/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set sw=2 ts=2 et tw=80 : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/layers/AsyncCompositionManager.h" #include // for uint32_t #include "apz/src/AsyncPanZoomController.h" #include "FrameMetrics.h" // for FrameMetrics #include "LayerManagerComposite.h" // for LayerManagerComposite, etc #include "Layers.h" // for Layer, ContainerLayer, etc #include "gfxPoint.h" // for gfxPoint, gfxSize #include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc #include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation #include "mozilla/dom/KeyframeEffect.h" // for KeyframeEffectReadOnly #include "mozilla/gfx/BaseRect.h" // for BaseRect #include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped #include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped #include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor #include "mozilla/layers/Compositor.h" // for Compositor #include "mozilla/layers/CompositorParent.h" // for CompositorParent, etc #include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper #include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc #include "nsDebug.h" // for NS_ASSERTION, etc #include "nsDeviceContext.h" // for nsDeviceContext #include "nsDisplayList.h" // for nsDisplayTransform, etc #include "nsMathUtils.h" // for NS_round #include "nsPoint.h" // for nsPoint #include "nsRect.h" // for mozilla::gfx::IntRect #include "nsRegion.h" // for nsIntRegion #include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc #include "nsTArrayForwardDeclare.h" // for InfallibleTArray #include "UnitTransforms.h" // for TransformTo #if defined(MOZ_WIDGET_ANDROID) # include # include "AndroidBridge.h" #endif #include "GeckoProfiler.h" struct nsCSSValueSharedList; namespace mozilla { namespace layers { using namespace mozilla::gfx; enum Op { Resolve, Detach }; static bool IsSameDimension(dom::ScreenOrientation o1, dom::ScreenOrientation o2) { bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary); bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary); return !(isO1portrait ^ isO2portrait); } static bool ContentMightReflowOnOrientationChange(const IntRect& rect) { return rect.width != rect.height; } template static void WalkTheTree(Layer* aLayer, bool& aReady, const TargetConfig& aTargetConfig) { if (RefLayer* ref = aLayer->AsRefLayer()) { if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) { if (Layer* referent = state->mRoot) { if (!ref->GetVisibleRegion().IsEmpty()) { dom::ScreenOrientation chromeOrientation = aTargetConfig.orientation(); dom::ScreenOrientation contentOrientation = state->mTargetConfig.orientation(); if (!IsSameDimension(chromeOrientation, contentOrientation) && ContentMightReflowOnOrientationChange(aTargetConfig.naturalBounds())) { aReady = false; } } if (OP == Resolve) { ref->ConnectReferentLayer(referent); } else { ref->DetachReferentLayer(referent); WalkTheTree(referent, aReady, aTargetConfig); } } } } for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { WalkTheTree(child, aReady, aTargetConfig); } } void AsyncCompositionManager::ResolveRefLayers() { if (!mLayerManager->GetRoot()) { return; } mReadyForCompose = true; WalkTheTree(mLayerManager->GetRoot(), mReadyForCompose, mTargetConfig); } void AsyncCompositionManager::DetachRefLayers() { if (!mLayerManager->GetRoot()) { return; } WalkTheTree(mLayerManager->GetRoot(), mReadyForCompose, mTargetConfig); } void AsyncCompositionManager::ComputeRotation() { if (!mTargetConfig.naturalBounds().IsEmpty()) { mWorldTransform = ComputeTransformForRotation(mTargetConfig.naturalBounds(), mTargetConfig.rotation()); } } static bool GetBaseTransform2D(Layer* aLayer, Matrix* aTransform) { // Start with the animated transform if there is one return (aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation() ? aLayer->GetLocalTransform() : aLayer->GetTransform()).Is2D(aTransform); } static void TransformClipRect(Layer* aLayer, const Matrix4x4& aTransform) { const Maybe& clipRect = aLayer->AsLayerComposite()->GetShadowClipRect(); if (clipRect) { ParentLayerIntRect transformed = TransformTo(aTransform, *clipRect); aLayer->AsLayerComposite()->SetShadowClipRect(Some(transformed)); } } /** * Set the given transform as the shadow transform on the layer, assuming * that the given transform already has the pre- and post-scales applied. * That is, this function cancels out the pre- and post-scales from aTransform * before setting it as the shadow transform on the layer, so that when * the layer's effective transform is computed, the pre- and post-scales will * only be applied once. */ static void SetShadowTransform(Layer* aLayer, Matrix4x4 aTransform) { if (ContainerLayer* c = aLayer->AsContainerLayer()) { aTransform.PreScale(1.0f / c->GetPreXScale(), 1.0f / c->GetPreYScale(), 1); } aTransform.PostScale(1.0f / aLayer->GetPostXScale(), 1.0f / aLayer->GetPostYScale(), 1); aLayer->AsLayerComposite()->SetShadowTransform(aTransform); } static void TranslateShadowLayer2D(Layer* aLayer, const gfxPoint& aTranslation, bool aAdjustClipRect) { // This layer might also be a scrollable layer and have an async transform. // To make sure we don't clobber that, we start with the shadow