/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_dom_BindingUtils_h__ #define mozilla_dom_BindingUtils_h__ #include "jsfriendapi.h" #include "js/CharacterEncoding.h" #include "js/Conversions.h" #include "js/MemoryFunctions.h" #include "js/Wrapper.h" #include "mozilla/ArrayUtils.h" #include "mozilla/Alignment.h" #include "mozilla/Array.h" #include "mozilla/Assertions.h" #include "mozilla/DeferredFinalize.h" #include "mozilla/dom/BindingDeclarations.h" #include "mozilla/dom/CallbackObject.h" #include "mozilla/dom/DOMJSClass.h" #include "mozilla/dom/DOMJSProxyHandler.h" #include "mozilla/dom/Exceptions.h" #include "mozilla/dom/NonRefcountedDOMObject.h" #include "mozilla/dom/Nullable.h" #include "mozilla/dom/PrototypeList.h" #include "mozilla/dom/RemoteObjectProxy.h" #include "mozilla/dom/RootedDictionary.h" #include "mozilla/dom/ScriptSettings.h" #include "mozilla/SegmentedVector.h" #include "mozilla/ErrorResult.h" #include "mozilla/Likely.h" #include "mozilla/MemoryReporting.h" #include "nsAutoPtr.h" #include "mozilla/dom/Document.h" #include "nsIGlobalObject.h" #include "nsIVariant.h" #include "nsJSUtils.h" #include "nsISupportsImpl.h" #include "xpcObjectHelper.h" #include "xpcpublic.h" #include "nsIVariant.h" #include "mozilla/dom/FakeString.h" #include "nsWrapperCacheInlines.h" class nsGenericHTMLElement; namespace mozilla { enum UseCounter : int16_t; enum class UseCounterWorker : int16_t; namespace dom { class CustomElementReactionsStack; class MessageManagerGlobal; class DedicatedWorkerGlobalScope; template class Record; class WindowProxyHolder; nsresult UnwrapArgImpl(JSContext* cx, JS::Handle src, const nsIID& iid, void** ppArg); /** Convert a jsval to an XPCOM pointer. Caller must not assume that src will keep the XPCOM pointer rooted. */ template inline nsresult UnwrapArg(JSContext* cx, JS::Handle src, Interface** ppArg) { return UnwrapArgImpl(cx, src, NS_GET_TEMPLATE_IID(Interface), reinterpret_cast(ppArg)); } nsresult UnwrapWindowProxyArg(JSContext* cx, JS::Handle src, WindowProxyHolder& ppArg); // Returns true if the JSClass is used for DOM objects. inline bool IsDOMClass(const JSClass* clasp) { return clasp->flags & JSCLASS_IS_DOMJSCLASS; } // Return true if the JSClass is used for non-proxy DOM objects. inline bool IsNonProxyDOMClass(const JSClass* clasp) { return IsDOMClass(clasp) && !clasp->isProxy(); } // Returns true if the JSClass is used for DOM interface and interface // prototype objects. inline bool IsDOMIfaceAndProtoClass(const JSClass* clasp) { return clasp->flags & JSCLASS_IS_DOMIFACEANDPROTOJSCLASS; } static_assert(DOM_OBJECT_SLOT == 0, "DOM_OBJECT_SLOT doesn't match the proxy private slot. " "Expect bad things"); template inline T* UnwrapDOMObject(JSObject* obj) { MOZ_ASSERT(IsDOMClass(js::GetObjectClass(obj)), "Don't pass non-DOM objects to this function"); JS::Value val = js::GetReservedSlot(obj, DOM_OBJECT_SLOT); return static_cast(val.toPrivate()); } template inline T* UnwrapPossiblyNotInitializedDOMObject(JSObject* obj) { // This is used by the OjectMoved JSClass hook which can be called before // JS_NewObject has returned and so before we have a chance to set // DOM_OBJECT_SLOT to anything useful. MOZ_ASSERT(IsDOMClass(js::GetObjectClass(obj)), "Don't pass non-DOM objects to this function"); JS::Value val = js::GetReservedSlot(obj, DOM_OBJECT_SLOT); if (val.isUndefined()) { return nullptr; } return static_cast(val.toPrivate()); } inline const DOMJSClass* GetDOMClass(const JSClass* clasp) { return IsDOMClass(clasp) ? DOMJSClass::FromJSClass(clasp) : nullptr; } inline const DOMJSClass* GetDOMClass(JSObject* obj) { return GetDOMClass(js::GetObjectClass(obj)); } inline nsISupports* UnwrapDOMObjectToISupports(JSObject* aObject) { const DOMJSClass* clasp = GetDOMClass(aObject); if (!clasp || !clasp->mDOMObjectIsISupports) { return nullptr; } return UnwrapPossiblyNotInitializedDOMObject(aObject); } inline bool IsDOMObject(JSObject* obj) { return IsDOMClass(js::GetObjectClass(obj)); } // There are two valid ways to use UNWRAP_OBJECT: Either obj needs to // be a MutableHandle, or value needs to be a strong-reference // smart pointer type (OwningNonNull or RefPtr or nsCOMPtr), in which case obj // can be anything that converts to JSObject*. // // This can't be used with Window, EventTarget, or Location as the "Interface" // argument (and will fail a static_assert if you try to do that). Use // UNWRAP_MAYBE_CROSS_ORIGIN_OBJECT to unwrap to those interfaces. #define UNWRAP_OBJECT(Interface, obj, value) \ mozilla::dom::binding_detail::UnwrapObjectWithCrossOriginAsserts< \ mozilla::dom::prototypes::id::Interface, \ mozilla::dom::Interface##_Binding::NativeType>(obj, value) // UNWRAP_MAYBE_CROSS_ORIGIN_OBJECT is just like UNWRAP_OBJECT but requires a // JSContext in a Realm that represents "who is doing the unwrapping?" to // properly unwrap the object. #define UNWRAP_MAYBE_CROSS_ORIGIN_OBJECT(Interface, obj, value, cx) \ mozilla::dom::UnwrapObject( \ obj, value, cx) // Test whether the given object is an instance of the given interface. #define IS_INSTANCE_OF(Interface, obj) \ mozilla::dom::IsInstanceOf( \ obj) // Unwrap the given non-wrapper object. This can be used with any obj that // converts to JSObject*; as long as that JSObject* is live the return value // will be valid. #define UNWRAP_NON_WRAPPER_OBJECT(Interface, obj, value) \ mozilla::dom::UnwrapNonWrapperObject< \ mozilla::dom::prototypes::id::Interface, \ mozilla::dom::Interface##_Binding::NativeType>(obj, value) // Some callers don't want to set an exception when unwrapping fails // (for example, overload resolution uses unwrapping to tell what sort // of thing it's looking at). // U must be something that a T* can be assigned to (e.g. T* or an RefPtr). // // The obj argument will be mutated to point to CheckedUnwrap of itself if the // passed-in value is not a DOM object and CheckedUnwrap succeeds. // // If mayBeWrapper is true, there are three valid ways to invoke // UnwrapObjectInternal: Either obj needs to be a class wrapping a // MutableHandle, with an assignment operator that sets the handle to // the given object, or U needs to be a strong-reference smart pointer type // (OwningNonNull or RefPtr or nsCOMPtr), or the value being stored in "value" // must not escape past being tested for falsiness immediately after the // UnwrapObjectInternal call. // // If mayBeWrapper is false, obj can just be a JSObject*, and U anything that a // T* can be assigned to. // // CxType is in practice allowed to be either decltype(nullptr) or JSContext*. // If it's decltype(nullptr) we will do a CheckedUnwrapStatic and it's the // caller's responsibility to make sure they're not trying to work with Window // or Location objects. Otherwise we'll do a CheckedUnwrapDynamic. This all // only matters if mayBeWrapper is true; if it's false just pass nullptr for // the cx arg. namespace binding_detail { template MOZ_ALWAYS_INLINE nsresult UnwrapObjectInternal(V& obj, U& value, prototypes::ID protoID, uint32_t protoDepth, CxType cx) { static_assert(IsSame::value || IsSame::value, "Unexpected CxType"); /* First check to see whether we have a DOM object */ const DOMJSClass* domClass = GetDOMClass(obj); if (domClass) { /* This object is a DOM object. Double-check that it is safely castable to T by checking whether it claims to inherit from the class identified by protoID. */ if (domClass->mInterfaceChain[protoDepth] == protoID) { value = UnwrapDOMObject(obj); return NS_OK; } } /* Maybe we have a security wrapper or outer window? */ if (!mayBeWrapper || !js::IsWrapper(obj)) { // For non-cross-origin-accessible methods and properties, remote object // proxies should behave the same as opaque wrappers. if (IsRemoteObjectProxy(obj)) { return NS_ERROR_XPC_SECURITY_MANAGER_VETO; } /* Not a DOM object, not a wrapper, just bail */ return NS_ERROR_XPC_BAD_CONVERT_JS; } JSObject* unwrappedObj; if (IsSame::value) { unwrappedObj = js::CheckedUnwrapStatic(obj); } else { unwrappedObj = js::CheckedUnwrapDynamic(obj, cx, /* stopAtWindowProxy = */ false); } if (!unwrappedObj) { return NS_ERROR_XPC_SECURITY_MANAGER_VETO; } if (IsSame::value) { // We might still have a windowproxy here. But it shouldn't matter, because // that's not what the caller is looking for, so we're going to fail out // anyway below once we do the recursive call to ourselves with wrapper // unwrapping disabled. MOZ_ASSERT(!js::IsWrapper(unwrappedObj) || js::IsWindowProxy(unwrappedObj)); } else { // We shouldn't have a wrapper by now. MOZ_ASSERT(!js::IsWrapper(unwrappedObj)); } // Recursive call is OK, because now we're using false for mayBeWrapper and // we never reach this code if that boolean is false, so can't keep calling // ourselves. // // Unwrap into a temporary pointer, because in general unwrapping into // something of type U might trigger GC (e.g. release the value currently // stored in there, with arbitrary consequences) and invalidate the // "unwrappedObj" pointer. T* tempValue = nullptr; nsresult rv = UnwrapObjectInternal(unwrappedObj, tempValue, protoID, protoDepth, nullptr); if (NS_SUCCEEDED(rv)) { // Suppress a hazard related to keeping tempValue alive across // UnwrapObjectInternal, because the analysis can't tell that this function // will not GC if maybeWrapped=False and we've already gone through a level // of unwrapping so unwrappedObj will be !IsWrapper. JS::AutoSuppressGCAnalysis suppress; // It's very important to not update "obj" with the "unwrappedObj" value // until we know the unwrap has succeeded. Otherwise, in a situation in // which we have an overload of object and primitive we could end up // converting to the primitive from the unwrappedObj, whereas we want to do // it from the original object. obj = unwrappedObj; // And now assign to "value"; at this point we don't care if a GC happens // and invalidates unwrappedObj. value = tempValue; return NS_OK; } /* It's the wrong sort of DOM object */ return NS_ERROR_XPC_BAD_CONVERT_JS; } struct MutableObjectHandleWrapper { explicit MutableObjectHandleWrapper(JS::MutableHandle aHandle) : mHandle(aHandle) {} void operator=(JSObject* aObject) { MOZ_ASSERT(aObject); mHandle.set(aObject); } operator JSObject*() const { return mHandle; } private: JS::MutableHandle mHandle; }; struct MutableValueHandleWrapper { explicit MutableValueHandleWrapper(JS::MutableHandle aHandle) : mHandle(aHandle) {} void operator=(JSObject* aObject) { MOZ_ASSERT(aObject); mHandle.setObject(*aObject); } operator JSObject*() const { return &mHandle.toObject(); } private: JS::MutableHandle mHandle; }; } // namespace binding_detail // UnwrapObject overloads that ensure we have a MutableHandle to keep it alive. template MOZ_ALWAYS_INLINE nsresult UnwrapObject(JS::MutableHandle obj, U& value, CxType cx) { binding_detail::MutableObjectHandleWrapper wrapper(obj); return binding_detail::UnwrapObjectInternal( wrapper, value, PrototypeID, PrototypeTraits::Depth, cx); } template MOZ_ALWAYS_INLINE nsresult UnwrapObject(JS::MutableHandle obj, U& value, CxType cx) { MOZ_ASSERT(obj.isObject()); binding_detail::MutableValueHandleWrapper wrapper(obj); return binding_detail::UnwrapObjectInternal( wrapper, value, PrototypeID, PrototypeTraits::Depth, cx); } // UnwrapObject overloads that ensure we have a strong ref to keep it alive. template MOZ_ALWAYS_INLINE nsresult UnwrapObject(JSObject* obj, RefPtr& value, CxType cx) { return binding_detail::UnwrapObjectInternal( obj, value, PrototypeID, PrototypeTraits::Depth, cx); } template MOZ_ALWAYS_INLINE nsresult UnwrapObject(JSObject* obj, nsCOMPtr& value, CxType cx) { return binding_detail::UnwrapObjectInternal( obj, value, PrototypeID, PrototypeTraits::Depth, cx); } template MOZ_ALWAYS_INLINE nsresult UnwrapObject(JSObject* obj, OwningNonNull& value, CxType cx) { return binding_detail::UnwrapObjectInternal( obj, value, PrototypeID, PrototypeTraits::Depth, cx); } // An