/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "AudioSegment.h" #include "AudioStream.h" #include "AudioMixer.h" #include "AudioChannelFormat.h" #include "Latency.h" #include namespace mozilla { template static void InterleaveAndConvertBuffer(const SrcT** aSourceChannels, int32_t aLength, float aVolume, int32_t aChannels, DestT* aOutput) { DestT* output = aOutput; for (int32_t i = 0; i < aLength; ++i) { for (int32_t channel = 0; channel < aChannels; ++channel) { float v = AudioSampleToFloat(aSourceChannels[channel][i])*aVolume; *output = FloatToAudioSample(v); ++output; } } } void InterleaveAndConvertBuffer(const void** aSourceChannels, AudioSampleFormat aSourceFormat, int32_t aLength, float aVolume, int32_t aChannels, AudioDataValue* aOutput) { switch (aSourceFormat) { case AUDIO_FORMAT_FLOAT32: InterleaveAndConvertBuffer(reinterpret_cast(aSourceChannels), aLength, aVolume, aChannels, aOutput); break; case AUDIO_FORMAT_S16: InterleaveAndConvertBuffer(reinterpret_cast(aSourceChannels), aLength, aVolume, aChannels, aOutput); break; case AUDIO_FORMAT_SILENCE: // nothing to do here. break; } } void AudioSegment::ApplyVolume(float aVolume) { for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) { ci->mVolume *= aVolume; } } static const int AUDIO_PROCESSING_FRAMES = 640; /* > 10ms of 48KHz audio */ static const uint8_t gZeroChannel[MAX_AUDIO_SAMPLE_SIZE*AUDIO_PROCESSING_FRAMES] = {0}; void DownmixAndInterleave(const nsTArray& aChannelData, AudioSampleFormat aSourceFormat, int32_t aDuration, float aVolume, uint32_t aOutputChannels, AudioDataValue* aOutput) { nsAutoTArray channelData; nsAutoTArray downmixConversionBuffer; nsAutoTArray downmixOutputBuffer; channelData.SetLength(aChannelData.Length()); if (aSourceFormat != AUDIO_FORMAT_FLOAT32) { NS_ASSERTION(aSourceFormat == AUDIO_FORMAT_S16, "unknown format"); downmixConversionBuffer.SetLength(aDuration*aChannelData.Length()); for (uint32_t i = 0; i < aChannelData.Length(); ++i) { float* conversionBuf = downmixConversionBuffer.Elements() + (i*aDuration); const int16_t* sourceBuf = static_cast(aChannelData[i]); for (uint32_t j = 0; j < (uint32_t)aDuration; ++j) { conversionBuf[j] = AudioSampleToFloat(sourceBuf[j]); } channelData[i] = conversionBuf; } } else { for (uint32_t i = 0; i < aChannelData.Length(); ++i) { channelData[i] = aChannelData[i]; } } downmixOutputBuffer.SetLength(aDuration*aOutputChannels); nsAutoTArray outputChannelBuffers; nsAutoTArray outputChannelData; outputChannelBuffers.SetLength(aOutputChannels); outputChannelData.SetLength(aOutputChannels); for (uint32_t i = 0; i < (uint32_t)aOutputChannels; ++i) { outputChannelData[i] = outputChannelBuffers[i] = downmixOutputBuffer.Elements() + aDuration*i; } if (channelData.Length() > aOutputChannels) { AudioChannelsDownMix(channelData, outputChannelBuffers.Elements(), aOutputChannels, aDuration); } InterleaveAndConvertBuffer(outputChannelData.Elements(), AUDIO_FORMAT_FLOAT32, aDuration, aVolume, aOutputChannels, aOutput); } void AudioSegment::ResampleChunks(SpeexResamplerState* aResampler, uint32_t aInRate, uint32_t aOutRate) { if (mChunks.IsEmpty()) { return; } MOZ_ASSERT(aResampler || IsNull(), "We can only be here without a resampler if this segment is null."); AudioSampleFormat format = AUDIO_FORMAT_SILENCE; for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) { if (ci->mBufferFormat != AUDIO_FORMAT_SILENCE) { format = ci->mBufferFormat; } } switch (format) { // If the format is silence at this point, all the chunks are silent. The // actual function we use does not matter, it's just a matter of changing // the chunks duration. case AUDIO_FORMAT_SILENCE: case AUDIO_FORMAT_FLOAT32: Resample(aResampler, aInRate, aOutRate); break; case AUDIO_FORMAT_S16: Resample(aResampler, aInRate, aOutRate); break; default: MOZ_ASSERT(false); break; } } // This helps to to safely get a pointer to the position we want to start // writing a planar audio buffer, depending on the channel and the offset in the // buffer. static AudioDataValue* PointerForOffsetInChannel(AudioDataValue* aData, size_t aLengthSamples, uint32_t aChannelCount, uint32_t aChannel, uint32_t aOffsetSamples) { size_t samplesPerChannel = aLengthSamples / aChannelCount; size_t beginningOfChannel = samplesPerChannel * aChannel; MOZ_ASSERT(aChannel * samplesPerChannel + aOffsetSamples < aLengthSamples, "Offset request out of bounds."); return aData + beginningOfChannel + aOffsetSamples; } void AudioSegment::Mix(AudioMixer& aMixer, uint32_t aOutputChannels, uint32_t aSampleRate) { nsAutoTArray buf; nsAutoTArray channelData; uint32_t