEventTarget(IProtocol* aActor); ProcessId OtherPid() const; void SetOtherProcessId(base::ProcessId aOtherPid); virtual void OnChannelClose() = 0; virtual void OnChannelError() = 0; virtual void ProcessingError(Result aError, const char* aMsgName) {} bool Open(ScopedPort aPort, base::ProcessId aOtherPid); bool Open(MessageChannel* aChannel, nsISerialEventTarget* aEventTarget, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); // Open a toplevel actor such that both ends of the actor's channel are on // the same thread. This method should be called on the thread to perform // the link. // // WARNING: Attempting to send a sync or intr message on the same thread // will crash. bool OpenOnSameThread(MessageChannel* aChannel, mozilla::ipc::Side aSide = mozilla::ipc::UnknownSide); /** * This sends a special message that is processed on the IO thread, so that * other actors can know that the process will soon shutdown. */ void NotifyImpendingShutdown(); void Close(); void SetReplyTimeoutMs(int32_t aTimeoutMs); void DeallocShmems(); bool ShmemCreated(const Message& aMsg); bool ShmemDestroyed(const Message& aMsg); virtual bool ShouldContinueFromReplyTimeout() { return false; } // WARNING: This function is called with the MessageChannel monitor held. virtual void IntentionalCrash() { MOZ_CRASH("Intentional IPDL crash"); } // The code here is only useful for fuzzing. It should not be used for any // other purpose. #ifdef DEBUG // Returns true if we should simulate a timeout. // WARNING: This is a testing-only function that is called with the // MessageChannel monitor held. Don't do anything fancy here or we could // deadlock. virtual bool ArtificialTimeout() { return false; } // Returns true if we want to cause the worker thread to sleep with the // monitor unlocked. virtual bool NeedArtificialSleep() { return false; } // This function should be implemented to sleep for some amount of time on // the worker thread. Will only be called if NeedArtificialSleep() returns // true. virtual void ArtificialSleep() {} #else bool ArtificialTimeout() { return false; } bool NeedArtificialSleep() { return false; } void ArtificialSleep() {} #endif virtual void EnteredCxxStack() {} virtual void ExitedCxxStack() {} virtual void EnteredCall() {} virtual void ExitedCall() {} bool IsOnCxxStack() const; virtual RacyInterruptPolicy MediateInterruptRace(const MessageInfo& parent, const MessageInfo& child) { return RIPChildWins; } /** * Return true if windows messages can be handled while waiting for a reply * to a sync IPDL message. */ virtual bool HandleWindowsMessages(const Message& aMsg) const { return true; } virtual void OnEnteredSyncSend() {} virtual void OnExitedSyncSend() {} virtual void ProcessRemoteNativeEventsInInterruptCall() {} virtual void OnChannelReceivedMessage(const Message& aMsg) {} void OnIPCChannelOpened() { ActorConnected(); } already_AddRefed GetMessageEventTarget( const Message& aMsg); base::ProcessId OtherPidMaybeInvalid() const { return mOtherPid; } private: int32_t NextId(); template using IDMap = nsTHashMap; base::ProcessId mOtherPid; // NOTE NOTE NOTE // Used to be on mState int32_t mLastLocalId; IDMap mActorMap; IDMap mShmemMap; // XXX: We no longer need mEventTargetMap for Quantum DOM, so it may be // worthwhile to remove it before people start depending on it for other weird // things. Mutex mEventTargetMutex; IDMap> mEventTargetMap; MessageChannel mChannel; }; class IShmemAllocator { public: virtual bool AllocShmem(size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, mozilla::ipc::Shmem* aShmem) = 0; virtual bool AllocUnsafeShmem( size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, mozilla::ipc::Shmem* aShmem) = 0; virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) = 0; }; #define FORWARD_SHMEM_ALLOCATOR_TO(aImplClass) \ virtual bool AllocShmem( \ size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \ mozilla::ipc::Shmem* aShmem) override { \ return aImplClass::AllocShmem(aSize, aShmType, aShmem); \ } \ virtual bool AllocUnsafeShmem( \ size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aShmType, \ mozilla::ipc::Shmem* aShmem) override { \ return aImplClass::AllocUnsafeShmem(aSize, aShmType, aShmem); \ } \ virtual bool DeallocShmem(mozilla::ipc::Shmem& aShmem) override { \ return aImplClass::DeallocShmem(aShmem); \ } inline bool LoggingEnabled() { #if defined(DEBUG) || defined(FUZZING) return !!PR_GetEnv("MOZ_IPC_MESSAGE_LOG"); #else return false; #endif } #if defined(DEBUG) || defined(FUZZING) bool LoggingEnabledFor(const char* aTopLevelProtocol, const char* aFilter); #endif inline bool LoggingEnabledFor(const char* aTopLevelProtocol) { #if defined(DEBUG) || defined(FUZZING) return LoggingEnabledFor(aTopLevelProtocol, PR_GetEnv("MOZ_IPC_MESSAGE_LOG")); #else return false; #endif } MOZ_NEVER_INLINE void LogMessageForProtocol(const char* aTopLevelProtocol, base::ProcessId aOtherPid, const char* aContextDescription, uint32_t aMessageId, MessageDirection aDirection); MOZ_NEVER_INLINE void ProtocolErrorBreakpoint(const char* aMsg); // The code generator calls this function for errors which come from the // methods of protocols. Doing this saves codesize by making the error // cases significantly smaller. MOZ_NEVER_INLINE void FatalError(const char* aMsg, bool aIsParent); // The code generator calls this function for errors which are not // protocol-specific: errors in generated struct methods or errors in // transition functions, for instance. Doing this saves codesize by // by making the error cases significantly smaller. MOZ_NEVER_INLINE void LogicError(const char* aMsg); MOZ_NEVER_INLINE void ActorIdReadError(const char* aActorDescription); MOZ_NEVER_INLINE void BadActorIdError(const char* aActorDescription); MOZ_NEVER_INLINE void ActorLookupError(const char* aActorDescription); MOZ_NEVER_INLINE void MismatchedActorTypeError(const char* aActorDescription); MOZ_NEVER_INLINE void UnionTypeReadError(const char* aUnionName); MOZ_NEVER_INLINE void ArrayLengthReadError(const char* aElementName); MOZ_NEVER_INLINE void SentinelReadError(const char* aElementName); /** * Annotate the crash reporter with the error code from the most recent system * call. Returns the system error. */ void AnnotateSystemError(); // The ActorLifecycleProxy is a helper type used internally by IPC to maintain a // maybe-owning reference to an IProtocol object. For well-behaved actors // which are not freed until after their `Dealloc` method is called, a // reference to an actor's `ActorLifecycleProxy` object is an owning one, as the // `Dealloc` method will only be called when all references to the // `ActorLifecycleProxy` are released. // // Unfortunately, some actors may be destroyed before their `Dealloc` method // is called. For these actors, `ActorLifecycleProxy` acts as a weak pointer, // and will begin to return `nullptr` from its `Get()` method once the // corresponding actor object has been destroyed. // // When calling a `Recv` method, IPC will hold a `ActorLifecycleProxy` reference // to the target actor, meaning that well-behaved actors can behave as though a // strong reference is being held. // // Generic IPC code MUST treat ActorLifecycleProxy references as weak // references! class ActorLifecycleProxy { public: NS_INLINE_DECL_REFCOUNTING_ONEVENTTARGET(ActorLifecycleProxy) IProtocol* Get() { return