UnwrapObject overload that just calls one of the JSObject* ones. template MOZ_ALWAYS_INLINE nsresult UnwrapObject(JS::Handle obj, U& value, CxType cx) { MOZ_ASSERT(obj.isObject()); return UnwrapObject(&obj.toObject(), value, cx); } template MOZ_ALWAYS_INLINE void AssertStaticUnwrapOK() { static_assert(PrototypeID != prototypes::id::Window, "Can't do static unwrap of WindowProxy; use " "UNWRAP_MAYBE_CROSS_ORIGIN_OBJECT or a cross-origin-object " "aware version of IS_INSTANCE_OF"); static_assert(PrototypeID != prototypes::id::EventTarget, "Can't do static unwrap of WindowProxy (which an EventTarget " "might be); use UNWRAP_MAYBE_CROSS_ORIGIN_OBJECT or a " "cross-origin-object aware version of IS_INSTANCE_OF"); static_assert(PrototypeID != prototypes::id::Location, "Can't do static unwrap of Location; use " "UNWRAP_MAYBE_CROSS_ORIGIN_OBJECT or a cross-origin-object " "aware version of IS_INSTANCE_OF"); } namespace binding_detail { // This function is just here so we can do some static asserts in a centralized // place instead of putting them in every single UnwrapObject overload. template MOZ_ALWAYS_INLINE nsresult UnwrapObjectWithCrossOriginAsserts(V&& obj, U& value) { AssertStaticUnwrapOK(); return UnwrapObject(obj, value, nullptr); } } // namespace binding_detail template MOZ_ALWAYS_INLINE bool IsInstanceOf(JSObject* obj) { AssertStaticUnwrapOK(); void* ignored; nsresult unwrapped = binding_detail::UnwrapObjectInternal( obj, ignored, PrototypeID, PrototypeTraits::Depth, nullptr); return NS_SUCCEEDED(unwrapped); } template MOZ_ALWAYS_INLINE nsresult UnwrapNonWrapperObject(JSObject* obj, U& value) { MOZ_ASSERT(!js::IsWrapper(obj)); return binding_detail::UnwrapObjectInternal( obj, value, PrototypeID, PrototypeTraits::Depth, nullptr); } MOZ_ALWAYS_INLINE bool IsConvertibleToDictionary(JS::Handle val) { return val.isNullOrUndefined() || val.isObject(); } // The items in the protoAndIfaceCache are indexed by the prototypes::id::ID, // constructors::id::ID and namedpropertiesobjects::id::ID enums, in that order. // The end of the prototype objects should be the start of the interface // objects, and the end of the interface objects should be the start of the // named properties objects. static_assert((size_t)constructors::id::_ID_Start == (size_t)prototypes::id::_ID_Count && (size_t)namedpropertiesobjects::id::_ID_Start == (size_t)constructors::id::_ID_Count, "Overlapping or discontiguous indexes."); const size_t kProtoAndIfaceCacheCount = namedpropertiesobjects::id::_ID_Count; class ProtoAndIfaceCache { // The caching strategy we use depends on what sort of global we're dealing // with. For a window-like global, we want everything to be as fast as // possible, so we use a flat array, indexed by prototype/constructor ID. // For everything else (e.g. globals for JSMs), space is more important than // speed, so we use a two-level lookup table. class ArrayCache : public Array, kProtoAndIfaceCacheCount> { public: bool HasEntryInSlot(size_t i) { return (*this)[i]; } JS::Heap& EntrySlotOrCreate(size_t i) { return (*this)[i]; } JS::Heap& EntrySlotMustExist(size_t i) { return (*this)[i]; } void Trace(JSTracer* aTracer) { for (size_t i = 0; i < ArrayLength(*this); ++i) { JS::TraceEdge(aTracer, &(*this)[i], "protoAndIfaceCache[i]"); } } size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) { return aMallocSizeOf(this); } }; class PageTableCache { public: PageTableCache() { memset(mPages.begin(), 0, sizeof(mPages)); } ~PageTableCache() { for (size_t i = 0; i < ArrayLength(mPages); ++i) { delete mPages[i]; } } bool HasEntryInSlot(size_t i) { MOZ_ASSERT(i < kProtoAndIfaceCacheCount); size_t pageIndex = i / kPageSize; size_t leafIndex = i % kPageSize; Page* p = mPages[pageIndex]; if (!p) { return false; } return (*p)[leafIndex]; } JS::Heap& EntrySlotOrCreate(size_t i) { MOZ_ASSERT(i < kProtoAndIfaceCacheCount); size_t pageIndex = i / kPageSize; size_t leafIndex = i % kPageSize; Page* p = mPages[pageIndex]; if (!p) { p = new Page; mPages[pageIndex] = p; } return (*p)[leafIndex]; } JS::Heap& EntrySlotMustExist(size_t i) { MOZ_ASSERT(i < kProtoAndIfaceCacheCount); size_t pageIndex = i / kPageSize; size_t leafIndex = i % kPageSize; Page* p = mPages[pageIndex]; MOZ_ASSERT(p); return (*p)[leafIndex]; } void Trace(JSTracer* trc) { for (size_t i = 0; i < ArrayLength(mPages); ++i) { Page* p = mPages[i]; if (p) { for (size_t j = 0; j < ArrayLength(*p); ++j) { JS::TraceEdge(trc, &(*p)[j], "protoAndIfaceCache[i]"); } } } } size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) { size_t n = aMallocSizeOf(this); for (size_t i = 0; i < ArrayLength(mPages); ++i) { n += aMallocSizeOf(mPages[i]); } return n; } private: static const size_t kPageSize = 16; typedef Array, kPageSize> Page; static const size_t kNPages = kProtoAndIfaceCacheCount / kPageSize + size_t(bool(kProtoAndIfaceCacheCount % kPageSize)); Array mPages; }; public: enum Kind { WindowLike, NonWindowLike }; explicit ProtoAndIfaceCache(Kind aKind) : mKind(aKind) { MOZ_COUNT_CTOR(ProtoAndIfaceCache); if (aKind == WindowLike) { mArrayCache = new ArrayCache(); } else { mPageTableCache = new PageTableCache(); } } ~ProtoAndIfaceCache() { if (mKind == WindowLike) { delete mArrayCache; } else { delete mPageTableCache; } MOZ_COUNT_DTOR(ProtoAndIfaceCache); } #define FORWARD_OPERATION(opName, args) \ do { \ if (mKind == WindowLike) { \ return mArrayCache->opName args; \ } else { \ return mPageTableCache->opName args; \ } \ } while (0) // Return whether slot i contains an object. This doesn't return the object // itself because in practice consumers just want to know whether it's there // or not, and that doesn't require barriering, which returning the object // pointer does. bool HasEntryInSlot(size_t i) { FORWARD_OPERATION(HasEntryInSlot, (i)); } // Return a reference to slot i, creating it if necessary. There // may not be an object in the returned slot. JS::Heap& EntrySlotOrCreate(size_t i) { FORWARD_OPERATION(EntrySlotOrCreate, (i)); } // Return a reference to slot i, which is guaranteed to already // exist. There may not be an object in the slot, if prototype and // constructor initialization for one of our bindings failed. JS::Heap& EntrySlotMustExist(size_t i) { FORWARD_OPERATION(EntrySlotMustExist, (i)); } void Trace(JSTracer* aTracer) { FORWARD_OPERATION(Trace, (aTracer)); } size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) { size_t n = aMallocSizeOf(this); n += (mKind == WindowLike ? mArrayCache->SizeOfIncludingThis(aMallocSizeOf) : mPageTableCache->SizeOfIncludingThis(aMallocSizeOf)); return n; } #undef FORWARD_OPERATION private: union { ArrayCache* mArrayCache; PageTableCache* mPageTableCache; }; Kind mKind; }; inline void AllocateProtoAndIfaceCache(JSObject* obj, ProtoAndIfaceCache::Kind aKind) { MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL); MOZ_ASSERT(js::GetReservedSlot(obj, DOM_PROTOTYPE_SLOT).isUndefined()); ProtoAndIfaceCache* protoAndIfaceCache = new ProtoAndIfaceCache(aKind); js::SetReservedSlot(obj, DOM_PROTOTYPE_SLOT, JS::PrivateValue(protoAndIfaceCache)); } #ifdef DEBUG struct VerifyTraceProtoAndIfaceCacheCalledTracer : public JS::CallbackTracer { bool ok; explicit VerifyTraceProtoAndIfaceCacheCalledTracer(JSContext* cx) : JS::CallbackTracer(cx), ok(false) {} bool onChild(const JS::GCCellPtr&) override { // We don't do anything here, we only want to verify that // TraceProtoAndIfaceCache was called. return true; } TracerKind getTracerKind() const override { return TracerKind::VerifyTraceProtoAndIface; } }; #endif inline void TraceProtoAndIfaceCache(JSTracer* trc, JSObject* obj) { MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL); #ifdef DEBUG if (trc->isCallbackTracer() && (trc->asCallbackTracer()->getTracerKind() == JS::CallbackTracer::TracerKind::VerifyTraceProtoAndIface)) { // We don't do anything here, we only want to verify that // TraceProtoAndIfaceCache was called. static_cast(trc)->ok = true; return; } #endif if (!DOMGlobalHasProtoAndIFaceCache(obj)) return; ProtoAndIfaceCache* protoAndIfaceCache = GetProtoAndIfaceCache(obj); protoAndIfaceCache->Trace(trc); } inline void DestroyProtoAndIfaceCache(JSObject* obj) { MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL); if (!DOMGlobalHasProtoAndIFaceCache(obj)) { return; } ProtoAndIfaceCache* protoAndIfaceCache = GetProtoAndIfaceCache(obj); delete protoAndIfaceCache; } /** * Add constants to an object. */ bool DefineConstants(JSContext* cx, JS::Handle obj, const ConstantSpec* cs); struct JSNativeHolder { JSNative mNative; const NativePropertyHooks* mPropertyHooks; }; struct NamedConstructor { const char* mName; const JSNativeHolder mHolder; unsigned mNargs; }; // clang-format off /* * Create a DOM interface object (if constructorClass is non-null) and/or a * DOM interface prototype object (if protoClass is non-null). * * global is used as the parent of the interface object and the interface * prototype object * protoProto is the prototype to use for the interface prototype object. * interfaceProto is the prototype to use for the interface object. This can be * null if both constructorClass and constructor are null (as in, * if we're not creating an interface object at all). * protoClass is the JSClass to use for the interface prototype object. * This is null if we should not create an interface prototype * object. * protoCache a pointer to a JSObject pointer where we should cache the * interface prototype object. This must be null if protoClass is and * vice versa. * toStringTag if not null, a string to define as @@toStringTag on the prototype. * Must be null if protoClass is. * constructorClass is the JSClass to use for the interface object. * This is null if we should not create an interface object or * if it should be a function object. * constructor holds the JSNative to back the interface object which should be a * Function, unless constructorClass is non-null in which case it is * ignored. If this is null and constructorClass is also null then * we should not create an interface object at all. * ctorNargs is the length of the constructor function; 0 if no constructor * constructorCache a pointer to a JSObject pointer where we should cache the * interface object. This must be null if both constructorClass * and constructor are null, and non-null otherwise. * properties contains the methods, attributes and constants to be defined on * objects in any compartment. * chromeProperties contains the methods, attributes and constants to be defined * on objects in chrome compartments. This must be null if the * interface doesn't have any ChromeOnly properties or if the * object is being created in non-chrome compartment. * defineOnGlobal controls whether properties should be defined on the given * global for the interface object (if any) and named * constructors (if any) for this interface. This can be * false in situations where we want the properties to only * appear on privileged Xrays but not on the unprivileged * underlying global. * unscopableNames if not null it points to a null-terminated list of const * char* names of the unscopable properties for this interface. * isGlobal if true, we're creating interface objects for a [Global] interface, * and hence shouldn't define properties on the prototype object. * legacyWindowAliases if not null it points to a null-terminated list of const * char* names of the legacy window aliases for this * interface. * * At least one of protoClass, constructorClass or constructor should be * non-null. If constructorClass or constructor are non-null, the resulting * interface object will be defined on the given global with property name * |name|, which must also be non-null. */ // clang-format on void CreateInterfaceObjects( JSContext* cx, JS::Handle global, JS::Handle protoProto, const JSClass* protoClass, JS::Heap* protoCache, const char* toStringTag, JS::Handle interfaceProto, const JSClass* constructorClass, unsigned