/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "WaveDemuxer.h" #include #include #include "mozilla/Assertions.h" #include "mozilla/EndianUtils.h" #include "mp4_demuxer/ByteReader.h" #include "nsAutoPtr.h" #include "VideoUtils.h" #include "TimeUnits.h" using mozilla::media::TimeUnit; using mozilla::media::TimeIntervals; namespace mozilla { // WAVDemuxer WAVDemuxer::WAVDemuxer(MediaResource* aSource) : mSource(aSource) { } bool WAVDemuxer::InitInternal() { if (!mTrackDemuxer) { mTrackDemuxer = new WAVTrackDemuxer(mSource.GetResource()); } return mTrackDemuxer->Init(); } RefPtr WAVDemuxer::Init() { if (!InitInternal()) { return InitPromise::CreateAndReject( NS_ERROR_DOM_MEDIA_METADATA_ERR, __func__); } return InitPromise::CreateAndResolve(NS_OK, __func__); } uint32_t WAVDemuxer::GetNumberTracks(TrackInfo::TrackType aType) const { return aType == TrackInfo::kAudioTrack ? 1u : 0u; } already_AddRefed WAVDemuxer::GetTrackDemuxer(TrackInfo::TrackType aType, uint32_t aTrackNumber) { if (!mTrackDemuxer) { return nullptr; } return RefPtr(mTrackDemuxer).forget(); } bool WAVDemuxer::IsSeekable() const { return true; } // WAVTrackDemuxer WAVTrackDemuxer::WAVTrackDemuxer(MediaResource* aSource) : mSource(aSource) , mOffset(0) , mFirstChunkOffset(0) , mNumParsedChunks(0) , mChunkIndex(0) , mTotalChunkLen(0) , mSamplesPerChunk(0) , mSamplesPerSecond(0) , mChannels(0) { Reset(); } bool WAVTrackDemuxer::Init() { Reset(); FastSeek(TimeUnit()); if (!mInfo) { mInfo = MakeUnique(); } if (!RIFFParserInit()) { return false; } while (true) { if (!HeaderParserInit()) { return false; } uint32_t aChunkName = mHeaderParser.GiveHeader().ChunkName(); uint32_t aChunkSize = mHeaderParser.GiveHeader().ChunkSize(); if (aChunkName == FRMT_CODE) { if (!FmtChunkParserInit()) { return false; } } else if (aChunkName == LIST_CODE) { mHeaderParser.Reset(); uint64_t endOfListChunk = static_cast(mOffset) + aChunkSize; if (endOfListChunk > UINT32_MAX) { return false; } if (!ListChunkParserInit(aChunkSize)) { mOffset = endOfListChunk; } } else if (aChunkName == DATA_CODE) { mDataLength = aChunkSize; if (mFirstChunkOffset != mOffset) { mFirstChunkOffset = mOffset; } break; } else { mOffset += aChunkSize; // Skip other irrelevant chunks. } if (mOffset & 1) { // Wave files are 2-byte aligned so we need to round up mOffset += 1; } mHeaderParser.Reset(); } if (mDataLength > StreamLength() - mFirstChunkOffset) { mDataLength = StreamLength() - mFirstChunkOffset; } mSamplesPerSecond = mFmtParser.FmtChunk().SampleRate(); mChannels = mFmtParser.FmtChunk().Channels(); mSampleFormat = mFmtParser.FmtChunk().SampleFormat(); if (!mSamplesPerSecond || !mChannels || !mSampleFormat) { return false; } mSamplesPerChunk = DATA_CHUNK_SIZE * 8 / mChannels / mSampleFormat; mInfo->mRate = mSamplesPerSecond; mInfo->mChannels = mChannels; mInfo->mBitDepth = mSampleFormat; mInfo->mProfile = mFmtParser.FmtChunk().WaveFormat() & 0x00FF; mInfo->mExtendedProfile = (mFmtParser.FmtChunk().WaveFormat() & 0xFF00) >> 8; mInfo->mMimeType = "audio/wave; codecs="; mInfo->mMimeType.AppendInt(mFmtParser.FmtChunk().WaveFormat()); mInfo->mDuration = Duration(); return mInfo->mDuration.IsPositive(); } bool WAVTrackDemuxer::RIFFParserInit() { RefPtr