transform. // (i.e. GetLocalTransform() instead of GetTransform()). // Note that the shadow transform is reset on every frame of composition so // we don't have to worry about the adjustments compounding over successive // frames. Matrix layerTransform; if (!aLayer->GetLocalTransform().Is2D(&layerTransform)) { return; } // Apply the 2D translation to the layer transform. layerTransform._31 += aTranslation.x; layerTransform._32 += aTranslation.y; SetShadowTransform(aLayer, Matrix4x4::From2D(layerTransform)); aLayer->AsLayerComposite()->SetShadowTransformSetByAnimation(false); if (aAdjustClipRect) { TransformClipRect(aLayer, Matrix4x4::Translation(aTranslation.x, aTranslation.y, 0)); } // If a fixed- or sticky-position layer has a mask layer, that mask should // move along with the layer, so apply the translation to the mask layer too. if (Layer* maskLayer = aLayer->GetMaskLayer()) { TranslateShadowLayer2D(maskLayer, aTranslation, false); } } static bool AccumulateLayerTransforms2D(Layer* aLayer, Layer* aAncestor, Matrix& aMatrix) { // Accumulate the transforms between this layer and the subtree root layer. for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) { Matrix l2D; if (!GetBaseTransform2D(l, &l2D)) { return false; } aMatrix *= l2D; } return true; } static LayerPoint GetLayerFixedMarginsOffset(Layer* aLayer, const LayerMargin& aFixedLayerMargins) { // Work out the necessary translation, in root scrollable layer space. // Because fixed layer margins are stored relative to the root scrollable // layer, we can just take the difference between these values. LayerPoint translation; const LayerPoint& anchor = aLayer->GetFixedPositionAnchor(); const LayerMargin& fixedMargins = aLayer->GetFixedPositionMargins(); if (fixedMargins.left >= 0) { if (anchor.x > 0) { translation.x -= aFixedLayerMargins.right - fixedMargins.right; } else { translation.x += aFixedLayerMargins.left - fixedMargins.left; } } if (fixedMargins.top >= 0) { if (anchor.y > 0) { translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom; } else { translation.y += aFixedLayerMargins.top - fixedMargins.top; } } return translation; } static gfxFloat IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax) { // Determine the amount of overlap between the 1D vector |aTranslation| // and the interval [aMin, aMax]. if (aTranslation > 0) { return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0)); } else { return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0)); } } void AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer, Layer* aTransformedSubtreeRoot, FrameMetrics::ViewID aTransformScrollId, const Matrix4x4& aPreviousTransformForRoot, const Matrix4x4& aCurrentTransformForRoot, const LayerMargin& aFixedLayerMargins) { // If aLayer == aTransformedSubtreeRoot, then treat aLayer as fixed relative // to the ancestor scrollable layer rather than relative to itself. bool isRootFixed = aLayer->GetIsFixedPosition() && aLayer != aTransformedSubtreeRoot && !aLayer->GetParent()->GetIsFixedPosition(); bool isStickyForSubtree = aLayer->GetIsStickyPosition() && aLayer->GetStickyScrollContainerId() == aTransformScrollId; bool isFixedOrSticky = (isRootFixed || isStickyForSubtree); // We want to process all the fixed and sticky children of // aTransformedSubtreeRoot. Also, once we do encounter such a child, we don't // need to recurse any deeper because the fixed layers are relative to their // nearest scrollable layer. if (!isFixedOrSticky) { // ApplyAsyncContentTransformToTree will call this function again for // nested scrollable layers, so we don't need to recurse if the layer is // scrollable. if (aLayer == aTransformedSubtreeRoot || !aLayer->HasScrollableFrameMetrics()) { for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot, aTransformScrollId, aPreviousTransformForRoot, aCurrentTransformForRoot, aFixedLayerMargins); } } return; } // Insert a translation so that the position of the anchor point is the same // before and after the change to the transform of aTransformedSubtreeRoot. // This currently only works for fixed layers with 2D transforms. // Accumulate the transforms between this layer and the subtree root layer. Matrix ancestorTransform; if (!AccumulateLayerTransforms2D(aLayer->GetParent(), aTransformedSubtreeRoot, ancestorTransform)) { return; } Matrix oldRootTransform; Matrix newRootTransform; if (!aPreviousTransformForRoot.Is2D(&oldRootTransform) || !aCurrentTransformForRoot.Is2D(&newRootTransform)) { return; } // Calculate the cumulative transforms between the subtree root with the // old transform and the current transform. Matrix oldCumulativeTransform = ancestorTransform * oldRootTransform; Matrix newCumulativeTransform = ancestorTransform * newRootTransform; if (newCumulativeTransform.IsSingular()) { return; } Matrix newCumulativeTransformInverse = newCumulativeTransform.Inverse(); // Now work out the translation necessary to make sure the layer doesn't // move given the new sub-tree root transform. Matrix layerTransform; if (!GetBaseTransform2D(aLayer, &layerTransform)) { return; } // Calculate any offset necessary, in previous transform sub-tree root // space. This is used to make sure fixed position content respects // content document