ctorNargs, const NamedConstructor* namedConstructors, JS::Heap* constructorCache, const NativeProperties* regularProperties, const NativeProperties* chromeOnlyProperties, const char* name, bool defineOnGlobal, const char* const* unscopableNames, bool isGlobal, const char* const* legacyWindowAliases); /** * Define the properties (regular and chrome-only) on obj. * * obj the object to install the properties on. This should be the interface * prototype object for regular interfaces and the instance object for * interfaces marked with Global. * properties contains the methods, attributes and constants to be defined on * objects in any compartment. * chromeProperties contains the methods, attributes and constants to be defined * on objects in chrome compartments. This must be null if the * interface doesn't have any ChromeOnly properties or if the * object is being created in non-chrome compartment. */ bool DefineProperties(JSContext* cx, JS::Handle obj, const NativeProperties* properties, const NativeProperties* chromeOnlyProperties); /* * Define the unforgeable methods on an object. */ bool DefineUnforgeableMethods(JSContext* cx, JS::Handle obj, const Prefable* props); /* * Define the unforgeable attributes on an object. */ bool DefineUnforgeableAttributes(JSContext* cx, JS::Handle obj, const Prefable* props); #define HAS_MEMBER_TYPEDEFS \ private: \ typedef char yes[1]; \ typedef char no[2] #ifdef _MSC_VER # define HAS_MEMBER_CHECK(_name) \ template \ static yes& Check##_name(char(*)[(&V::_name == 0) + 1]) #else # define HAS_MEMBER_CHECK(_name) \ template \ static yes& Check##_name(char(*)[sizeof(&V::_name) + 1]) #endif #define HAS_MEMBER(_memberName, _valueName) \ private: \ HAS_MEMBER_CHECK(_memberName); \ template \ static no& Check##_memberName(...); \ \ public: \ static bool const _valueName = \ sizeof(Check##_memberName(nullptr)) == sizeof(yes) template struct NativeHasMember { HAS_MEMBER_TYPEDEFS; HAS_MEMBER(GetParentObject, GetParentObject); HAS_MEMBER(WrapObject, WrapObject); }; template struct IsSmartPtr { HAS_MEMBER_TYPEDEFS; HAS_MEMBER(get, value); }; template struct IsRefcounted { HAS_MEMBER_TYPEDEFS; HAS_MEMBER(AddRef, HasAddref); HAS_MEMBER(Release, HasRelease); public: static bool const value = HasAddref && HasRelease; private: // This struct only works if T is fully declared (not just forward declared). // The IsBaseOf check will ensure that, we don't really need it for any other // reason (the static assert will of course always be true). static_assert(!IsBaseOf::value || IsRefcounted::value, "Classes derived from nsISupports are refcounted!"); }; #undef HAS_MEMBER #undef HAS_MEMBER_CHECK #undef HAS_MEMBER_TYPEDEFS #ifdef DEBUG template ::value> struct CheckWrapperCacheCast { static bool Check() { return reinterpret_cast( static_cast(reinterpret_cast(1))) == 1; } }; template struct CheckWrapperCacheCast { static bool Check() { return true; } }; #endif inline bool TryToOuterize(JS::MutableHandle rval) { if (js::IsWindow(&rval.toObject())) { JSObject* obj = js::ToWindowProxyIfWindow(&rval.toObject()); MOZ_ASSERT(obj); rval.set(JS::ObjectValue(*obj)); } return true; } inline bool TryToOuterize(JS::MutableHandle obj) { if (js::IsWindow(obj)) { JSObject* proxy = js::ToWindowProxyIfWindow(obj); MOZ_ASSERT(proxy); obj.set(proxy); } return true; } // Make sure to wrap the given string value into the right compartment, as // needed. MOZ_ALWAYS_INLINE bool MaybeWrapStringValue(JSContext* cx, JS::MutableHandle rval) { MOZ_ASSERT(rval.isString()); JSString* str = rval.toString(); if (JS::GetStringZone(str) != js::GetContextZone(cx)) { return JS_WrapValue(cx, rval); } return true; } // Make sure to wrap the given object value into the right compartment as // needed. This will work correctly, but possibly slowly, on all objects. MOZ_ALWAYS_INLINE bool MaybeWrapObjectValue(JSContext* cx, JS::MutableHandle rval) { MOZ_ASSERT(rval.isObject()); // Cross-compartment always requires wrapping. JSObject* obj = &rval.toObject(); if (js::GetObjectCompartment(obj) != js::GetContextCompartment(cx)) { return JS_WrapValue(cx, rval); } // We're same-compartment, but we might still need to outerize if we // have a Window. return TryToOuterize(rval); } // Like MaybeWrapObjectValue, but working with a // JS::MutableHandle which must be non-null. MOZ_ALWAYS_INLINE bool MaybeWrapObject(JSContext* cx, JS::MutableHandle obj) { if (js::GetObjectCompartment(obj) != js::GetContextCompartment(cx)) { return JS_WrapObject(cx, obj); } // We're same-compartment, but we might still need to outerize if we // have a Window. return TryToOuterize(obj); } // Like MaybeWrapObjectValue, but also allows null MOZ_ALWAYS_INLINE bool MaybeWrapObjectOrNullValue(JSContext* cx, JS::MutableHandle rval) { MOZ_ASSERT(rval.isObjectOrNull()); if (rval.isNull()) { return true; } return MaybeWrapObjectValue(cx, rval); } // Wrapping for objects that are known to not be DOM objects MOZ_ALWAYS_INLINE bool MaybeWrapNonDOMObjectValue(JSContext* cx, JS::MutableHandle rval) { MOZ_ASSERT(rval.isObject()); // Compared to MaybeWrapObjectValue we just skip the TryToOuterize call. The // only reason it would be needed is if we have a Window object, which would // have a DOM class. Assert that we don't have any DOM-class objects coming // through here. MOZ_ASSERT(!GetDOMClass(&rval.toObject())); JSObject* obj = &rval.toObject(); if (js::GetObjectCompartment(obj) == js::GetContextCompartment(cx)) { return true; } return JS_WrapValue(cx, rval); } // Like MaybeWrapNonDOMObjectValue but allows null MOZ_ALWAYS_INLINE bool MaybeWrapNonDOMObjectOrNullValue(JSContext* cx, JS::MutableHandle rval) { MOZ_ASSERT(rval.isObjectOrNull()); if (rval.isNull()) { return true; } return MaybeWrapNonDOMObjectValue(cx, rval); } // If rval is a gcthing and is not in the compartment of cx, wrap rval // into the compartment of cx (typically by replacing it with an Xray or // cross-compartment wrapper around the original object). MOZ_ALWAYS_INLINE bool MaybeWrapValue(JSContext* cx, JS::MutableHandle rval) { if (rval.isGCThing()) { if (rval.isString()) { return MaybeWrapStringValue(cx, rval); } if (rval.isObject()) { return MaybeWrapObjectValue(cx, rval); } // This could be optimized by checking the zone first, similar to // the way strings are handled. At present, this is used primarily // for structured cloning, so avoiding the overhead of JS_WrapValue // calls is less important than for other types. if (rval.isBigInt()) { return JS_WrapValue(cx, rval); } MOZ_ASSERT(rval.isSymbol()); JS_MarkCrossZoneId(cx, SYMBOL_TO_JSID(rval.toSymbol())); } return true; } namespace binding_detail { enum GetOrCreateReflectorWrapBehavior { eWrapIntoContextCompartment, eDontWrapIntoContextCompartment }; template struct TypeNeedsOuterization { // We only need to outerize Window objects, so anything inheriting from // nsGlobalWindow (which inherits from EventTarget itself). static const bool value = IsBaseOf::value || IsBaseOf::value || IsSame::value; }; #ifdef DEBUG template ::value> struct CheckWrapperCacheTracing { static inline void Check(T* aObject) {} }; template struct CheckWrapperCacheTracing { static void Check(T* aObject) { // Rooting analysis thinks QueryInterface may GC, but we're dealing with // a subset of QueryInterface, C++ only types here. JS::AutoSuppressGCAnalysis nogc; nsWrapperCache* wrapperCacheFromQI = nullptr; aObject->QueryInterface(NS_GET_IID(nsWrapperCache), reinterpret_cast(&wrapperCacheFromQI)); MOZ_ASSERT(wrapperCacheFromQI, "Missing nsWrapperCache from QueryInterface implementation?"); if (!wrapperCacheFromQI->GetWrapperPreserveColor()) { // Can't assert that we trace the wrapper, since we don't have any // wrapper to trace. return; } nsISupports* ccISupports = nullptr; aObject->QueryInterface(NS_GET_IID(nsCycleCollectionISupports), reinterpret_cast(&ccISupports)); MOZ_ASSERT(ccISupports, "nsWrapperCache object which isn't cycle collectable?"); nsXPCOMCycleCollectionParticipant* participant = nullptr; CallQueryInterface(ccISupports, &participant); MOZ_ASSERT(participant, "Can't QI to CycleCollectionParticipant?"); bool wasPreservingWrapper = wrapperCacheFromQI->PreservingWrapper(); wrapperCacheFromQI->SetPreservingWrapper(true); wrapperCacheFromQI->CheckCCWrapperTraversal(ccISupports, participant); wrapperCacheFromQI->SetPreservingWrapper(wasPreservingWrapper); } }; void AssertReflectorHasGivenProto(JSContext* aCx, JSObject* aReflector, JS::Handle aGivenProto); #endif // DEBUG template MOZ_ALWAYS_INLINE bool DoGetOrCreateDOMReflector( JSContext* cx, T* value, JS::Handle givenProto, JS::MutableHandle rval) { MOZ_ASSERT(value); MOZ_ASSERT_IF(givenProto, js::IsObjectInContextCompartment(givenProto, cx)); JSObject* obj = value->GetWrapper(); if (obj) { #ifdef DEBUG AssertReflectorHasGivenProto(cx, obj, givenProto); // Have to reget obj because AssertReflectorHasGivenProto can // trigger gc so the pointer may now be invalid. obj = value->GetWrapper(); #endif } else { obj = value->WrapObject(cx, givenProto); if (!obj) { // At this point, obj is null, so just return false. // Callers seem to be testing JS_IsExceptionPending(cx) to // figure out whether WrapObject() threw. return false; } #ifdef DEBUG if (IsBaseOf::value) { CheckWrapperCacheTracing::Check(value); } #endif } #ifdef DEBUG const DOMJSClass* clasp = GetDOMClass(obj); // clasp can be null if the cache contained a non-DOM object. if (clasp) { // Some sanity asserts about our object. Specifically: // 1) If our class claims we're nsISupports, we better be nsISupports // XXXbz ideally, we could assert that reinterpret_cast to nsISupports // does the right thing, but I don't see a way to do it. :( // 2) If our class doesn't claim we're nsISupports we better be // reinterpret_castable to nsWrapperCache. MOZ_ASSERT(clasp, "What happened here?"); MOZ_ASSERT_IF(clasp->mDOMObjectIsISupports, (IsBaseOf::value)); MOZ_ASSERT(CheckWrapperCacheCast::Check()); } #endif rval.set(JS::ObjectValue(*obj)); if (js::GetObjectCompartment(obj) == js::GetContextCompartment(cx)) { return TypeNeedsOuterization::value ? TryToOuterize(rval) : true; } if (wrapBehavior == eDontWrapIntoContextCompartment) { if (TypeNeedsOuterization::value) { JSAutoRealm ar(cx, obj); return TryToOuterize(rval); } return true; } return JS_WrapValue(cx, rval); } } // namespace binding_detail // Create a JSObject wrapping "value", if there isn't one already, and store it // in rval. "value" must be a concrete class that implements a // GetWrapperPreserveColor() which can return its existing wrapper, if any, and // a WrapObject() which will try to create a wrapper. Typically, this is done by // having "value" inherit from nsWrapperCache. // // The value stored in rval will be ready to be exposed to whatever JS // is running on cx right now. In particular, it will be in the // compartment of cx, and outerized as needed. template MOZ_ALWAYS_INLINE bool GetOrCreateDOMReflector( JSContext* cx, T* value, JS::MutableHandle rval, JS::Handle givenProto = nullptr) { using namespace binding_detail; return DoGetOrCreateDOMReflector( cx, value, givenProto, rval); } // Like GetOrCreateDOMReflector but doesn't wrap into the context compartment, // and hence does not actually require cx to be in a compartment. template MOZ_ALWAYS_INLINE bool GetOrCreateDOMReflectorNoWrap( JSContext* cx, T* value, JS::MutableHandle rval) { using namespace binding_detail; return DoGetOrCreateDOMReflector( cx, value, nullptr, rval); } // Create a JSObject wrapping "value", for cases when "value" is a // non-wrapper-cached object using WebIDL bindings. "value" must implement a // WrapObject() method taking a JSContext and a prototype (possibly null) and // returning the resulting object via a MutableHandle outparam. template inline bool WrapNewBindingNonWrapperCachedObject( JSContext* cx, JS::Handle scopeArg, T* value, JS::MutableHandle rval, JS::Handle