riffHeader = GetFileHeader(FindRIFFHeader()); if (!riffHeader) { return false; } ByteReader RIFFReader(riffHeader->Data(), 12); mRIFFParser.Parse(RIFFReader); return mRIFFParser.RiffHeader().IsValid(11); } bool WAVTrackDemuxer::HeaderParserInit() { RefPtr header = GetFileHeader(FindChunkHeader()); if (!header) { return false; } ByteReader HeaderReader(header->Data(), 8); mHeaderParser.Parse(HeaderReader); return true; } bool WAVTrackDemuxer::FmtChunkParserInit() { RefPtr fmtChunk = GetFileHeader(FindFmtChunk()); if (!fmtChunk) { return false; } ByteReader fmtReader(fmtChunk->Data(), mHeaderParser.GiveHeader().ChunkSize()); mFmtParser.Parse(fmtReader); return true; } bool WAVTrackDemuxer::ListChunkParserInit(uint32_t aChunkSize) { uint32_t bytesRead = 0; RefPtr infoTag = GetFileHeader(FindInfoTag()); if (!infoTag) { return false; } ByteReader infoTagReader(infoTag->Data(), 4); if (!infoTagReader.CanRead32() || infoTagReader.ReadU32() != INFO_CODE) { return false; } bytesRead += 4; while (bytesRead < aChunkSize) { if (!HeaderParserInit()) { return false; } bytesRead += 8; uint32_t id = mHeaderParser.GiveHeader().ChunkName(); uint32_t length = mHeaderParser.GiveHeader().ChunkSize(); // SubChunk Length Cannot Exceed List Chunk length. if (length > aChunkSize - bytesRead) { length = aChunkSize - bytesRead; } MediaByteRange mRange = { mOffset, mOffset + length }; RefPtr mChunkData = GetFileHeader(mRange); if (!mChunkData) { return false; } const char* rawData = reinterpret_cast(mChunkData->Data()); nsCString val(rawData, length); if (length > 0 && val[length - 1] == '\0') { val.SetLength(length - 1); } if (length % 2) { mOffset += 1; length += length % 2; } bytesRead += length; if (!IsUTF8(val)) { mHeaderParser.Reset(); continue; } switch (id) { case 0x49415254: // IART mInfo->mTags.AppendElement( MetadataTag(NS_LITERAL_CSTRING("artist"), val)); break; case 0x49434d54: // ICMT mInfo->mTags.AppendElement( MetadataTag(NS_LITERAL_CSTRING("comments"), val)); break; case 0x49474e52: // IGNR mInfo->mTags.AppendElement( MetadataTag(NS_LITERAL_CSTRING("genre"), val)); break; case 0x494e414d: // INAM mInfo->mTags.AppendElement( MetadataTag(NS_LITERAL_CSTRING("name"), val)); break; } mHeaderParser.Reset(); } return true; } media::TimeUnit WAVTrackDemuxer::SeekPosition() const { TimeUnit pos = Duration(mChunkIndex); if (Duration() > TimeUnit()) { pos = std::min(Duration(), pos); } return pos; } RefPtr WAVTrackDemuxer::DemuxSample() { return GetNextChunk(FindNextChunk()); } UniquePtr WAVTrackDemuxer::GetInfo() const { return mInfo->Clone(); } RefPtr WAVTrackDemuxer::Seek(const TimeUnit& aTime) { FastSeek(aTime); const TimeUnit seekTime = ScanUntil(aTime); return SeekPromise::CreateAndResolve(seekTime, __func__); } TimeUnit WAVTrackDemuxer::FastSeek(const TimeUnit& aTime) { if (aTime.ToMicroseconds()) { mChunkIndex = ChunkIndexFromTime(aTime); } else { mChunkIndex = 0; } mOffset = OffsetFromChunkIndex(mChunkIndex); if (mOffset > mFirstChunkOffset && StreamLength() > 0) { mOffset = std::min(StreamLength() - 1, mOffset); } return Duration(mChunkIndex); } TimeUnit WAVTrackDemuxer::ScanUntil(const TimeUnit& aTime) { if (!aTime.ToMicroseconds()) { return