/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "AxisPhysicsModel.h" namespace mozilla { namespace layers { /** * The simulation is advanced forward in time with a fixed time step to ensure * that it remains deterministic given variable framerates. To determine the * position at any variable time, two samples are interpolated. * * kFixedtimestep is set to 120hz in order to ensure that every frame in a * common 60hz refresh rate display will have at least one physics simulation * sample. More accuracy can be obtained by reducing kFixedTimestep to smaller * intervals, such as 240hz or 1000hz, at the cost of more CPU cycles. If * kFixedTimestep is increased to much longer intervals, interpolation will * become less effective at reducing temporal jitter and the simulation will * lose accuracy. */ const double AxisPhysicsModel::kFixedTimestep = 1.0 / 120.0; // 120hz /** * Constructs an AxisPhysicsModel with initial values for state. * * @param aInitialPosition sets the initial position of the simulation, * in AppUnits. * @param aInitialVelocity sets the initial velocity of the simulation, * in AppUnits / second. */ AxisPhysicsModel::AxisPhysicsModel(double aInitialPosition, double aInitialVelocity) : mProgress(1.0), mPrevState(aInitialPosition, aInitialVelocity), mNextState(aInitialPosition, aInitialVelocity) {} AxisPhysicsModel::~AxisPhysicsModel() {} double AxisPhysicsModel::GetVelocity() const { return LinearInterpolate(mPrevState.v, mNextState.v, mProgress); } double AxisPhysicsModel::GetPosition() const { return LinearInterpolate(mPrevState.p, mNextState.p, mProgress); } void AxisPhysicsModel::SetVelocity(double aVelocity) { mNextState.v = aVelocity; mNextState.p = GetPosition(); mProgress = 1.0; } void AxisPhysicsModel::SetPosition(double aPosition) { mNextState.v = GetVelocity(); mNextState.p = aPosition; mProgress = 1.0; } void AxisPhysicsModel::Simulate(const TimeDuration& aDeltaTime) { for (mProgress += aDeltaTime.ToSeconds() / kFixedTimestep; mProgress > 1.0; mProgress -= 1.0) { Integrate(kFixedTimestep); } } void AxisPhysicsModel::Integrate(double aDeltaTime) { mPrevState = mNextState; // RK4 (Runge-Kutta method) Integration // http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods Derivative a = Evaluate(mNextState, 0.0, Derivative()); Derivative b = Evaluate(mNextState, aDeltaTime * 0.5, a); Derivative c = Evaluate(mNextState, aDeltaTime * 0.5, b); Derivative d = Evaluate(mNextState, aDeltaTime, c); double dpdt = 1.0 / 6.0 * (a.dp + 2.0 * (b.dp + c.dp) + d.dp); double dvdt = 1.0 / 6.0 * (a.dv + 2.0 * (b.dv + c.dv) + d.dv); mNextState.p += dpdt * aDeltaTime; mNextState.v += dvdt * aDeltaTime; } AxisPhysicsModel::Derivative AxisPhysicsModel::Evaluate( const State& aInitState, double aDeltaTime, const Derivative& aDerivative) { State state(aInitState.p + aDerivative.dp * aDeltaTime, aInitState.v + aDerivative.dv * aDeltaTime); return Derivative(state.v, Acceleration(state)); } double AxisPhysicsModel::LinearInterpolate(double aV1, double aV2, double aBlend) { return aV1 * (1.0 - aBlend) + aV2 * aBlend; } } // namespace layers } // namespace mozilla