givenProto = nullptr) { static_assert(IsRefcounted::value, "Don't pass owned classes in here."); MOZ_ASSERT(value); // We try to wrap in the realm of the underlying object of "scope" JS::Rooted obj(cx); { // scope for the JSAutoRealm so that we restore the realm // before we call JS_WrapValue. Maybe ar; // Maybe doesn't so much work, and in any case, adding // more Maybe (one for a Rooted and one for a Handle) adds more // code (and branches!) than just adding a single rooted. JS::Rooted scope(cx, scopeArg); JS::Rooted proto(cx, givenProto); if (js::IsWrapper(scope)) { // We are working in the Realm of cx and will be producing our reflector // there, so we need to succeed if that realm has access to the scope. scope = js::CheckedUnwrapDynamic(scope, cx, /* stopAtWindowProxy = */ false); if (!scope) return false; ar.emplace(cx, scope); if (!JS_WrapObject(cx, &proto)) { return false; } } else { // cx and scope are same-compartment, but they might still be // different-Realm. Enter the Realm of scope, since that's // where we want to create our object. ar.emplace(cx, scope); } MOZ_ASSERT_IF(proto, js::IsObjectInContextCompartment(proto, cx)); MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx)); if (!value->WrapObject(cx, proto, &obj)) { return false; } } // We can end up here in all sorts of compartments, per above. Make // sure to JS_WrapValue! rval.set(JS::ObjectValue(*obj)); return MaybeWrapObjectValue(cx, rval); } // Create a JSObject wrapping "value", for cases when "value" is a // non-wrapper-cached owned object using WebIDL bindings. "value" must // implement a WrapObject() method taking a taking a JSContext and a prototype // (possibly null) and returning two pieces of information: the resulting object // via a MutableHandle outparam and a boolean return value that is // true if the JSObject took ownership template inline bool WrapNewBindingNonWrapperCachedObject( JSContext* cx, JS::Handle scopeArg, nsAutoPtr& value, JS::MutableHandle rval, JS::Handle givenProto = nullptr) { static_assert(!IsRefcounted::value, "Only pass owned classes in here."); // We do a runtime check on value, because otherwise we might in // fact end up wrapping a null and invoking methods on it later. if (!value) { MOZ_CRASH("Don't try to wrap null objects"); } // We try to wrap in the realm of the underlying object of "scope" JS::Rooted obj(cx); { // scope for the JSAutoRealm so that we restore the realm // before we call JS_WrapValue. Maybe ar; // Maybe doesn't so much work, and in any case, adding // more Maybe (one for a Rooted and one for a Handle) adds more // code (and branches!) than just adding a single rooted. JS::Rooted scope(cx, scopeArg); JS::Rooted proto(cx, givenProto); if (js::IsWrapper(scope)) { // We are working in the Realm of cx and will be producing our reflector // there, so we need to succeed if that realm has access to the scope. scope = js::CheckedUnwrapDynamic(scope, cx, /* stopAtWindowProxy = */ false); if (!scope) return false; ar.emplace(cx, scope); if (!JS_WrapObject(cx, &proto)) { return false; } } else { // cx and scope are same-compartment, but they might still be // different-Realm. Enter the Realm of scope, since that's // where we want to create our object. ar.emplace(cx, scope); } MOZ_ASSERT_IF(proto, js::IsObjectInContextCompartment(proto, cx)); MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx)); if (!value->WrapObject(cx, proto, &obj)) { return false; } value.forget(); } // We can end up here in all sorts of compartments, per above. Make // sure to JS_WrapValue! rval.set(JS::ObjectValue(*obj)); return MaybeWrapObjectValue(cx, rval); } // Helper for smart pointers (nsRefPtr/nsCOMPtr). template < template class SmartPtr, typename T, typename U = typename EnableIf::value, T>::Type, typename V = typename EnableIf>::value, T>::Type> inline bool WrapNewBindingNonWrapperCachedObject( JSContext* cx, JS::Handle scope, const SmartPtr& value, JS::MutableHandle rval, JS::Handle givenProto = nullptr) { return WrapNewBindingNonWrapperCachedObject(cx, scope, value.get(), rval, givenProto); } // Helper for object references (as opposed to pointers). template ::value, T>::Type> inline bool WrapNewBindingNonWrapperCachedObject( JSContext* cx, JS::Handle scope, T& value, JS::MutableHandle rval, JS::Handle givenProto = nullptr) { return WrapNewBindingNonWrapperCachedObject(cx, scope, &value, rval, givenProto); } template inline bool EnumValueNotFound(JSContext* cx, JS::HandleString str, const char* type, const char* sourceDescription); template <> inline bool EnumValueNotFound(JSContext* cx, JS::HandleString str, const char* type, const char* sourceDescription) { // TODO: Log a warning to the console. return true; } template <> inline bool EnumValueNotFound(JSContext* cx, JS::HandleString str, const char* type, const char* sourceDescription) { JS::UniqueChars deflated = JS_EncodeStringToUTF8(cx, str); if (!deflated) { return false; } return ThrowErrorMessage(cx, MSG_INVALID_ENUM_VALUE, sourceDescription, deflated.get(), type); } template inline int FindEnumStringIndexImpl(const CharT* chars, size_t length, const EnumEntry* values) { int i = 0; for (const EnumEntry* value = values; value->value; ++value, ++i) { if (length != value->length) { continue; } bool equal = true; const char* val = value->value; for (size_t j = 0; j != length; ++j) { if (unsigned(val[j]) != unsigned(chars[j])) { equal = false; break; } } if (equal) { return i; } } return -1; } template inline bool FindEnumStringIndex(JSContext* cx, JS::Handle v, const EnumEntry* values, const char* type, const char* sourceDescription, int* index) { // JS_StringEqualsAscii is slow as molasses, so don't use it here. JS::RootedString str(cx, JS::ToString(cx, v)); if (!str) { return false; } { size_t length; JS::AutoCheckCannotGC nogc; if (js::StringHasLatin1Chars(str)) { const JS::Latin1Char* chars = JS_GetLatin1StringCharsAndLength(cx, nogc, str, &length); if (!chars) { return false; } *index = FindEnumStringIndexImpl(chars, length, values); } else { const char16_t* chars = JS_GetTwoByteStringCharsAndLength(cx, nogc, str, &length); if (!chars) { return false; } *index = FindEnumStringIndexImpl(chars, length, values); } if (*index >= 0) { return true; } } return EnumValueNotFound(cx, str, type, sourceDescription); } inline nsWrapperCache* GetWrapperCache(const ParentObject& aParentObject) { return aParentObject.mWrapperCache; } template inline T* GetParentPointer(T* aObject) { return aObject; } inline nsISupports* GetParentPointer(const ParentObject& aObject) { return aObject.mObject; } template inline mozilla::dom::ReflectionScope GetReflectionScope(T* aParentObject) { return mozilla::dom::ReflectionScope::Content; } inline mozilla::dom::ReflectionScope GetReflectionScope( const ParentObject& aParentObject) { return aParentObject.mReflectionScope; } template inline void ClearWrapper(T* p, nsWrapperCache* cache, JSObject* obj) { MOZ_ASSERT(cache->GetWrapperMaybeDead() == obj || (js::RuntimeIsBeingDestroyed() && !cache->GetWrapperMaybeDead())); cache->ClearWrapper(obj); } template inline void ClearWrapper(T* p, void*, JSObject* obj) { // QueryInterface to nsWrapperCache can't GC, we hope. JS::AutoSuppressGCAnalysis nogc; nsWrapperCache* cache; CallQueryInterface(p, &cache); ClearWrapper(p, cache, obj); } template inline void UpdateWrapper(T* p, nsWrapperCache* cache, JSObject* obj, const JSObject* old) { JS::AutoAssertGCCallback inCallback; cache->UpdateWrapper(obj, old); } template inline void UpdateWrapper(T* p, void*, JSObject* obj, const JSObject* old) { JS::AutoAssertGCCallback inCallback; nsWrapperCache* cache; CallQueryInterface(p, &cache); UpdateWrapper(p, cache, obj, old); } // Attempt to preserve the wrapper, if any, for a Paris DOM bindings object. // Return true if we successfully preserved the wrapper, or there is no wrapper // to preserve. In the latter case we don't need to preserve the wrapper, // because the object can only be obtained by JS once, or they cannot be // meaningfully owned from the native side. // // This operation will return false only for non-nsISupports cycle-collected // objects, because we cannot determine if they are wrappercached or not. bool TryPreserveWrapper(JS::Handle obj); // Can only be called with a DOM JSClass. bool InstanceClassHasProtoAtDepth(const JSClass* clasp, uint32_t protoID, uint32_t depth); // Only set allowNativeWrapper to false if you really know you need it; if in // doubt use true. Setting it to false disables security wrappers. bool XPCOMObjectToJsval(JSContext* cx, JS::Handle scope, xpcObjectHelper& helper, const nsIID* iid, bool allowNativeWrapper, JS::MutableHandle rval); // Special-cased wrapping for variants bool VariantToJsval(JSContext* aCx, nsIVariant* aVariant, JS::MutableHandle aRetval); // Wrap an object "p" which is not using WebIDL bindings yet. This _will_ // actually work on WebIDL binding objects that are wrappercached, but will be // much slower than GetOrCreateDOMReflector. "cache" must either be null or be // the nsWrapperCache for "p". template inline bool WrapObject(JSContext* cx, T* p, nsWrapperCache* cache, const nsIID* iid, JS::MutableHandle rval) { if (xpc_FastGetCachedWrapper(cx, cache, rval)) return true; xpcObjectHelper helper(ToSupports(p), cache); JS::Rooted scope(cx, JS::CurrentGlobalOrNull(cx)); return XPCOMObjectToJsval(cx, scope, helper, iid, true, rval); } // A specialization of the above for nsIVariant, because that needs to // do something different. template <> inline bool WrapObject(JSContext* cx, nsIVariant* p, nsWrapperCache* cache, const nsIID* iid, JS::MutableHandle rval) { MOZ_ASSERT(iid); MOZ_ASSERT(iid->Equals(NS_GET_IID(nsIVariant))); return VariantToJsval(cx, p, rval); } // Wrap an object "p" which is not using WebIDL bindings yet. Just like the // variant that takes an nsWrapperCache above, but will try to auto-derive the // nsWrapperCache* from "p". template inline bool WrapObject(JSContext* cx, T* p, const nsIID* iid, JS::MutableHandle rval) { return WrapObject(cx, p, GetWrapperCache(p), iid, rval); } // Just like the WrapObject above, but without requiring you to pick which // interface you're wrapping as. This should only be used for objects that have // classinfo, for which it doesn't matter what IID is used to wrap. template inline bool WrapObject(JSContext* cx, T* p, JS::MutableHandle rval) { return WrapObject(cx, p, nullptr, rval); } // Helper to make it possible to wrap directly out of an nsCOMPtr template inline bool WrapObject(JSContext* cx, const nsCOMPtr& p, const nsIID* iid, JS::MutableHandle rval) { return WrapObject(cx, p.get(), iid, rval); } // Helper to make it possible to wrap directly out of an nsCOMPtr template inline bool WrapObject(JSContext* cx, const nsCOMPtr& p, JS::MutableHandle rval) { return WrapObject(cx, p, nullptr, rval); } // Helper to make it possible to wrap directly out of an nsRefPtr template inline bool WrapObject(JSContext* cx, const RefPtr& p, const nsIID* iid, JS::MutableHandle rval) { return WrapObject(cx, p.get(), iid, rval); } // Helper to make it possible to wrap directly out of an nsRefPtr template inline bool WrapObject(JSContext* cx, const RefPtr& p, JS::MutableHandle rval) { return WrapObject(cx, p, nullptr, rval); } // Specialization to make it easy to use WrapObject in codegen. template <> inline bool WrapObject(JSContext* cx, JSObject* p, JS::MutableHandle rval) { rval.set(JS::ObjectOrNullValue(p)); return true; } inline bool WrapObject(JSContext* cx, JSObject& p, JS::MutableHandle rval) { rval.set(JS::ObjectValue(p)); return true; } bool WrapObject(JSContext* cx, const WindowProxyHolder& p, JS::MutableHandle rval); // Given an object "p" that inherits from nsISupports, wrap it and return the // result. Null is returned on wrapping failure. This is somewhat similar to // WrapObject() above, but does NOT allow Xrays around the result, since we // don't want those for our parent object. template static inline JSObject* WrapNativeISupports(JSContext* cx, T* p, nsWrapperCache* cache) { JS::Rooted retval(cx); { xpcObjectHelper helper(ToSupports(p), cache); JS::Rooted scope(cx, JS::CurrentGlobalOrNull(cx)); JS::Rooted v(cx); retval = XPCOMObjectToJsval(cx, scope, helper, nullptr, false, &v) ? v.toObjectOrNull() : nullptr; } return retval; } // Wrapping of our native parent, for cases when it's a WebIDL object. template ::WrapObject> struct WrapNativeHelper { static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache) { MOZ_ASSERT(cache); JSObject* obj; if ((obj = cache->GetWrapper())) { // GetWrapper always unmarks gray. JS::AssertObjectIsNotGray(obj); return obj; } // WrapObject never returns a gray thing. obj = parent->WrapObject(cx, nullptr); JS::AssertObjectIsNotGray(obj); return obj; } }; // Wrapping of our native parent, for cases when it's not a WebIDL object. In // this case it must be nsISupports. template struct WrapNativeHelper { static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache) { JSObject* obj; if (cache && (obj = cache->GetWrapper())) { #ifdef DEBUG JS::Rooted rootedObj(cx, obj); NS_ASSERTION(WrapNativeISupports(cx, parent, cache) == rootedObj, "Unexpected object in nsWrapperCache"); obj = rootedObj; #endif JS::AssertObjectIsNotGray(obj); return obj; } obj = WrapNativeISupports(cx, parent, cache); JS::AssertObjectIsNotGray(obj); return obj; } }; // Finding the associated global for an object. template static inline JSObject* FindAssociatedGlobal( JSContext* cx, T* p, nsWrapperCache* cache, mozilla::dom::ReflectionScope scope = mozilla::dom::ReflectionScope::Content) { if (!p) { return JS::CurrentGlobalOrNull(cx); } JSObject* obj = WrapNativeHelper::Wrap(cx, p, cache); if (!obj) { return nullptr; } JS::AssertObjectIsNotGray(obj); // The object is never a CCW but it may not be in the current compartment of // the JSContext. obj = JS::GetNonCCWObjectGlobal(obj); switch (scope) { case mozilla::dom::ReflectionScope::NAC: { return xpc::NACScope(obj); } case mozilla::dom::ReflectionScope::UAWidget: { // If scope is set to UAWidgetScope, it means that the canonical reflector // for this native object should live in the UA widget scope. if (xpc::IsInUAWidgetScope(obj)) { return obj; } JS::Rooted rootedObj(cx, obj); JSObject* uaWidgetScope = xpc::GetUAWidgetScope(cx, rootedObj); MOZ_ASSERT_IF(uaWidgetScope, JS_IsGlobalObject(uaWidgetScope)); JS::AssertObjectIsNotGray(uaWidgetScope); return uaWidgetScope; } case ReflectionScope::Content: return obj; } MOZ_CRASH("Unknown ReflectionScope variant"); return nullptr; } // Finding of the associated global for an object, when we don't want to // explicitly pass in things like the nsWrapperCache for it. template static inline JSObject* FindAssociatedGlobal(JSContext* cx, const T& p) { return FindAssociatedGlobal(cx, GetParentPointer(p), GetWrapperCache(p), GetReflectionScope(p)); } // Specialization for the case of nsIGlobalObject, since in that case // we can just get the JSObject* directly. template <> inline JSObject* FindAssociatedGlobal(JSContext* cx, nsIGlobalObject* const& p) { if (!p) { return JS::CurrentGlobalOrNull(cx); } JSObject* global = p->GetGlobalJSObject(); if (!global) { // nsIGlobalObject doesn't have a JS object anymore, // fallback to the current global. return JS::CurrentGlobalOrNull(cx); } MOZ_ASSERT(JS_IsGlobalObject(global)); JS::AssertObjectIsNotGray(global); return global; } template ::GetParentObject> struct FindAssociatedGlobalForNative { static JSObject* Get(JSContext* cx, JS::Handle obj) { MOZ_ASSERT(js::IsObjectInContextCompartment(obj, cx)); T* native = UnwrapDOMObject(obj); return FindAssociatedGlobal(cx, native->GetParentObject()); } }; template struct FindAssociatedGlobalForNative { static JSObject* Get(JSContext* cx, JS::Handle obj) { MOZ_CRASH(); return nullptr; } }; // Helper for calling GetOrCreateDOMReflector with smart pointers // (nsAutoPtr/nsRefPtr/nsCOMPtr) or references. template ::value> struct GetOrCreateDOMReflectorHelper { static inline bool GetOrCreate(JSContext* cx, const T& value, JS::Handle givenProto, JS::MutableHandle rval) { return GetOrCreateDOMReflector(cx, value.get(), rval, givenProto); } }; template struct GetOrCreateDOMReflectorHelper { static inline bool GetOrCreate(JSContext* cx, T& value, JS::Handle givenProto, JS::MutableHandle rval) { static_assert(IsRefcounted::value, "Don't pass owned classes in here."); return GetOrCreateDOMReflector(cx, &value, rval, givenProto); } }; template inline bool GetOrCreateDOMReflector( JSContext* cx, T& value, JS::MutableHandle rval, JS::Handle givenProto = nullptr) { return GetOrCreateDOMReflectorHelper::GetOrCreate(cx, value, givenProto, rval); } // Helper for calling GetOrCreateDOMReflectorNoWrap with smart pointers // (nsAutoPtr/nsRefPtr/nsCOMPtr) or references. template ::value> struct GetOrCreateDOMReflectorNoWrapHelper { static inline bool GetOrCreate(JSContext* cx, const T& value, JS::MutableHandle rval) { return GetOrCreateDOMReflectorNoWrap(cx, value.get(), rval); } }; template struct GetOrCreateDOMReflectorNoWrapHelper { static inline bool GetOrCreate(JSContext* cx, T& value, JS::MutableHandle rval) { return GetOrCreateDOMReflectorNoWrap(cx, &value, rval); } }; template inline bool GetOrCreateDOMReflectorNoWrap(JSContext* cx, T& value, JS::MutableHandle rval) { return GetOrCreateDOMReflectorNoWrapHelper::GetOrCreate(cx, value, rval); } template inline JSObject* GetCallbackFromCallbackObject(JSContext* aCx, T* aObj) { return aObj->Callback(aCx); } // Helper for getting the callback JSObject* of a smart ptr around a // CallbackObject or a reference to a CallbackObject or something like // that. template ::value> struct GetCallbackFromCallbackObjectHelper { static inline JSObject* Get(JSContext* aCx, const T& aObj) { return GetCallbackFromCallbackObject(aCx, aObj.get()); } }; template struct GetCallbackFromCallbackObjectHelper { static inline JSObject* Get(JSContext* aCx, T& aObj) { return GetCallbackFromCallbackObject(aCx, &aObj); } }; template inline JSObject* GetCallbackFromCallbackObject(JSContext* aCx, T& aObj) { return GetCallbackFromCallbackObjectHelper::Get(aCx, aObj); } static inline bool AtomizeAndPinJSString(JSContext* cx, jsid& id, const char* chars) { if (JSString* str = ::JS_AtomizeAndPinString(cx, chars)) { id = INTERNED_STRING_TO_JSID(cx, str); return true; } return false; } bool InitIds(JSContext* cx, const NativeProperties* properties); void GetInterfaceImpl(JSContext* aCx, nsIInterfaceRequestor* aRequestor, nsWrapperCache* aCache, JS::Handle aIID, JS::MutableHandle aRetval, ErrorResult& aError); template void GetInterface(JSContext* aCx, T* aThis, JS::Handle aIID, JS::MutableHandle aRetval, ErrorResult& aError) { GetInterfaceImpl(aCx, aThis, aThis, aIID, aRetval, aError); } bool ThrowingConstructor(JSContext* cx, unsigned argc, JS::Value* vp); bool ThrowConstructorWithoutNew(JSContext* cx, const char* name); bool GetPropertyOnPrototype(JSContext* cx, JS::Handle proxy, JS::Handle receiver, JS::Handle id, bool* found, JS::MutableHandle vp); // bool HasPropertyOnPrototype(JSContext* cx, JS::Handle proxy, JS::Handle id, bool* has); // Append the property names in "names" to "props". If // shadowPrototypeProperties is false then skip properties that are also // present on the proto chain of proxy. If shadowPrototypeProperties is true, // then the "proxy" argument is ignored. bool AppendNamedPropertyIds(JSContext* cx, JS::Handle proxy, nsTArray& names, bool shadowPrototypeProperties, JS::MutableHandleVector props); enum StringificationBehavior { eStringify, eEmpty, eNull }; static inline JSString* ConvertJSValueToJSString(JSContext* cx, JS::Handle v) { if (MOZ_LIKELY(v.isString())) { return v.toString(); } return JS::ToString(cx, v); } template static inline bool ConvertJSValueToString( JSContext* cx, JS::Handle v, StringificationBehavior nullBehavior, StringificationBehavior undefinedBehavior, T& result) { JSString* s; if (v.isString()) { s = v.toString(); } else { StringificationBehavior behavior; if (v.isNull()) { behavior = nullBehavior; } else if (v.isUndefined()) { behavior = undefinedBehavior; } else { behavior = eStringify; } if (behavior != eStringify) { if (behavior == eEmpty) { result.Truncate(); } else { result.SetIsVoid(true); } return true; } s = JS::ToString(cx, v); if (!s) { return false; } } return AssignJSString(cx, result, s); } template static inline bool ConvertJSValueToString(JSContext* cx, JS::Handle v, T& result) { return ConvertJSValueToString(cx, v, eStringify, eStringify, result); } MOZ_MUST_USE bool NormalizeUSVString(nsAString& aString); MOZ_MUST_USE bool NormalizeUSVString(binding_detail::FakeString& aString); template static inline bool ConvertJSValueToUSVString(JSContext* cx, JS::Handle v, T& result) { if (!ConvertJSValueToString(cx, v, eStringify, eStringify, result)) { return false; } if (!NormalizeUSVString(result)) { JS_ReportOutOfMemory(cx); return false; } return true; } template inline bool ConvertIdToString(JSContext* cx, JS::HandleId id, T& result, bool& isSymbol) { if (MOZ_LIKELY(JSID_IS_STRING(id))) { if (!AssignJSString(cx, result, JSID_TO_STRING(id))) { return false; } } else if (JSID_IS_SYMBOL(id)) { isSymbol = true; return true; } else { JS::RootedValue nameVal(cx, js::IdToValue(id)); if (!ConvertJSValueToString(cx, nameVal, eStringify, eStringify, result)) { return false; } } isSymbol = false; return true; } bool ConvertJSValueToByteString(JSContext* cx, JS::Handle v, bool nullable, nsACString& result); inline bool ConvertJSValueToByteString(JSContext* cx, JS::Handle v, nsACString& result) { return ConvertJSValueToByteString(cx, v, false, result); } template void DoTraceSequence(JSTracer* trc, FallibleTArray& seq); template void DoTraceSequence(JSTracer* trc, nsTArray& seq); // Class used to trace sequences, with specializations for various // sequence types. template ::value, bool isTypedArray = IsBaseOf::value, bool isOwningUnion = IsBaseOf::value> class SequenceTracer { explicit SequenceTracer() = delete; // Should never be instantiated }; // sequence or sequence template <> class SequenceTracer { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, JSObject** objp, JSObject** end) { for (; objp != end; ++objp) { JS::UnsafeTraceRoot(trc, objp, "sequence"); } } }; // sequence template <> class SequenceTracer { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, JS::Value* valp, JS::Value* end) { for (; valp != end; ++valp) { JS::UnsafeTraceRoot(trc, valp, "sequence"); } } }; // sequence> template class SequenceTracer, false, false, false> { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, Sequence* seqp, Sequence* end) { for (; seqp != end; ++seqp) { DoTraceSequence(trc, *seqp); } } }; // sequence> as return value template class SequenceTracer, false, false, false> { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, nsTArray* seqp, nsTArray* end) { for (; seqp != end; ++seqp) { DoTraceSequence(trc, *seqp); } } }; // sequence template class SequenceTracer { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, T* dictp, T* end) { for (; dictp != end; ++dictp) { dictp->TraceDictionary(trc); } } }; // sequence template class SequenceTracer { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, T* arrayp, T* end) { for (; arrayp != end; ++arrayp) { arrayp->TraceSelf(trc); } } }; // sequence template class SequenceTracer { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, T* arrayp, T* end) { for (; arrayp != end; ++arrayp) { arrayp->TraceUnion(trc); } } }; // sequence with T? being a Nullable template class SequenceTracer, false, false, false> { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, Nullable* seqp, Nullable* end) { for (; seqp != end; ++seqp) { if (!seqp->IsNull()) { // Pretend like we actually have a length-one sequence here so // we can do template