offsetSamples = 0; uint32_t duration = GetDuration(); if (duration <= 0) { MOZ_ASSERT(duration == 0); return; } uint32_t outBufferLength = duration * aOutputChannels; buf.SetLength(outBufferLength); for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) { AudioChunk& c = *ci; uint32_t frames = c.mDuration; // If the chunk is silent, simply write the right number of silence in the // buffers. if (c.mBufferFormat == AUDIO_FORMAT_SILENCE) { for (uint32_t channel = 0; channel < aOutputChannels; channel++) { AudioDataValue* ptr = PointerForOffsetInChannel(buf.Elements(), outBufferLength, aOutputChannels, channel, offsetSamples); PodZero(ptr, frames); } } else { // Othewise, we need to upmix or downmix appropriately, depending on the // desired input and output channels. channelData.SetLength(c.mChannelData.Length()); for (uint32_t i = 0; i < channelData.Length(); ++i) { channelData[i] = c.mChannelData[i]; } if (channelData.Length() < aOutputChannels) { // Up-mix. AudioChannelsUpMix(&channelData, aOutputChannels, gZeroChannel); for (uint32_t channel = 0; channel < aOutputChannels; channel++) { AudioDataValue* ptr = PointerForOffsetInChannel(buf.Elements(), outBufferLength, aOutputChannels, channel, offsetSamples); PodCopy(ptr, reinterpret_cast(channelData[channel]), frames); } MOZ_ASSERT(channelData.Length() == aOutputChannels); } else if (channelData.Length() > aOutputChannels) { // Down mix. nsAutoTArray outChannelPtrs; outChannelPtrs.SetLength(aOutputChannels); uint32_t offsetSamples = 0; for (uint32_t channel = 0; channel < aOutputChannels; channel++) { outChannelPtrs[channel] = PointerForOffsetInChannel(buf.Elements(), outBufferLength, aOutputChannels, channel, offsetSamples); } AudioChannelsDownMix(channelData, outChannelPtrs.Elements(), aOutputChannels, frames); } else { // The channel count is already what we want, just copy it over. for (uint32_t channel = 0; channel < aOutputChannels; channel++) { AudioDataValue* ptr = PointerForOffsetInChannel(buf.Elements(), outBufferLength, aOutputChannels, channel, offsetSamples); PodCopy(ptr, reinterpret_cast(channelData[channel]), frames); } } } offsetSamples += frames; } if (offsetSamples) { MOZ_ASSERT(offsetSamples == outBufferLength / aOutputChannels, "We forgot to write some samples?"); aMixer.Mix(buf.Elements(), aOutputChannels, offsetSamples, aSampleRate); } } void AudioSegment::WriteTo(uint64_t aID, AudioMixer& aMixer, uint32_t aOutputChannels, uint32_t aSampleRate) { nsAutoTArray buf; nsAutoTArray channelData; // Offset in the buffer that will end up sent to the AudioStream, in samples. uint32_t offset = 0; if (GetDuration() <= 0) { MOZ_ASSERT(GetDuration() == 0); return; } uint32_t outBufferLength = GetDuration() * aOutputChannels; buf.SetLength(outBufferLength); for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) { AudioChunk& c = *ci; uint32_t frames = c.mDuration; // If we have written data in the past, or we have real (non-silent) data // to write, we can proceed. Otherwise, it means we just started the // AudioStream, and we don't have real data to write to it (just silence). // To avoid overbuffering in the AudioStream, we simply drop the silence, // here. The stream will underrun and output silence anyways. if (c.mBuffer && c.mBufferFormat != AUDIO_FORMAT_SILENCE) { channelData.SetLength(c.mChannelData.Length()); for (uint32_t i = 0; i < channelData.Length(); ++i) { channelData[i] = c.mChannelData[i]; } if (channelData.Length() < aOutputChannels) { // Up-mix. Note that this might actually make channelData have more // than aOutputChannels temporarily. AudioChannelsUpMix(&channelData, aOutputChannels, gZeroChannel); } if (channelData.Length() > aOutputChannels) { // Down-mix. DownmixAndInterleave(channelData, c.mBufferFormat, frames, c.mVolume, aOutputChannels, buf.Elements() + offset); } else { InterleaveAndConvertBuffer(channelData.Elements(), c.mBufferFormat, frames, c.mVolume, aOutputChannels, buf.Elements() + offset); } } else { // Assumes that a bit pattern of zeroes == 0.0f memset(buf.Elements() + offset, 0, aOutputChannels * frames * sizeof(AudioDataValue)); } offset += frames * aOutputChannels; #if !defined(MOZILLA_XPCOMRT_API) if (!c.mTimeStamp.IsNull()) { TimeStamp now = TimeStamp::Now(); // would be more efficient to c.mTimeStamp to ms on create time then pass here LogTime(AsyncLatencyLogger::AudioMediaStreamTrack, aID, (now - c.mTimeStamp).ToMilliseconds(), c.mTimeStamp); } #endif // !defined(MOZILLA_XPCOMRT_API) } if (offset) { aMixer.Mix(buf.Elements(), aOutputChannels, offset / aOutputChannels, aSampleRate); } } } // namespace mozilla