FastSeek(aTime); } if (Duration(mChunkIndex) > aTime) { FastSeek(aTime); } return SeekPosition(); } RefPtr WAVTrackDemuxer::GetSamples(int32_t aNumSamples) { MOZ_ASSERT(aNumSamples); RefPtr datachunks = new SamplesHolder(); while (aNumSamples--) { RefPtr datachunk = GetNextChunk(FindNextChunk()); if (!datachunk) { break; } datachunks->mSamples.AppendElement(datachunk); } if (datachunks->mSamples.IsEmpty()) { return SamplesPromise::CreateAndReject( NS_ERROR_DOM_MEDIA_END_OF_STREAM, __func__); } return SamplesPromise::CreateAndResolve(datachunks, __func__); } void WAVTrackDemuxer::Reset() { FastSeek(TimeUnit()); mParser.Reset(); mHeaderParser.Reset(); mRIFFParser.Reset(); mFmtParser.Reset(); } RefPtr WAVTrackDemuxer::SkipToNextRandomAccessPoint(const TimeUnit& aTimeThreshold) { return SkipAccessPointPromise::CreateAndReject( SkipFailureHolder(NS_ERROR_DOM_MEDIA_DEMUXER_ERR, 0), __func__); } int64_t WAVTrackDemuxer::GetResourceOffset() const { return mOffset; } TimeIntervals WAVTrackDemuxer::GetBuffered() { TimeUnit duration = Duration(); if (duration <= TimeUnit()) { return TimeIntervals(); } AutoPinned stream(mSource.GetResource()); return GetEstimatedBufferedTimeRanges(stream, duration.ToMicroseconds()); } int64_t WAVTrackDemuxer::StreamLength() const { return mSource.GetLength(); } TimeUnit WAVTrackDemuxer::Duration() const { if (!mDataLength ||!mChannels || !mSampleFormat) { return TimeUnit(); } int64_t numSamples = static_cast(mDataLength) * 8 / mChannels / mSampleFormat; int64_t numUSeconds = USECS_PER_S * numSamples / mSamplesPerSecond; if (USECS_PER_S * numSamples % mSamplesPerSecond > mSamplesPerSecond / 2) { numUSeconds++; } return TimeUnit::FromMicroseconds(numUSeconds); } TimeUnit WAVTrackDemuxer::Duration(int64_t aNumDataChunks) const { if (!mSamplesPerSecond || !mSamplesPerChunk) { return TimeUnit(); } const double usPerDataChunk = USECS_PER_S * static_cast(mSamplesPerChunk) / mSamplesPerSecond; return TimeUnit::FromMicroseconds(aNumDataChunks * usPerDataChunk); } TimeUnit WAVTrackDemuxer::DurationFromBytes(uint32_t aNumBytes) const { if (!mSamplesPerSecond || !mChannels || !mSampleFormat) { return TimeUnit(); } int64_t numSamples = aNumBytes * 8 / mChannels / mSampleFormat; int64_t numUSeconds = USECS_PER_S * numSamples / mSamplesPerSecond; if (USECS_PER_S * numSamples % mSamplesPerSecond > mSamplesPerSecond / 2) { numUSeconds++; } return TimeUnit::FromMicroseconds(numUSeconds); } MediaByteRange WAVTrackDemuxer::FindNextChunk() { if (mOffset + DATA_CHUNK_SIZE < mFirstChunkOffset + mDataLength) { return { mOffset, mOffset + DATA_CHUNK_SIZE }; } else { return { mOffset, mFirstChunkOffset + mDataLength }; } } MediaByteRange WAVTrackDemuxer::FindChunkHeader() { return { mOffset, mOffset + CHUNK_HEAD_SIZE }; } MediaByteRange WAVTrackDemuxer::FindRIFFHeader() { return { mOffset, mOffset + RIFF_CHUNK_SIZE }; } MediaByteRange WAVTrackDemuxer::FindFmtChunk() { return { mOffset, mOffset + mHeaderParser.GiveHeader().ChunkSize() }; } MediaByteRange WAVTrackDemuxer::FindListChunk() { return { mOffset, mOffset + mHeaderParser.GiveHeader().ChunkSize() }; } MediaByteRange WAVTrackDemuxer::FindInfoTag() { return { mOffset, mOffset + 4 }; } bool