instantiation correctly for T. T& val = seqp->Value(); T* ptr = &val; SequenceTracer::TraceSequence(trc, ptr, ptr + 1); } } } }; template void TraceRecord(JSTracer* trc, Record& record) { for (auto& entry : record.Entries()) { // Act like it's a one-element sequence to leverage all that infrastructure. SequenceTracer::TraceSequence(trc, &entry.mValue, &entry.mValue + 1); } } // sequence template class SequenceTracer, false, false, false> { explicit SequenceTracer() = delete; // Should never be instantiated public: static void TraceSequence(JSTracer* trc, Record* seqp, Record* end) { for (; seqp != end; ++seqp) { TraceRecord(trc, *seqp); } } }; template void DoTraceSequence(JSTracer* trc, FallibleTArray& seq) { SequenceTracer::TraceSequence(trc, seq.Elements(), seq.Elements() + seq.Length()); } template void DoTraceSequence(JSTracer* trc, nsTArray& seq) { SequenceTracer::TraceSequence(trc, seq.Elements(), seq.Elements() + seq.Length()); } // Rooter class for sequences; this is what we mostly use in the codegen template class MOZ_RAII SequenceRooter final : private JS::CustomAutoRooter { public: template SequenceRooter(const CX& cx, FallibleTArray* aSequence MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT), mFallibleArray(aSequence), mSequenceType(eFallibleArray) {} template SequenceRooter(const CX& cx, nsTArray* aSequence MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT), mInfallibleArray(aSequence), mSequenceType(eInfallibleArray) {} template SequenceRooter(const CX& cx, Nullable>* aSequence MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT), mNullableArray(aSequence), mSequenceType(eNullableArray) {} private: enum SequenceType { eInfallibleArray, eFallibleArray, eNullableArray }; virtual void trace(JSTracer* trc) override { if (mSequenceType == eFallibleArray) { DoTraceSequence(trc, *mFallibleArray); } else if (mSequenceType == eInfallibleArray) { DoTraceSequence(trc, *mInfallibleArray); } else { MOZ_ASSERT(mSequenceType == eNullableArray); if (!mNullableArray->IsNull()) { DoTraceSequence(trc, mNullableArray->Value()); } } } union { nsTArray* mInfallibleArray; FallibleTArray* mFallibleArray; Nullable>* mNullableArray; }; SequenceType mSequenceType; }; // Rooter class for Record; this is what we mostly use in the codegen. template class MOZ_RAII RecordRooter final : private JS::CustomAutoRooter { public: template RecordRooter(const CX& cx, Record* aRecord MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT), mRecord(aRecord), mRecordType(eRecord) {} template RecordRooter(const CX& cx, Nullable>* aRecord MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT), mNullableRecord(aRecord), mRecordType(eNullableRecord) {} private: enum RecordType { eRecord, eNullableRecord }; virtual void trace(JSTracer* trc) override { if (mRecordType == eRecord) { TraceRecord(trc, *mRecord); } else { MOZ_ASSERT(mRecordType == eNullableRecord); if (!mNullableRecord->IsNull()) { TraceRecord(trc, mNullableRecord->Value()); } } } union { Record* mRecord; Nullable>* mNullableRecord; }; RecordType mRecordType; }; template class MOZ_RAII RootedUnion : public T, private JS::CustomAutoRooter { public: template explicit RootedUnion(const CX& cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : T(), JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT) {} virtual void trace(JSTracer* trc) override { this->TraceUnion(trc); } }; template class MOZ_STACK_CLASS NullableRootedUnion : public Nullable, private JS::CustomAutoRooter { public: template explicit NullableRootedUnion(const CX& cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) : Nullable(), JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT) {} virtual void trace(JSTracer* trc) override { if (!this->IsNull()) { this->Value().TraceUnion(trc); } } }; inline bool AddStringToIDVector(JSContext* cx, JS::MutableHandleVector vector, const char* name) { return vector.growBy(1) && AtomizeAndPinJSString(cx, *(vector[vector.length() - 1]).address(), name); } // We use one constructor JSNative to represent all DOM interface objects (so // we can easily detect when we need to wrap them in an Xray wrapper). We store // the real JSNative in the mNative member of a JSNativeHolder in the // CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT slot of the JSFunction object for a // specific interface object. We also store the NativeProperties in the // JSNativeHolder. // Note that some interface objects are not yet a JSFunction but a normal // JSObject with a DOMJSClass, those do not use these slots. enum { CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT = 0 }; bool Constructor(JSContext* cx, unsigned argc, JS::Value* vp); // Implementation of the bits that XrayWrapper needs /** * This resolves operations, attributes and constants of the interfaces for obj. * * wrapper is the Xray JS object. * obj is the target object of the Xray, a binding's instance object or a * interface or interface prototype object. */ bool XrayResolveOwnProperty(JSContext* cx, JS::Handle wrapper, JS::Handle obj, JS::Handle id, JS::MutableHandle desc, bool& cacheOnHolder); /** * Define a property on obj through an Xray wrapper. * * wrapper is the Xray JS object. * obj is the target object of the Xray, a binding's instance object or a * interface or interface prototype object. * id and desc are the parameters for the property to be defined. * result is the out-parameter indicating success (read it only if * this returns true and also sets *defined to true). * defined will be set to true if a property was set as a result of this call. */ bool XrayDefineProperty(JSContext* cx, JS::Handle wrapper, JS::Handle obj, JS::Handle id, JS::Handle desc, JS::ObjectOpResult& result, bool* defined); /** * Add to props the property keys of all indexed or named properties of obj and * operations, attributes and constants of the interfaces for obj. * * wrapper is the Xray JS object. * obj is the target object of the Xray, a binding's instance object or a * interface or interface prototype object. * flags are JSITER_* flags. */ bool XrayOwnPropertyKeys(JSContext* cx, JS::Handle wrapper, JS::Handle obj, unsigned flags, JS::MutableHandleVector props); /** * Returns the prototype to use for an Xray for a DOM object, wrapped in cx's * compartment. This always returns the prototype that would be used for a DOM * object if we ignore any changes that might have been done to the prototype * chain by JS, the XBL code or plugins. * * cx should be in the Xray's compartment. * obj is the target object of the Xray, a binding's instance object or an * interface or interface prototype object. */ inline bool XrayGetNativeProto(JSContext* cx, JS::Handle obj, JS::MutableHandle protop) { JS::Rooted global(cx, JS::GetNonCCWObjectGlobal(obj)); { JSAutoRealm ar(cx, global); const DOMJSClass* domClass = GetDOMClass(obj); if (domClass) { ProtoHandleGetter protoGetter = domClass->mGetProto; if (protoGetter) { protop.set(protoGetter(cx)); } else { protop.set(JS::GetRealmObjectPrototype(cx)); } } else if (JS_ObjectIsFunction(obj)) { MOZ_ASSERT(JS_IsNativeFunction(obj, Constructor)); protop.set(JS::GetRealmFunctionPrototype(cx)); } else { const JSClass* clasp = js::GetObjectClass(obj); MOZ_ASSERT(IsDOMIfaceAndProtoClass(clasp)); ProtoGetter protoGetter = DOMIfaceAndProtoJSClass::FromJSClass(clasp)->mGetParentProto; protop.set(protoGetter(cx)); } } return JS_WrapObject(cx, protop); } /** * Get the Xray expando class to use for the given DOM object. */ const JSClass* XrayGetExpandoClass(JSContext* cx, JS::Handle obj); /** * Delete a named property, if any. Return value is false if exception thrown, * true otherwise. The caller should not do any more work after calling this * function, because it has no way whether a deletion was performed and hence * opresult already has state set on it. If callers ever need to change that, * add a "bool* found" argument and change the generated DeleteNamedProperty to * use it instead of a local variable. */ bool XrayDeleteNamedProperty(JSContext* cx, JS::Handle wrapper, JS::Handle obj, JS::Handle id, JS::ObjectOpResult& opresult); /** * Get the object which should be used to cache the return value of a property * getter in the case of a [Cached] or [StoreInSlot] property. `obj` is the * `this` value for our property getter that we're working with. * * This function can return null on failure to allocate the object, throwing on * the JSContext in the process. * * The isXray outparam will be set to true if obj is an Xray and false * otherwise. * * Note that the Slow version should only be called from * GetCachedSlotStorageObject. */ JSObject* GetCachedSlotStorageObjectSlow(JSContext* cx, JS::Handle obj, bool* isXray); inline JSObject* GetCachedSlotStorageObject(JSContext* cx, JS::Handle obj, bool* isXray) { if (IsDOMObject(obj)) { *isXray = false; return obj; } return GetCachedSlotStorageObjectSlow(cx, obj, isXray); } extern NativePropertyHooks sEmptyNativePropertyHooks; extern const JSClassOps sBoringInterfaceObjectClassClassOps; extern const js::ObjectOps sInterfaceObjectClassObjectOps; inline bool UseDOMXray(JSObject* obj) { const JSClass* clasp = js::GetObjectClass(obj); return IsDOMClass(clasp) || JS_IsNativeFunction(obj, Constructor) || IsDOMIfaceAndProtoClass(clasp); } inline bool IsDOMConstructor(JSObject* obj) { if (JS_IsNativeFunction(obj, dom::Constructor)) { // NamedConstructor, like Image return true; } const JSClass* clasp = js::GetObjectClass(obj); // Check for a DOM interface object. return dom::IsDOMIfaceAndProtoClass(clasp) && dom::DOMIfaceAndProtoJSClass::FromJSClass(clasp)->mType == dom::eInterface; } #ifdef DEBUG inline bool HasConstructor(JSObject* obj) { return JS_IsNativeFunction(obj, Constructor) || js::GetObjectClass(obj)->getConstruct(); } #endif // Helpers for creating a const version of a type. template const T& Constify(T& arg) { return arg; } // Helper for turning (Owning)NonNull into T& template T& NonNullHelper(T& aArg) { return aArg; } template T& NonNullHelper(NonNull& aArg) { return aArg; } template const T& NonNullHelper(const NonNull& aArg) { return aArg; } template T& NonNullHelper(OwningNonNull& aArg) { return aArg; } template const T& NonNullHelper(const OwningNonNull& aArg) { return aArg; } inline void NonNullHelper(NonNull& aArg) { // This overload is here to make sure that we never end up applying // NonNullHelper to a NonNull. If we // try to, it should fail to compile, since presumably the caller will try to // use our nonexistent return value. } inline void NonNullHelper(const NonNull& aArg) { // This overload is here to make sure that we never end up applying // NonNullHelper to a NonNull. If we // try to, it should fail to compile, since presumably the caller will try to // use our nonexistent return value. } inline void NonNullHelper(binding_detail::FakeString& aArg) { // This overload is here to make sure that we never end up applying // NonNullHelper to a FakeString before we've constified it. If we // try to, it should fail to compile, since presumably the caller will try to // use our nonexistent return value. } MOZ_ALWAYS_INLINE const nsAString& NonNullHelper(const binding_detail::FakeString& aArg) { return aArg; } // Given a DOM reflector aObj, give its underlying DOM object a reflector in // whatever global that underlying DOM object now thinks it should be in. If // this is in a different compartment from aObj, aObj will become a // cross-compatment wrapper for the new object. Otherwise, aObj will become the // new object (via a brain transplant). If the new global is the same as the // old global, we just keep using the same object. // // On entry to this method, aCx and aObj must be same-compartment. void UpdateReflectorGlobal(JSContext* aCx, JS::Handle aObj, ErrorResult& aError); /** * Used to implement the Symbol.hasInstance property of an interface object. */ bool InterfaceHasInstance(JSContext* cx, unsigned