mActor; } WeakActorLifecycleProxy* GetWeakProxy(); private: friend class IProtocol; explicit ActorLifecycleProxy(IProtocol* aActor); ~ActorLifecycleProxy(); ActorLifecycleProxy(const ActorLifecycleProxy&) = delete; ActorLifecycleProxy& operator=(const ActorLifecycleProxy&) = delete; IProtocol* MOZ_NON_OWNING_REF mActor; // Hold a reference to the actor's manager's ActorLifecycleProxy to help // prevent it from dying while we're still alive! RefPtr mManager; // When requested, the current self-referencing weak reference for this // ActorLifecycleProxy. RefPtr mWeakProxy; }; // Unlike ActorLifecycleProxy, WeakActorLifecycleProxy only holds a weak // reference to both the proxy and the actual actor, meaning that holding this // type will not attempt to keep the actor object alive. // // This type is safe to hold on threads other than the actor's thread, but is // _NOT_ safe to access on other threads, as actors and ActorLifecycleProxy // objects are not threadsafe. class WeakActorLifecycleProxy final { public: NS_INLINE_DECL_THREADSAFE_REFCOUNTING(WeakActorLifecycleProxy) // May only be called on the actor's event target. // Will return `nullptr` if the actor has already been destroyed from IPC's // point of view. IProtocol* Get() const; // Safe to call on any thread. nsISerialEventTarget* ActorEventTarget() const { return mActorEventTarget; } private: friend class ActorLifecycleProxy; explicit WeakActorLifecycleProxy(ActorLifecycleProxy* aProxy); ~WeakActorLifecycleProxy(); WeakActorLifecycleProxy(const WeakActorLifecycleProxy&) = delete; WeakActorLifecycleProxy& operator=(const WeakActorLifecycleProxy&) = delete; // This field may only be accessed on the actor's thread, and will be // automatically cleared when the ActorLifecycleProxy is destroyed. ActorLifecycleProxy* MOZ_NON_OWNING_REF mProxy; // The serial event target which owns the actor, and is the only thread where // it is OK to access the ActorLifecycleProxy. const nsCOMPtr mActorEventTarget; }; class IPDLResolverInner final { public: NS_INLINE_DECL_THREADSAFE_REFCOUNTING_WITH_DESTROY(IPDLResolverInner, Destroy()) explicit IPDLResolverInner(UniquePtr aReply, IProtocol* aActor); template void Resolve(F&& aWrite) { ResolveOrReject(true, aWrite); } private: void ResolveOrReject(bool aResolve, FunctionRef aWrite); void Destroy(); ~IPDLResolverInner(); UniquePtr mReply; RefPtr mWeakProxy; }; } // namespace ipc template class ManagedContainer { public: using iterator = typename nsTArray::const_iterator; iterator begin() const { return mArray.begin(); } iterator end() const { return mArray.end(); } iterator cbegin() const { return begin(); } iterator cend() const { return end(); } bool IsEmpty() const { return mArray.IsEmpty(); } uint32_t Count() const { return mArray.Length(); } void ToArray(nsTArray& aArray) const { aArray.AppendElements(mArray); } bool EnsureRemoved(Protocol* aElement) { return mArray.RemoveElementSorted(aElement); } void Insert(Protocol* aElement) { // Equivalent to `InsertElementSorted`, avoiding inserting a duplicate // element. size_t index = mArray.IndexOfFirstElementGt(aElement); if (index == 0 || mArray[index - 1] != aElement) { mArray.InsertElementAt(index, aElement); } } void Clear() { mArray.Clear(); } private: nsTArray mArray; }; template Protocol* LoneManagedOrNullAsserts( const ManagedContainer& aManagees) { if (aManagees.IsEmpty()) { return nullptr; } MOZ_ASSERT(aManagees.Count() == 1); return *aManagees.cbegin(); } template Protocol* SingleManagedOrNull(const ManagedContainer& aManagees) { if (aManagees.Count() != 1) { return nullptr; } return *aManagees.cbegin(); } } // namespace mozilla #endif // mozilla_ipc_ProtocolUtils_h