WAVTrackDemuxer::SkipNextChunk(const MediaByteRange& aRange) { UpdateState(aRange); return true; } already_AddRefed WAVTrackDemuxer::GetNextChunk(const MediaByteRange& aRange) { if (!aRange.Length()) { return nullptr; } RefPtr datachunk = new MediaRawData(); datachunk->mOffset = aRange.mStart; nsAutoPtr chunkWriter(datachunk->CreateWriter()); if (!chunkWriter->SetSize(aRange.Length())) { return nullptr; } const uint32_t read = Read(chunkWriter->Data(), datachunk->mOffset, datachunk->Size()); if (read != aRange.Length()) { return nullptr; } UpdateState(aRange); ++mNumParsedChunks; ++mChunkIndex; datachunk->mTime = Duration(mChunkIndex - 1); if (static_cast(mChunkIndex) * DATA_CHUNK_SIZE < mDataLength) { datachunk->mDuration = Duration(1); } else { uint32_t mBytesRemaining = mDataLength - mChunkIndex * DATA_CHUNK_SIZE; datachunk->mDuration = DurationFromBytes(mBytesRemaining); } datachunk->mTimecode = datachunk->mTime; datachunk->mKeyframe = true; MOZ_ASSERT(!datachunk->mTime.IsNegative()); MOZ_ASSERT(!datachunk->mDuration.IsNegative()); return datachunk.forget(); } already_AddRefed WAVTrackDemuxer::GetFileHeader(const MediaByteRange& aRange) { if (!aRange.Length()) { return nullptr; } RefPtr fileHeader = new MediaRawData(); fileHeader->mOffset = aRange.mStart; nsAutoPtr headerWriter(fileHeader->CreateWriter()); if (!headerWriter->SetSize(aRange.Length())) { return nullptr; } const uint32_t read = Read(headerWriter->Data(), fileHeader->mOffset, fileHeader->Size()); if (read != aRange.Length()) { return nullptr; } UpdateState(aRange); return fileHeader.forget(); } int64_t WAVTrackDemuxer::OffsetFromChunkIndex(int64_t aChunkIndex) const { return mFirstChunkOffset + aChunkIndex * DATA_CHUNK_SIZE; } int64_t WAVTrackDemuxer::ChunkIndexFromOffset(int64_t aOffset) const { int64_t chunkIndex = (aOffset - mFirstChunkOffset) / DATA_CHUNK_SIZE; return std::max(0, chunkIndex); } int64_t WAVTrackDemuxer::ChunkIndexFromTime(const media::TimeUnit& aTime) const { if (!mSamplesPerChunk || !mSamplesPerSecond) { return 0; } int64_t chunkIndex = (aTime.ToSeconds() * mSamplesPerSecond / mSamplesPerChunk) - 1; return chunkIndex; } void WAVTrackDemuxer::UpdateState(const MediaByteRange& aRange) { // Full chunk parsed, move offset to its end. mOffset = aRange.mEnd; mTotalChunkLen += aRange.Length(); } int32_t WAVTrackDemuxer::Read(uint8_t* aBuffer, int64_t aOffset, int32_t aSize) { const int64_t streamLen = StreamLength(); if (mInfo && streamLen > 0) { aSize = std::min(aSize, streamLen - aOffset); } uint32_t read = 0; const nsresult rv = mSource.ReadAt(aOffset, reinterpret_cast(aBuffer), static_cast(aSize), &read); NS_ENSURE_SUCCESS(rv, 0); return static_cast(read); } // RIFFParser uint32_t RIFFParser::Parse(ByteReader& aReader) { while (aReader.CanRead8() && !mRiffHeader.ParseNext(aReader.ReadU8())) { } if (mRiffHeader.IsValid()) { return RIFF_CHUNK_SIZE; } return 0; } void RIFFParser::Reset() { mRiffHeader.Reset(); } const RIFFParser::RIFFHeader& RIFFParser::RiffHeader() const { return mRiffHeader; } // RIFFParser::RIFFHeader RIFFParser::RIFFHeader::RIFFHeader() { Reset(); } void RIFFParser::RIFFHeader::Reset() { memset(mRaw, 0, sizeof(mRaw)); mPos = 0; } bool