argc, JS::Value* vp); bool InterfaceHasInstance(JSContext* cx, int prototypeID, int depth, JS::Handle instance, bool* bp); // Used to implement the cross-context .isInstance static method. bool InterfaceIsInstance(JSContext* cx, unsigned argc, JS::Value* vp); // Helper for lenient getters/setters to report to console. If this // returns false, we couldn't even get a global. bool ReportLenientThisUnwrappingFailure(JSContext* cx, JSObject* obj); // Given a JSObject* that represents the chrome side of a JS-implemented WebIDL // interface, get the nsIGlobalObject corresponding to the content side, if any. // A false return means an exception was thrown. bool GetContentGlobalForJSImplementedObject(JSContext* cx, JS::Handle obj, nsIGlobalObject** global); void ConstructJSImplementation(const char* aContractId, nsIGlobalObject* aGlobal, JS::MutableHandle aObject, ErrorResult& aRv); template already_AddRefed ConstructJSImplementation(const char* aContractId, nsIGlobalObject* aGlobal, ErrorResult& aRv) { JS::RootingContext* cx = RootingCx(); JS::Rooted jsImplObj(cx); ConstructJSImplementation(aContractId, aGlobal, &jsImplObj, aRv); if (aRv.Failed()) { return nullptr; } MOZ_RELEASE_ASSERT(!js::IsWrapper(jsImplObj)); JS::Rooted jsImplGlobal(cx, JS::GetNonCCWObjectGlobal(jsImplObj)); RefPtr newObj = new T(jsImplObj, jsImplGlobal, aGlobal); return newObj.forget(); } template already_AddRefed ConstructJSImplementation(const char* aContractId, const GlobalObject& aGlobal, ErrorResult& aRv) { nsCOMPtr global = do_QueryInterface(aGlobal.GetAsSupports()); if (!global) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } return ConstructJSImplementation(aContractId, global, aRv); } /** * Convert an nsCString to jsval, returning true on success. * These functions are intended for ByteString implementations. * As such, the string is not UTF-8 encoded. Any UTF8 strings passed to these * methods will be mangled. */ bool NonVoidByteStringToJsval(JSContext* cx, const nsACString& str, JS::MutableHandle rval); inline bool ByteStringToJsval(JSContext* cx, const nsACString& str, JS::MutableHandle rval) { if (str.IsVoid()) { rval.setNull(); return true; } return NonVoidByteStringToJsval(cx, str, rval); } template ::value> struct PreserveWrapperHelper { static void PreserveWrapper(T* aObject) { aObject->PreserveWrapper(aObject, NS_CYCLE_COLLECTION_PARTICIPANT(T)); } }; template struct PreserveWrapperHelper { static void PreserveWrapper(T* aObject) { aObject->PreserveWrapper(reinterpret_cast(aObject)); } }; template void PreserveWrapper(T* aObject) { PreserveWrapperHelper::PreserveWrapper(aObject); } template ::value> struct CastingAssertions { static bool ToSupportsIsCorrect(T*) { return true; } static bool ToSupportsIsOnPrimaryInheritanceChain(T*, nsWrapperCache*) { return true; } }; template struct CastingAssertions { static bool ToSupportsIsCorrect(T* aObject) { return ToSupports(aObject) == reinterpret_cast(aObject); } static bool ToSupportsIsOnPrimaryInheritanceChain(T* aObject, nsWrapperCache* aCache) { return reinterpret_cast(aObject) != aCache; } }; template bool ToSupportsIsCorrect(T* aObject) { return CastingAssertions::ToSupportsIsCorrect(aObject); } template bool ToSupportsIsOnPrimaryInheritanceChain(T* aObject, nsWrapperCache* aCache) { return CastingAssertions::ToSupportsIsOnPrimaryInheritanceChain(aObject, aCache); } // Get the size of allocated memory to associate with a binding JSObject for a // native object. This is supplied to the JS engine to allow it to schedule GC // when necessary. // // This function supplies a default value and is overloaded for specific native // object types. inline size_t BindingJSObjectMallocBytes(void* aNativePtr) { return 0; } // The BindingJSObjectCreator class is supposed to be used by a caller that // wants to create and initialise a binding JSObject. After initialisation has // been successfully completed it should call ForgetObject(). // The BindingJSObjectCreator object will root the JSObject until ForgetObject() // is called on it. If the native object for the binding is refcounted it will // also hold a strong reference to it, that reference is transferred to the // JSObject (which holds the native in a slot) when ForgetObject() is called. If // the BindingJSObjectCreator object is destroyed and ForgetObject() was never // called on it then the JSObject's slot holding the native will be set to // undefined, and for a refcounted native the strong reference will be released. template class MOZ_STACK_CLASS BindingJSObjectCreator { public: explicit BindingJSObjectCreator(JSContext* aCx) : mReflector(aCx) {} ~BindingJSObjectCreator() { if (mReflector) { js::SetReservedSlot(mReflector, DOM_OBJECT_SLOT, JS::UndefinedValue()); } } void CreateProxyObject(JSContext* aCx, const JSClass* aClass, const DOMProxyHandler* aHandler, JS::Handle aProto, bool aLazyProto, T* aNative, JS::Handle aExpandoValue, JS::MutableHandle aReflector) { js::ProxyOptions options; options.setClass(aClass); options.setLazyProto(aLazyProto); aReflector.set( js::NewProxyObject(aCx, aHandler, aExpandoValue, aProto, options)); if (aReflector) { js::SetProxyReservedSlot(aReflector, DOM_OBJECT_SLOT, JS::PrivateValue(aNative)); mNative = aNative; mReflector = aReflector; if (size_t mallocBytes = BindingJSObjectMallocBytes(aNative)) { JS::AddAssociatedMemory(aReflector, mallocBytes, JS::MemoryUse::DOMBinding); } } } void CreateObject(JSContext* aCx, const JSClass* aClass, JS::Handle aProto, T* aNative, JS::MutableHandle aReflector) { aReflector.set(JS_NewObjectWithGivenProto(aCx, aClass, aProto)); if (aReflector) { js::SetReservedSlot(aReflector, DOM_OBJECT_SLOT, JS::PrivateValue(aNative)); mNative = aNative; mReflector = aReflector; if (size_t mallocBytes = BindingJSObjectMallocBytes(aNative)) { JS::AddAssociatedMemory(aReflector, mallocBytes, JS::MemoryUse::DOMBinding); } } } void InitializationSucceeded() { T* pointer; mNative.forget(&pointer); // Never collect binding objects while recording or replaying, to avoid // non-deterministically releasing references during finalization. recordreplay::HoldJSObject(mReflector); mReflector = nullptr; } private: struct OwnedNative { // Make sure the native objects inherit from NonRefcountedDOMObject so // that we log their ctor and dtor. static_assert(IsBaseOf::value, "Non-refcounted objects with DOM bindings should inherit " "from NonRefcountedDOMObject."); OwnedNative& operator=(T* aNative) { mNative = aNative; return *this; } // This signature sucks, but it's the only one that will make a nsRefPtr // just forget about its pointer without warning. void forget(T** aResult) { *aResult = mNative; mNative = nullptr; } // Keep track of the pointer for use in InitializationSucceeded(). // The caller (or, after initialization succeeds, the JS object) retains // ownership of the object. T* mNative; }; JS::Rooted mReflector; typename Conditional::value, RefPtr, OwnedNative>::Type mNative; }; template struct DeferredFinalizerImpl { typedef typename Conditional< IsSame::value, nsCOMPtr, typename Conditional::value, RefPtr, nsAutoPtr>::Type>::Type SmartPtr; typedef SegmentedVector SmartPtrArray; static_assert( IsSame::value || !IsBaseOf::value, "nsISupports classes should all use the nsISupports instantiation"); static inline void AppendAndTake( SegmentedVector>& smartPtrArray, nsISupports* ptr) { smartPtrArray.InfallibleAppend(dont_AddRef(ptr)); } template static inline void AppendAndTake(SegmentedVector>& smartPtrArray, U* ptr) { smartPtrArray.InfallibleAppend(dont_AddRef(ptr)); } template static inline void AppendAndTake(SegmentedVector>& smartPtrArray, U* ptr) { smartPtrArray.InfallibleAppend(ptr); } static void* AppendDeferredFinalizePointer(void* aData, void* aObject) { SmartPtrArray* pointers = static_cast(aData); if (!pointers) { pointers = new SmartPtrArray(); } AppendAndTake(*pointers, static_cast(aObject)); return pointers; } static bool DeferredFinalize(uint32_t aSlice, void* aData) { MOZ_ASSERT(aSlice > 0, "nonsensical/useless call with aSlice == 0"); SmartPtrArray* pointers = static_cast(aData); uint32_t oldLen = pointers->Length(); if (oldLen < aSlice) { aSlice = oldLen; } uint32_t newLen = oldLen - aSlice; pointers->PopLastN(aSlice); if (newLen == 0) { delete pointers; return true; } return false; } }; template ::value> struct DeferredFinalizer { static void AddForDeferredFinalization(T* aObject) { typedef DeferredFinalizerImpl Impl; DeferredFinalize(Impl::AppendDeferredFinalizePointer, Impl::DeferredFinalize, aObject); } }; template struct DeferredFinalizer { static void AddForDeferredFinalization(T* aObject) { DeferredFinalize(reinterpret_cast(aObject)); } }; template static void AddForDeferredFinalization(T* aObject) { DeferredFinalizer::AddForDeferredFinalization(aObject); } // This returns T's CC participant if it participates in CC and does not inherit // from nsISupports. Otherwise, it returns null. QI should be used to get the // participant if T inherits from nsISupports. template ::value> class GetCCParticipant { // Helper for GetCCParticipant for classes that participate in CC. template static constexpr nsCycleCollectionParticipant* GetHelper( int, typename U::NS_CYCLE_COLLECTION_INNERCLASS* dummy = nullptr) { return T::NS_CYCLE_COLLECTION_INNERCLASS::GetParticipant(); } // Helper for GetCCParticipant for classes that don't participate in CC. template static constexpr nsCycleCollectionParticipant* GetHelper(double) { return nullptr; } public: static constexpr nsCycleCollectionParticipant* Get() { // Passing int() here will try to call the GetHelper that takes an int as // its first argument. If T doesn't participate in CC then substitution for // the second argument (with a default value) will fail and because of // SFINAE the next best match (the variant taking a double) will be called. return GetHelper(int()); } }; template class GetCCParticipant { public: static constexpr nsCycleCollectionParticipant* Get() { return nullptr; } }; void FinalizeGlobal(JSFreeOp* aFop, JSObject* aObj); bool ResolveGlobal(JSContext* aCx, JS::Handle aObj, JS::Handle aId, bool* aResolvedp); bool MayResolveGlobal(const JSAtomState& aNames, jsid aId, JSObject* aMaybeObj); bool EnumerateGlobal(JSContext* aCx, JS::HandleObject aObj, JS::MutableHandleVector aProperties, bool aEnumerableOnly); struct CreateGlobalOptionsGeneric { static void TraceGlobal(JSTracer* aTrc, JSObject* aObj) { mozilla::dom::TraceProtoAndIfaceCache(aTrc, aObj); } static bool PostCreateGlobal(JSContext* aCx, JS::Handle aGlobal) { MOZ_ALWAYS_TRUE(TryPreserveWrapper(aGlobal)); return true; } }; struct CreateGlobalOptionsWithXPConnect { static void TraceGlobal(JSTracer* aTrc, JSObject* aObj); static bool PostCreateGlobal(JSContext* aCx, JS::Handle aGlobal); }; template using IsGlobalWithXPConnect = IntegralConstant::value || IsBaseOf::value>; template struct CreateGlobalOptions : Conditional::value, CreateGlobalOptionsWithXPConnect, CreateGlobalOptionsGeneric>::Type { static constexpr ProtoAndIfaceCache::Kind ProtoAndIfaceCacheKind = ProtoAndIfaceCache::NonWindowLike; }; template <> struct CreateGlobalOptions : public CreateGlobalOptionsWithXPConnect { static constexpr ProtoAndIfaceCache::Kind ProtoAndIfaceCacheKind = ProtoAndIfaceCache::WindowLike; }; uint64_t GetWindowID(void* aGlobal); uint64_t GetWindowID(nsGlobalWindowInner* aGlobal); uint64_t GetWindowID(DedicatedWorkerGlobalScope* aGlobal); // The return value is true if we created and successfully performed our part of // the setup for the global, false otherwise. // // Typically this method's caller will want to ensure that // xpc::InitGlobalObjectOptions is called before, and xpc::InitGlobalObject is // called after, this method, to ensure that this global object and its // compartment are consistent with other global objects. template bool CreateGlobal(JSContext* aCx, T* aNative, nsWrapperCache* aCache, const