fixed position margins. LayerPoint offsetInOldSubtreeLayerSpace = GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins); // Add the above offset to the anchor point so we can offset the layer by // and amount that's specified in old subtree layer space. const LayerPoint& anchorInOldSubtreeLayerSpace = aLayer->GetFixedPositionAnchor(); LayerPoint offsetAnchorInOldSubtreeLayerSpace = anchorInOldSubtreeLayerSpace + offsetInOldSubtreeLayerSpace; // Add the local layer transform to the two points to make the equation // below this section more convenient. Point anchor(anchorInOldSubtreeLayerSpace.x, anchorInOldSubtreeLayerSpace.y); Point offsetAnchor(offsetAnchorInOldSubtreeLayerSpace.x, offsetAnchorInOldSubtreeLayerSpace.y); Point locallyTransformedAnchor = layerTransform * anchor; Point locallyTransformedOffsetAnchor = layerTransform * offsetAnchor; // Transforming the locallyTransformedAnchor by oldCumulativeTransform // returns the layer's anchor point relative to the parent of // aTransformedSubtreeRoot, before the new transform was applied. // Then, applying newCumulativeTransformInverse maps that point relative // to the layer's parent, which is the same coordinate space as // locallyTransformedAnchor again, allowing us to subtract them and find // out the offset necessary to make sure the layer stays stationary. Point oldAnchorPositionInNewSpace = newCumulativeTransformInverse * (oldCumulativeTransform * locallyTransformedOffsetAnchor); Point translation = oldAnchorPositionInNewSpace - locallyTransformedAnchor; if (aLayer->GetIsStickyPosition()) { // For sticky positioned layers, the difference between the two rectangles // defines a pair of translation intervals in each dimension through which // the layer should not move relative to the scroll container. To // accomplish this, we limit each dimension of the |translation| to that // part of it which overlaps those intervals. const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter(); const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner(); translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) - IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost()); translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) - IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost()); } // Finally, apply the 2D translation to the layer transform. Note that in // general we need to apply the same translation to the layer's clip rect, so // that the effective transform on the clip rect takes it back to where it was // originally, had there been no async scroll. In the case where the // fixed/sticky layer is the same as aTransformedSubtreeRoot, then the clip // rect is not affected by the scroll-induced async scroll transform anyway // (since the clip is applied post-transform) so we don't need to make the // adjustment. TranslateShadowLayer2D(aLayer, ThebesPoint(translation), aLayer != aTransformedSubtreeRoot); } static void SampleValue(float aPortion, Animation& aAnimation, StyleAnimationValue& aStart, StyleAnimationValue& aEnd, Animatable* aValue) { StyleAnimationValue interpolatedValue; NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() || aStart.GetUnit() == StyleAnimationValue::eUnit_None || aEnd.GetUnit() == StyleAnimationValue::eUnit_None, "Must have same unit"); StyleAnimationValue::Interpolate(aAnimation.property(), aStart, aEnd, aPortion, interpolatedValue); if (aAnimation.property() == eCSSProperty_opacity) { *aValue = interpolatedValue.GetFloatValue(); return; } nsCSSValueSharedList* interpolatedList = interpolatedValue.GetCSSValueSharedListValue(); TransformData& data = aAnimation.data().get_TransformData(); nsPoint origin = data.origin(); // we expect all our transform data to arrive in device pixels Point3D transformOrigin = data.transformOrigin(); Point3D perspectiveOrigin = data.perspectiveOrigin(); nsDisplayTransform::FrameTransformProperties props(interpolatedList, transformOrigin, perspectiveOrigin, data.perspective()); gfx3DMatrix transform = nsDisplayTransform::GetResultingTransformMatrix(props, origin, data.appUnitsPerDevPixel(), &data.bounds()); Point3D scaledOrigin = Point3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())), NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())), 0.0f); transform.Translate(scaledOrigin); InfallibleTArray functions; functions.AppendElement(TransformMatrix(ToMatrix4x4(transform))); *aValue = functions; } static bool SampleAnimations(Layer* aLayer, TimeStamp aPoint) { AnimationArray& animations = aLayer->GetAnimations(); InfallibleTArray& animationData = aLayer->GetAnimationData(); bool activeAnimations = false; // Process in order, since later animations override earlier ones. for (size_t i = 0, iEnd = animations.Length(); i < iEnd; ++i) { Animation& animation = animations[i]; AnimData& animData = animationData[i]; activeAnimations = true; MOZ_ASSERT(!animation.startTime().IsNull(), "Failed to resolve start time of pending animations"); TimeDuration elapsedDuration = aPoint - animation.startTime(); // Skip animations that are yet to start. // // Currently, this should only happen when the refresh driver is under test // control and is made to produce a time in the past or is restored from // test control causing it to jump backwards in time. // // Since activeAnimations is true, this could mean we keep compositing // unnecessarily during the delay, but so long as this only happens while // the refresh driver is under test control that should be ok. if (elapsedDuration.ToSeconds() < 0) { continue; } AnimationTiming timing; timing.mIterationDuration = animation.duration(); // Currently animations run on the compositor have their delay factored // into their start time, hence the delay is effectively zero. timing.mDelay = TimeDuration(0); timing.mIterationCount = animation.iterationCount(); timing.mDirection = animation.direction(); // Animations typically only run on the compositor during their active // interval but if we end up sampling them outside that range (for // example, while they are waiting to be removed) we currently just // assume that we should fill. timing.mFillMode = NS_STYLE_ANIMATION_FILL_MODE_BOTH; ComputedTiming computedTiming = dom::KeyframeEffectReadOnly::GetComputedTimingAt( Nullable(elapsedDuration), timing); MOZ_ASSERT(0.0 <= computedTiming.mTimeFraction && computedTiming.mTimeFraction <= 1.0, "time fraction should be in [0-1]"); int segmentIndex = 0; AnimationSegment* segment = animation.segments().Elements(); while (segment->endPortion() < computedTiming.mTimeFraction) { ++segment; ++segmentIndex; } double positionInSegment = (computedTiming.mTimeFraction - segment->startPortion()) / (segment->endPortion() - segment->startPortion()); double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment); // interpolate the property Animatable interpolatedValue; SampleValue(portion, animation, animData.mStartValues[segmentIndex], animData.mEndValues[segmentIndex], &interpolatedValue); LayerComposite* layerComposite = aLayer->AsLayerComposite(); switch (animation.property()) { case eCSSProperty_opacity: { layerComposite->SetShadowOpacity(interpolatedValue.get_float()); break; } case eCSSProperty_transform: { Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value(); if (ContainerLayer* c = aLayer->AsContainerLayer()) { matrix.PostScale(c->GetInheritedXScale(), c->GetInheritedYScale(), 1); } layerComposite->SetShadowTransform(matrix); layerComposite->SetShadowTransformSetByAnimation(true); break; } default: NS_WARNING("Unhandled animated property"); } } for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { activeAnimations |= SampleAnimations(child, aPoint); } return activeAnimations; } static bool SampleAPZAnimations(const LayerMetricsWrapper& aLayer, TimeStamp aSampleTime) { bool activeAnimations = false; for (LayerMetricsWrapper child = aLayer.GetFirstChild(); child; child = child.GetNextSibling()) { activeAnimations |= SampleAPZAnimations(child, aSampleTime); } if (AsyncPanZoomController* apzc = aLayer.GetApzc()) { activeAnimations |= apzc->AdvanceAnimations(aSampleTime); } return activeAnimations; } Matrix4x4 AdjustForClip(const Matrix4x4& asyncTransform, Layer* aLayer) { Matrix4x4 result = asyncTransform; // Container layers start at the origin, but they are clipped to where they // actually have content on the screen. The tree transform is meant to apply // to the clipped area. If the tree transform includes a scale component, // then applying it to container as-is will produce incorrect results. To // avoid this, translate the layer so that the clip rect starts at the origin, // apply the tree transform, and translate back. if (const Maybe& shadowClipRect = aLayer->AsLayerComposite()->GetShadowClipRect()) { if (shadowClipRect->TopLeft() != ParentLayerIntPoint()) { // avoid a gratuitous change of basis result.ChangeBasis(shadowClipRect->x, shadowClipRect->y, 0); } } return result; } bool AsyncCompositionManager::ApplyAsyncContentTransformToTree(Layer *aLayer) { bool appliedTransform = false; for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { appliedTransform |= ApplyAsyncContentTransformToTree(child); } Matrix4x4 oldTransform = aLayer->GetTransform(); Matrix4x4 combinedAsyncTransformWithoutOverscroll; Matrix4x4 combinedAsyncTransform; bool hasAsyncTransform = false; LayerMargin fixedLayerMargins(0, 0, 0, 0); Maybe clipRect = aLayer->AsLayerComposite()->GetShadowClipRect(); for (uint32_t i = 0; i < aLayer->GetFrameMetricsCount(); i++) { AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController(i); if (!controller) { continue; } hasAsyncTransform = true; ViewTransform asyncTransformWithoutOverscroll; ParentLayerPoint scrollOffset; controller->SampleContentTransformForFrame(&asyncTransformWithoutOverscroll, scrollOffset); Matrix4x4 overscrollTransform = controller->GetOverscrollTransform(); if (!aLayer->IsScrollInfoLayer()) { controller->MarkAsyncTransformAppliedToContent(); } const FrameMetrics& metrics = aLayer->GetFrameMetrics(i); ScreenPoint offset(0, 0); // TODO: When we enable APZ on Fennec, we'll need to call SyncFrameMetrics here. // When doing so, it might be useful to look at how it was called here before // bug 1036967 removed the (dead) call. #if defined(MOZ_ANDROID_APZ) if (mIsFirstPaint) { CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor(); LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom); mContentRect = metrics.GetScrollableRect(); SetFirstPaintViewport(scrollOffsetLayerPixels, geckoZoom, mContentRect); } #endif mIsFirstPaint = false; mLayersUpdated = false; // Apply the render offset mLayerManager->GetCompositor()->SetScreenRenderOffset(offset); combinedAsyncTransformWithoutOverscroll *= asyncTransformWithoutOverscroll; combinedAsyncTransform *= (Matrix4x4(asyncTransformWithoutOverscroll) * overscrollTransform); if (i > 0 && clipRect) { // The clip rect Layout calculates is the intersection of the composition // bounds of all the scroll frames at the time of the paint (when there // are no async transforms). // An async transform on a scroll frame does not affect the composition // bounds of *that* scroll frame, but it does affect the composition // bounds of the scroll frames *below* it. // Therefore, if we have multiple scroll frames associated with this // layer, the clip rect needs to be adjusted for the async transforms of // the scroll frames other than the bottom-most one. // To make this adjustment, we start with the Layout-provided clip rect, // and at each level other than the bottom, transform it by the async // transform at that level, and then re-intersect it with the composition // bounds at that level. ParentLayerRect transformed = TransformTo( (Matrix4x4(asyncTransformWithoutOverscroll) * overscrollTransform), ParentLayerRect(*clipRect)); clipRect = Some(RoundedOut(transformed.Intersect(metrics.GetCompositionBounds()))); } } if (hasAsyncTransform) { if (clipRect) { aLayer->AsLayerComposite()->SetShadowClipRect(clipRect); } // Apply the APZ transform on top of GetLocalTransform() here (rather than // GetTransform()) in case the OMTA code in SampleAnimations already set a // shadow transform; in that case we want to apply ours on top of that one // rather than clobber it. SetShadowTransform(aLayer, aLayer->GetLocalTransform() * AdjustForClip(combinedAsyncTransform, aLayer)); const FrameMetrics& bottom = LayerMetricsWrapper::BottommostScrollableMetrics(aLayer); MOZ_ASSERT(bottom.IsScrollable()); // must be true because hasAsyncTransform is true // For the purpose of aligning fixed and sticky layers, we disregard // the overscroll transform as well as any OMTA transform when computing the // 'aCurrentTransformForRoot' parameter. This ensures that the overscroll // and OMTA transforms are not unapplied, and therefore that the visual // effects apply to fixed and sticky layers. We do this by using // GetTransform() as the base transform rather than GetLocalTransform(), // which would include those factors. Matrix4x4 transformWithoutOverscrollOrOmta = aLayer->GetTransform() * AdjustForClip(combinedAsyncTransformWithoutOverscroll, aLayer); // Since fixed/sticky layers are relative to their nearest scrolling ancestor, // we use the ViewID from the bottommost scrollable metrics here. AlignFixedAndStickyLayers(aLayer, aLayer, bottom.GetScrollId(), oldTransform, transformWithoutOverscrollOrOmta, fixedLayerMargins); appliedTransform = true; } if (aLayer->GetScrollbarDirection() != Layer::NONE) { ApplyAsyncTransformToScrollbar(aLayer); } return appliedTransform; } static bool LayerIsScrollbarTarget(const LayerMetricsWrapper& aTarget, Layer* aScrollbar) { AsyncPanZoomController* apzc = aTarget.GetApzc(); if (!apzc) { return false; } const FrameMetrics& metrics = aTarget.Metrics(); if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) { return false; } return !aTarget.IsScrollInfoLayer(); } static void ApplyAsyncTransformToScrollbarForContent(Layer* aScrollbar, const LayerMetricsWrapper& aContent, bool aScrollbarIsDescendant) { // We only apply the transform if the scroll-target layer has non-container // children (i.e. when it has some possibly-visible content). This is to // avoid moving scroll-bars in the situation that only a scroll information // layer has been built for a scroll frame, as this would result in a // disparity between scrollbars and visible content. if (aContent.IsScrollInfoLayer()) { return; } const FrameMetrics& metrics = aContent.Metrics(); AsyncPanZoomController* apzc = aContent.GetApzc(); Matrix4x4 asyncTransform = apzc->GetCurrentAsyncTransform(); // |asyncTransform| represents the amount by which we have scrolled and // zoomed since the last paint. Because the scrollbar was sized and positioned based // on the painted content, we need to adjust it based on asyncTransform so that // it reflects what the user is actually seeing now. Matrix4x4 scrollbarTransform; if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) { const ParentLayerCoord asyncScrollY = asyncTransform._42; const float asyncZoomY = asyncTransform._22; // The scroll thumb needs to be scaled in the direction of scrolling by the // inverse of the async zoom. This is because zooming in decreases the // fraction of the whole srollable rect that is in view. const float yScale = 1.f / asyncZoomY; // Note: |metrics.GetZoom()| doesn't yet include the async zoom. const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().yScale * asyncZoomY); // Here we convert the scrollbar thumb ratio into a true unitless ratio by // dividing out the conversion factor from the scrollframe's parent's space // to the scrollframe's space. const float ratio = aScrollbar->GetScrollbarThumbRatio() / (metrics.GetPresShellResolution() * asyncZoomY); // The scroll thumb needs to be translated in opposite direction of the // async scroll. This is because scrolling down, which translates the layer // content up, should result in moving the scroll thumb down. ParentLayerCoord yTranslation = -asyncScrollY * ratio; // The scroll thumb additionally needs to be translated to compensate for // the scale applied above. The origin with respect to which the scale is // applied is the origin of the entire scrollbar, rather than the origin of // the scroll thumb (meaning, for a vertical scrollbar it's at the top of // the composition bounds). This means that empty space above the thumb // is scaled too, effectively translating the thumb. We undo that // translation here. // (One can think of the adjustment being done to the translation here as // a change of basis. We have a method to help with that, // Matrix4x4::ChangeBasis(), but it wouldn't necessarily make the code // cleaner in this case). const CSSCoord thumbOrigin = (metrics.GetScrollOffset().y * ratio); const CSSCoord thumbOriginScaled = thumbOrigin * yScale; const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin; const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom; yTranslation -= thumbOriginDeltaPL; if (metrics.IsRootScrollable()) { // Scrollbar for the root are painted at the same resolution as the // content. Since the coordinate space we apply this transform in includes // the resolution, we need to adjust for it as well here. Note that in // another metrics.IsRootScrollable() hunk below we apply a // resolution-cancelling transform which ensures the scroll thumb isn't // actually rendered at a larger scale. yTranslation *= metrics.GetPresShellResolution(); } scrollbarTransform.PostScale(1.f, yScale, 1.f); scrollbarTransform.PostTranslate(0, yTranslation, 0); } if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) { // See detailed comments under the VERTICAL case. const ParentLayerCoord asyncScrollX = asyncTransform._41; const float asyncZoomX = asyncTransform._11; const float xScale = 1.f / asyncZoomX; const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().xScale * asyncZoomX); const float ratio = aScrollbar->GetScrollbarThumbRatio() / (metrics.GetPresShellResolution() * asyncZoomX); ParentLayerCoord xTranslation = -asyncScrollX * ratio; const CSSCoord thumbOrigin = (metrics.GetScrollOffset().x * ratio); const CSSCoord thumbOriginScaled = thumbOrigin * xScale; const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin; const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom; xTranslation -= thumbOriginDeltaPL; if (metrics.IsRootScrollable()) { xTranslation *= metrics.GetPresShellResolution(); } scrollbarTransform.PostScale(xScale, 1.f, 1.f); scrollbarTransform.PostTranslate(xTranslation, 0, 0); } Matrix4x4 transform = aScrollbar->GetLocalTransform() * scrollbarTransform; Matrix4x4 compensation; // If the scrollbar layer is for the root then the content's resolution // applies to the scrollbar as well. Since we don't actually want the scroll // thumb's size to vary with the zoom (other than its length reflecting the // fraction of the scrollable length that's in view, which is taken care of // above), we apply a transform to cancel out this resolution. if (metrics.IsRootScrollable()) { compensation = Matrix4x4::Scaling(metrics.GetPresShellResolution(), metrics.GetPresShellResolution(), 1.0f).Inverse(); } // If the scrollbar layer is a child of the content it is a scrollbar for, // then we need to adjust for any async transform (including an overscroll // transform) on the content. This needs to be cancelled out because layout // positions and sizes the scrollbar on the assumption that there is no async // transform, and without this adjustment the scrollbar will end up in the // wrong place. // // Note that since the async transform is applied on top of the content's // regular transform, we need to make sure to unapply the async transform in // the same coordinate space. This requires applying the content transform // and then unapplying it after unapplying the async transform. if (aScrollbarIsDescendant) { Matrix4x4 asyncUntransform = (asyncTransform * apzc->GetOverscrollTransform()).Inverse(); Matrix4x4 contentTransform = aContent.GetTransform(); Matrix4x4 contentUntransform = contentTransform.Inverse(); Matrix4x4 asyncCompensation = contentTransform * asyncUntransform * contentUntransform; compensation = compensation * asyncCompensation; // We also need to make a corresponding change on the clip rect of all the // layers on the ancestor chain from the scrollbar layer up to but not // including the layer with the async transform. Otherwise the scrollbar // shifts but gets clipped and so appears to flicker. for (Layer* ancestor = aScrollbar; ancestor != aContent.GetLayer(); ancestor = ancestor->GetParent()) { TransformClipRect(ancestor, asyncCompensation); } } transform = transform * compensation; SetShadowTransform(aScrollbar, transform); } static LayerMetricsWrapper FindScrolledLayerRecursive(Layer* aScrollbar, const LayerMetricsWrapper& aSubtreeRoot) { if (LayerIsScrollbarTarget(aSubtreeRoot, aScrollbar)) { return aSubtreeRoot; } for (LayerMetricsWrapper child = aSubtreeRoot.GetFirstChild(); child; child = child.GetNextSibling()) { // Do not recurse into RefLayers, since our initial aSubtreeRoot is the // root (or RefLayer root) of a single layer space to search. if (child.AsRefLayer()) { continue; } LayerMetricsWrapper target = FindScrolledLayerRecursive(aScrollbar, child); if (target) { return target; } } return LayerMetricsWrapper(); } static LayerMetricsWrapper FindScrolledLayerForScrollbar(Layer* aScrollbar, bool* aOutIsAncestor) { // First check if the scrolled layer is an ancestor of the scrollbar layer. LayerMetricsWrapper root(aScrollbar->Manager()->GetRoot()); LayerMetricsWrapper prevAncestor(aScrollbar); for (LayerMetricsWrapper ancestor(aScrollbar); ancestor; ancestor = ancestor.GetParent()) { // Don't walk into remote layer trees; the scrollbar will always be in // the same layer space. if (ancestor.AsRefLayer()) { root = prevAncestor; break; } prevAncestor = ancestor; if (LayerIsScrollbarTarget(ancestor, aScrollbar)) { *aOutIsAncestor = true; return ancestor; } } // Search the entire layer space of the scrollbar. return FindScrolledLayerRecursive(aScrollbar, root); } void AsyncCompositionManager::ApplyAsyncTransformToScrollbar(Layer* aLayer) { // If this layer corresponds to a scrollbar, then there should be a layer that // is a previous sibling or a parent that has a matching ViewID on its FrameMetrics. // That is the content that this scrollbar is for. We pick up the transient // async transform from that layer and use it to update the scrollbar position. // Note that it is possible that the content layer is no longer there; in // this case we don't need to do anything because there can't be an async // transform on the content. bool isAncestor = false; const LayerMetricsWrapper& scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor); if (scrollTarget) { ApplyAsyncTransformToScrollbarForContent(aLayer, scrollTarget, isAncestor); } } void AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer) { FrameMetrics metrics = LayerMetricsWrapper::TopmostScrollableMetrics(aLayer); if (!metrics.IsScrollable()) { // On Fennec it's possible that the there is no scrollable layer in the // tree, and this function just gets called with the root layer. In that // case TopmostScrollableMetrics will return an empty FrameMetrics but we // still want to use the actual non-scrollable metrics from the layer. metrics = LayerMetricsWrapper::BottommostMetrics(aLayer); } // We must apply the resolution scale before a pan/zoom transform, so we call // GetTransform here. Matrix4x4 oldTransform = aLayer->GetTransform(); CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor(); LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom); if (mIsFirstPaint) { mContentRect = metrics.GetScrollableRect(); SetFirstPaintViewport(scrollOffsetLayerPixels, geckoZoom, mContentRect); mIsFirstPaint = false; } else if (!metrics.GetScrollableRect().IsEqualEdges(mContentRect)) { mContentRect = metrics.GetScrollableRect(); SetPageRect(mContentRect); } // We synchronise the viewport information with Java after sending the above // notifications, so that Java can take these into account in its response. // Calculate the absolute display port to send to Java LayerIntRect displayPort = RoundedToInt( (metrics.GetCriticalDisplayPort().IsEmpty() ? metrics.GetDisplayPort() : metrics.GetCriticalDisplayPort() ) * geckoZoom); displayPort += scrollOffsetLayerPixels; LayerMargin fixedLayerMargins(0, 0, 0, 0); ScreenPoint offset(0, 0); // Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics) // but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this // appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios, // however, we can assume there is no async zooming in progress and so the following statement // works fine. CSSToParentLayerScale userZoom(metrics.GetDevPixelsPerCSSPixel() // This function only applies to the root scrollable frame, // for which we can assume that x and y scales are equal. * metrics.GetCumulativeResolution().ToScaleFactor() * LayerToParentLayerScale(1)); ParentLayerPoint userScroll = metrics.GetScrollOffset() * userZoom; SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated, userScroll, userZoom, fixedLayerMargins, offset); mLayersUpdated = false; // Apply the render offset mLayerManager->GetCompositor()->SetScreenRenderOffset(offset); // Handle transformations for asynchronous panning and zooming. We determine the // zoom used by Gecko from the transformation set on the root layer, and we // determine the scroll offset used by Gecko from the frame metrics of the // primary scrollable layer. We compare this to the user zoom and scroll // offset in the view transform we obtained from Java in order to compute the // transformation we need to apply. ParentLayerPoint geckoScroll(0, 0); if (metrics.IsScrollable()) { geckoScroll = metrics.GetScrollOffset() * userZoom; } LayerToParentLayerScale asyncZoom = userZoom / metrics.LayersPixelsPerCSSPixel().ToScaleFactor(); ParentLayerPoint translation = userScroll - geckoScroll; Matrix4x4 treeTransform = ViewTransform(asyncZoom, -translation); // Apply the tree transform on top of GetLocalTransform() here (rather than // GetTransform()) in case the OMTA code in SampleAnimations already set a // shadow transform; in that case we want to apply ours on top of that one // rather than clobber it. SetShadowTransform(aLayer, aLayer->GetLocalTransform() * treeTransform); // Make sure that overscroll and under-zoom are represented in the old // transform so that fixed position content moves and scales accordingly. // These calculations will effectively scale and offset fixed position layers // in screen space when the compensatory transform is performed in // AlignFixedAndStickyLayers. ParentLayerRect contentScreenRect = mContentRect * userZoom; Point3D overscrollTranslation; if (userScroll.x < contentScreenRect.x) { overscrollTranslation.x = contentScreenRect.x - userScroll.x; } else if (userScroll.x + metrics.GetCompositionBounds().width > contentScreenRect.XMost()) { overscrollTranslation.x = contentScreenRect.XMost() - (userScroll.x + metrics.GetCompositionBounds().width); } if (userScroll.y < contentScreenRect.y) { overscrollTranslation.y = contentScreenRect.y - userScroll.y; } else if (userScroll.y + metrics.GetCompositionBounds().height > contentScreenRect.YMost()) { overscrollTranslation.y = contentScreenRect.YMost() - (userScroll.y + metrics.GetCompositionBounds().height); } oldTransform.PreTranslate(overscrollTranslation.x, overscrollTranslation.y, overscrollTranslation.z); gfx::Size underZoomScale(1.0f, 1.0f); if (mContentRect.width * userZoom.scale < metrics.GetCompositionBounds().width) { underZoomScale.width = (mContentRect.width * userZoom.scale) / metrics.GetCompositionBounds().width; } if (mContentRect.height * userZoom.scale < metrics.GetCompositionBounds().height) { underZoomScale.height = (mContentRect.height * userZoom.scale) / metrics.GetCompositionBounds().height; } oldTransform.PreScale(underZoomScale.width, underZoomScale.height, 1); // Make sure fixed position layers don't move away from their anchor points // when we're asynchronously panning or zooming AlignFixedAndStickyLayers(aLayer, aLayer, metrics.GetScrollId(), oldTransform, aLayer->GetLocalTransform(), fixedLayerMargins); } bool AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame, TransformsToSkip aSkip) { PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree", js::ProfileEntry::Category::GRAPHICS); Layer* root = mLayerManager->GetRoot(); if (!root) { return false; } // First, compute and set the shadow transforms from OMT animations. // NB: we must sample animations *before* sampling pan/zoom // transforms. bool wantNextFrame = SampleAnimations(root, aCurrentFrame); if (!(aSkip & TransformsToSkip::APZ)) { // FIXME/bug 775437: unify this interface with the ~native-fennec // derived code // // Attempt to apply an async content transform to any layer that has // an async pan zoom controller (which means that it is rendered // async using Gecko). If this fails, fall back to transforming the // primary scrollable layer. "Failing" here means that we don't // find a frame that is async scrollable. Note that the fallback // code also includes Fennec which is rendered async. Fennec uses // its own platform-specific async rendering that is done partially // in Gecko and partially in Java. wantNextFrame |= SampleAPZAnimations(LayerMetricsWrapper(root), aCurrentFrame); if (!ApplyAsyncContentTransformToTree(root)) { nsAutoTArray scrollableLayers; #ifdef MOZ_WIDGET_ANDROID mLayerManager->GetRootScrollableLayers(scrollableLayers); #else mLayerManager->GetScrollableLayers(scrollableLayers); #endif for (uint32_t i = 0; i < scrollableLayers.Length(); i++) { if (scrollableLayers[i]) { TransformScrollableLayer(scrollableLayers[i]); } } } } LayerComposite* rootComposite = root->AsLayerComposite(); gfx::Matrix4x4 trans = rootComposite->GetShadowTransform(); trans *= gfx::Matrix4x4::From2D(mWorldTransform); rootComposite->SetShadowTransform(trans); return wantNextFrame; } void AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset, const CSSToLayerScale& aZoom, const CSSRect& aCssPageRect) { #ifdef MOZ_WIDGET_ANDROID AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect); #endif } void AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect) { #ifdef MOZ_WIDGET_ANDROID AndroidBridge::Bridge()->SetPageRect(aCssPageRect); #endif } void AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort, const CSSToLayerScale& aDisplayResolution, bool aLayersUpdated, ParentLayerPoint& aScrollOffset, CSSToParentLayerScale& aScale, LayerMargin& aFixedLayerMargins, ScreenPoint& aOffset) { #ifdef MOZ_WIDGET_ANDROID AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort, aDisplayResolution, aLayersUpdated, aScrollOffset, aScale, aFixedLayerMargins, aOffset); #endif } void AsyncCompositionManager::SyncFrameMetrics(const ParentLayerPoint& aScrollOffset, float aZoom, const CSSRect& aCssPageRect, bool aLayersUpdated, const CSSRect& aDisplayPort, const CSSToLayerScale& aDisplayResolution, bool aIsFirstPaint, LayerMargin& aFixedLayerMargins, ScreenPoint& aOffset) { #ifdef MOZ_WIDGET_ANDROID AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect, aLayersUpdated, aDisplayPort, aDisplayResolution, aIsFirstPaint, aFixedLayerMargins, aOffset); #endif } } // namespace layers } // namespace mozilla