RIFFParser::RIFFHeader::ParseNext(uint8_t c) { if (!Update(c)) { Reset(); if (!Update(c)) { Reset(); } } return IsValid(); } bool RIFFParser::RIFFHeader::IsValid(int aPos) const { if (aPos > -1 && aPos < 4) { return RIFF[aPos] == mRaw[aPos]; } else if (aPos > 7 && aPos < 12) { return WAVE[aPos - 8] == mRaw[aPos]; } else { return true; } } bool RIFFParser::RIFFHeader::IsValid() const { return mPos >= RIFF_CHUNK_SIZE; } bool RIFFParser::RIFFHeader::Update(uint8_t c) { if (mPos < RIFF_CHUNK_SIZE) { mRaw[mPos] = c; } return IsValid(mPos++); } // HeaderParser uint32_t HeaderParser::Parse(ByteReader& aReader) { while (aReader.CanRead8() && !mHeader.ParseNext(aReader.ReadU8())) { } if (mHeader.IsValid()) { return CHUNK_HEAD_SIZE; } return 0; } void HeaderParser::Reset() { mHeader.Reset(); } const HeaderParser::ChunkHeader& HeaderParser::GiveHeader() const { return mHeader; } // HeaderParser::ChunkHeader HeaderParser::ChunkHeader::ChunkHeader() { Reset(); } void HeaderParser::ChunkHeader::Reset() { memset(mRaw, 0, sizeof(mRaw)); mPos = 0; } bool HeaderParser::ChunkHeader::ParseNext(uint8_t c) { Update(c); return IsValid(); } bool HeaderParser::ChunkHeader::IsValid() const { return mPos >= CHUNK_HEAD_SIZE; } uint32_t HeaderParser::ChunkHeader::ChunkName() const { return ((mRaw[0] << 24) | (mRaw[1] << 16) | (mRaw[2] << 8 ) | (mRaw[3])); } uint32_t HeaderParser::ChunkHeader::ChunkSize() const { return ((mRaw[7] << 24) | (mRaw[6] << 16) | (mRaw[5] << 8 ) | (mRaw[4])); } void HeaderParser::ChunkHeader::Update(uint8_t c) { if (mPos < CHUNK_HEAD_SIZE) { mRaw[mPos++] = c; } } // FormatParser uint32_t FormatParser::Parse(ByteReader& aReader) { while (aReader.CanRead8() && !mFmtChunk.ParseNext(aReader.ReadU8())) { } if (mFmtChunk.IsValid()) { return FMT_CHUNK_MIN_SIZE; } return 0; } void FormatParser::Reset() { mFmtChunk.Reset(); } const FormatParser::FormatChunk& FormatParser::FmtChunk() const { return mFmtChunk; } // FormatParser::FormatChunk FormatParser::FormatChunk::FormatChunk() { Reset(); } void FormatParser::FormatChunk::Reset() { memset(mRaw, 0, sizeof(mRaw)); mPos = 0; } uint16_t FormatParser::FormatChunk::WaveFormat() const { return (mRaw[1] << 8) | (mRaw[0]); } uint16_t FormatParser::FormatChunk::Channels() const { return (mRaw[3] << 8) | (mRaw[2]); } uint32_t FormatParser::FormatChunk::SampleRate() const { return (mRaw[7] << 24) | (mRaw[6] << 16) | (mRaw[5] << 8) | (mRaw[4]); } uint16_t FormatParser::FormatChunk::FrameSize() const { return (mRaw[13] << 8) | (mRaw[12]); } uint16_t FormatParser::FormatChunk::SampleFormat() const { return (mRaw[15] << 8) | (mRaw[14]); } bool FormatParser::FormatChunk::ParseNext(uint8_t c) { Update(c); return IsValid(); } bool FormatParser::FormatChunk::IsValid() const { return (FrameSize() == SampleRate() * Channels() / 8) && (mPos >= FMT_CHUNK_MIN_SIZE); } void FormatParser::FormatChunk::Update(uint8_t c) { if (mPos < FMT_CHUNK_MIN_SIZE) { mRaw[mPos++] = c; } } // DataParser DataParser::DataParser() { } void DataParser::Reset() { mChunk.Reset(); } const DataParser::DataChunk& DataParser::CurrentChunk() const { return mChunk; } // DataParser::DataChunk void DataParser::DataChunk::Reset() { mPos = 0; } } // namespace mozilla