JSClass* aClass, JS::RealmOptions& aOptions, JSPrincipals* aPrincipal, bool aInitStandardClasses, JS::MutableHandle aGlobal) { aOptions.creationOptions() .setTrace(CreateGlobalOptions::TraceGlobal) .setProfilerRealmID(GetWindowID(aNative)); xpc::SetPrefableRealmOptions(aOptions); aGlobal.set(JS_NewGlobalObject(aCx, aClass, aPrincipal, JS::DontFireOnNewGlobalHook, aOptions)); if (!aGlobal) { NS_WARNING("Failed to create global"); return false; } JSAutoRealm ar(aCx, aGlobal); { js::SetReservedSlot(aGlobal, DOM_OBJECT_SLOT, JS::PrivateValue(aNative)); NS_ADDREF(aNative); aCache->SetWrapper(aGlobal); dom::AllocateProtoAndIfaceCache( aGlobal, CreateGlobalOptions::ProtoAndIfaceCacheKind); if (!CreateGlobalOptions::PostCreateGlobal(aCx, aGlobal)) { return false; } } if (aInitStandardClasses && !JS::InitRealmStandardClasses(aCx)) { NS_WARNING("Failed to init standard classes"); return false; } JS::Handle proto = GetProto(aCx); if (!proto || !JS_SplicePrototype(aCx, aGlobal, proto)) { NS_WARNING("Failed to set proto"); return false; } bool succeeded; if (!JS_SetImmutablePrototype(aCx, aGlobal, &succeeded)) { return false; } MOZ_ASSERT(succeeded, "making a fresh global object's [[Prototype]] immutable can " "internally fail, but it should never be unsuccessful"); if (!JS_DefineProfilingFunctions(aCx, aGlobal)) { return false; } return true; } /* * Holds a jsid that is initialized to a pinned string, with automatic * conversion to Handle, as it is held live forever by pinning. */ class PinnedStringId { jsid id; public: constexpr PinnedStringId() : id(JSID_VOID) {} bool init(JSContext* cx, const char* string) { JSString* str = JS_AtomizeAndPinString(cx, string); if (!str) return false; id = INTERNED_STRING_TO_JSID(cx, str); return true; } operator const jsid&() const { return id; } operator JS::Handle() const { /* This is safe because we have pinned the string. */ return JS::Handle::fromMarkedLocation(&id); } } JS_HAZ_ROOTED; namespace binding_detail { /** * WebIDL getters have a "generic" JSNative that is responsible for the * following things: * * 1) Determining the "this" pointer for the C++ call. * 2) Extracting the "specialized" getter from the jitinfo on the JSFunction. * 3) Calling the specialized getter. * 4) Handling exceptions as needed. * * There are several variants of (1) depending on the interface involved and * there are two variants of (4) depending on whether the return type is a * Promise. We handle this by templating our generic getter on a * this-determination policy and an exception handling policy, then explicitly * instantiating the relevant template specializations. */ template bool GenericGetter(JSContext* cx, unsigned argc, JS::Value* vp); /** * WebIDL setters have a "generic" JSNative that is responsible for the * following things: * * 1) Determining the "this" pointer for the C++ call. * 2) Extracting the "specialized" setter from the jitinfo on the JSFunction. * 3) Calling the specialized setter. * * There are several variants of (1) depending on the interface * involved. We handle this by templating our generic setter on a * this-determination policy, then explicitly instantiating the * relevant template specializations. */ template bool GenericSetter(JSContext* cx, unsigned argc, JS::Value* vp); /** * WebIDL methods have a "generic" JSNative that is responsible for the * following things: * * 1) Determining the "this" pointer for the C++ call. * 2) Extracting the "specialized" method from the jitinfo on the JSFunction. * 3) Calling the specialized methodx. * 4) Handling exceptions as needed. * * There are several variants of (1) depending on the interface involved and * there are two variants of (4) depending on whether the return type is a * Promise. We handle this by templating our generic method on a * this-determination policy and an exception handling policy, then explicitly * instantiating the relevant template specializations. */ template bool GenericMethod(JSContext* cx, unsigned argc, JS::Value* vp); // A this-extraction policy for normal getters/setters/methods. struct NormalThisPolicy; // A this-extraction policy for getters/setters/methods on interfaces // that are on some global's proto chain. struct MaybeGlobalThisPolicy; // A this-extraction policy for lenient getters/setters. struct LenientThisPolicy; // A this-extraction policy for cross-origin getters/setters/methods. struct CrossOriginThisPolicy; // A this-extraction policy for getters/setters/methods that should // not be allowed to be called cross-origin but expect objects that // _can_ be cross-origin. struct MaybeCrossOriginObjectThisPolicy; // A this-extraction policy which is just like // MaybeCrossOriginObjectThisPolicy but has lenient-this behavior. struct MaybeCrossOriginObjectLenientThisPolicy; // An exception-reporting policy for normal getters/setters/methods. struct ThrowExceptions; // An exception-handling policy for Promise-returning getters/methods. struct ConvertExceptionsToPromises; } // namespace binding_detail bool StaticMethodPromiseWrapper(JSContext* cx, unsigned argc, JS::Value* vp); // ConvertExceptionToPromise should only be called when we have an error // condition (e.g. returned false from a JSAPI method). Note that there may be // no exception on cx, in which case this is an uncatchable failure that will // simply be propagated. Otherwise this method will attempt to convert the // exception to a Promise rejected with the exception that it will store in // rval. bool ConvertExceptionToPromise(JSContext* cx, JS::MutableHandle rval); #ifdef DEBUG void AssertReturnTypeMatchesJitinfo(const JSJitInfo* aJitinfo, JS::Handle aValue); #endif bool CallerSubsumes(JSObject* aObject); MOZ_ALWAYS_INLINE bool CallerSubsumes(JS::Handle aValue) { if (!aValue.isObject()) { return true; } return CallerSubsumes(&aValue.toObject()); } template inline RefPtr StrongOrRawPtr(already_AddRefed&& aPtr) { return std::move(aPtr); } template inline RefPtr StrongOrRawPtr(RefPtr&& aPtr) { return std::move(aPtr); } template ::value, T*, nsAutoPtr>::Type> inline ReturnType StrongOrRawPtr(T* aPtr) { return ReturnType(aPtr); } template class SmartPtr, class S> inline void StrongOrRawPtr(SmartPtr&& aPtr) = delete; template struct StrongPtrForMember { typedef typename Conditional::value, RefPtr, nsAutoPtr>::Type Type; }; namespace binding_detail { inline JSObject* GetHackedNamespaceProtoObject(JSContext* aCx) { return JS_NewPlainObject(aCx); } } // namespace binding_detail // Resolve an id on the given global object that wants to be included in // Exposed=System webidl annotations. False return value means exception // thrown. bool SystemGlobalResolve(JSContext* cx, JS::Handle obj, JS::Handle id, bool* resolvedp); // Enumerate all ids on the given global object that wants to be included in // Exposed=System webidl annotations. False return value means exception // thrown. bool SystemGlobalEnumerate(JSContext* cx, JS::Handle obj); // Slot indexes for maplike/setlike forEach functions #define FOREACH_CALLBACK_SLOT 0 #define FOREACH_MAPLIKEORSETLIKEOBJ_SLOT 1 // Backing function for running .forEach() on maplike/setlike interfaces. // Unpacks callback and maplike/setlike object from reserved slots, then runs // callback for each key (and value, for maplikes) bool ForEachHandler(JSContext* aCx, unsigned aArgc, JS::Value* aVp); // Unpacks backing object (ES6 map/set) from the reserved slot of a reflector // for a maplike/setlike interface. If backing object does not exist, creates // backing object in the compartment of the reflector involved, making this safe // to use across compartments/via xrays. Return values of these methods will // always be in the context compartment. bool GetMaplikeBackingObject(JSContext* aCx, JS::Handle aObj, size_t aSlotIndex, JS::MutableHandle aBackingObj, bool* aBackingObjCreated); bool GetSetlikeBackingObject(JSContext* aCx, JS::Handle aObj, size_t aSlotIndex, JS::MutableHandle aBackingObj, bool* aBackingObjCreated); // Get the desired prototype object for an object construction from the given // CallArgs. The CallArgs must be for a constructor call. The // aProtoId/aCreator arguments are used to get a default if we don't find a // prototype on the newTarget of the callargs. bool GetDesiredProto(JSContext* aCx, const JS::CallArgs& aCallArgs, prototypes::id::ID aProtoId, CreateInterfaceObjectsMethod aCreator, JS::MutableHandle aDesiredProto); // This function is expected to be called from the constructor function for an // HTML or XUL element interface; the global/callargs need to be whatever was // passed to that constructor function. already_AddRefed CreateXULOrHTMLElement( const GlobalObject& aGlobal, const JS::CallArgs& aCallArgs, JS::Handle aGivenProto, ErrorResult& aRv); void SetUseCounter(JSObject* aObject, UseCounter aUseCounter); void SetUseCounter(UseCounterWorker aUseCounter); // Warnings void DeprecationWarning(JSContext* aCx, JSObject* aObject, Document::DeprecatedOperations aOperation); void DeprecationWarning(const GlobalObject& aGlobal, Document::DeprecatedOperations aOperation); // A callback to perform funToString on an interface object JSString* InterfaceObjectToString(JSContext* aCx, JS::Handle aObject, unsigned /* indent */); namespace binding_detail { // Get a JS global object that can be used for some temporary allocations. The // idea is that this should be used for situations when you need to operate in // _some_ compartment but don't care which one. A typical example is when you // have non-JS input, non-JS output, but have to go through some sort of JS // representation in the middle, so need a compartment to allocate things in. // // It's VERY important that any consumers of this function only do things that // are guaranteed to be side-effect-free, even in the face of a script // environment controlled by a hostile adversary. This is because in the worker // case the global is in fact the worker global, so it and its standard objects // are controlled by the worker script. This is why this function is in the // binding_detail namespace. Any use of this function MUST be very carefully // reviewed by someone who is sufficiently devious and has a very good // understanding of all the code that will run while we're using the return // value, including the SpiderMonkey parts. JSObject* UnprivilegedJunkScopeOrWorkerGlobal(); // Implementation of the [HTMLConstructor] extended attribute. bool HTMLConstructor(JSContext* aCx, unsigned aArgc, JS::Value* aVp, constructors::id::ID aConstructorId, prototypes::id::ID aProtoId, CreateInterfaceObjectsMethod aCreator); // A method to test whether an attribute with the given JSJitGetterOp getter is // enabled in the given set of prefable proeprty specs. For use for toJSON // conversions. aObj is the object that would be used as the "this" value. bool IsGetterEnabled(JSContext* aCx, JS::Handle aObj, JSJitGetterOp aGetter, const Prefable* aAttributes); // A class that can be used to examine the chars of a linear string. class StringIdChars { public: // Require a non-const ref to an AutoRequireNoGC to prevent callers // from passing temporaries. StringIdChars(JS::AutoRequireNoGC& nogc, JSLinearString* str) { mIsLatin1 = js::LinearStringHasLatin1Chars(str); if (mIsLatin1) { mLatin1Chars = js::GetLatin1LinearStringChars(nogc, str); } else { mTwoByteChars = js::GetTwoByteLinearStringChars(nogc, str); } #ifdef DEBUG mLength = js::GetLinearStringLength(str); #endif // DEBUG } MOZ_ALWAYS_INLINE char16_t operator[](size_t index) { MOZ_ASSERT(index < mLength); if (mIsLatin1) { return mLatin1Chars[index]; } return mTwoByteChars[index]; } private: bool mIsLatin1; union { const JS::Latin1Char* mLatin1Chars; const char16_t* mTwoByteChars; }; #ifdef DEBUG size_t mLength; #endif // DEBUG }; } // namespace binding_detail } // namespace dom } // namespace mozilla #endif /* mozilla_dom_BindingUtils_h__ */