/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* A type suitable for returning either a value or an error from a function. */ #ifndef mozilla_Result_h #define mozilla_Result_h #include #include #include #include #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/CompactPair.h" #include "mozilla/MaybeStorageBase.h" namespace mozilla { /** * Empty struct, indicating success for operations that have no return value. * For example, if you declare another empty struct `struct OutOfMemory {};`, * then `Result` represents either success or OOM. */ struct Ok {}; template class GenericErrorResult; template class Result; namespace detail { enum class PackingStrategy { Variant, NullIsOk, LowBitTagIsError, PackedVariant, }; template struct UnusedZero; template class ResultImplementation; template struct EmptyWrapper : V { constexpr EmptyWrapper() = default; explicit constexpr EmptyWrapper(const V&) {} explicit constexpr EmptyWrapper(std::in_place_t) {} constexpr V* addr() { return this; } constexpr const V* addr() const { return this; } }; // The purpose of AlignedStorageOrEmpty is to make an empty class look like // std::aligned_storage_t for the purposes of the PackingStrategy::NullIsOk // specializations of ResultImplementation below. We can't use // std::aligned_storage_t itself with an empty class, since it would no longer // be empty. template using AlignedStorageOrEmpty = std::conditional_t, EmptyWrapper, MaybeStorageBase>; template class ResultImplementationNullIsOkBase { protected: using ErrorStorageType = typename UnusedZero::StorageType; static constexpr auto kNullValue = UnusedZero::nullValue; static_assert(std::is_trivially_copyable_v); // XXX This can't be statically asserted in general, if ErrorStorageType is // not a basic type. With C++20 bit_cast, we could probably re-add such as // assertion. static_assert(kNullValue == decltype(kNullValue)(0)); CompactPair, ErrorStorageType> mValue; public: explicit constexpr ResultImplementationNullIsOkBase(const V& aSuccessValue) : mValue(aSuccessValue, kNullValue) {} explicit constexpr ResultImplementationNullIsOkBase(V&& aSuccessValue) : mValue(std::move(aSuccessValue), kNullValue) {} template explicit constexpr ResultImplementationNullIsOkBase(std::in_place_t, Args&&... aArgs) : mValue(std::piecewise_construct, std::tuple(std::in_place, std::forward(aArgs)...), std::tuple(kNullValue)) {} explicit constexpr ResultImplementationNullIsOkBase(E aErrorValue) : mValue(std::piecewise_construct, std::tuple<>(), std::tuple(UnusedZero::Store(std::move(aErrorValue)))) { MOZ_ASSERT(mValue.second() != kNullValue); } constexpr ResultImplementationNullIsOkBase( ResultImplementationNullIsOkBase&& aOther) : mValue(std::piecewise_construct, std::tuple<>(), std::tuple(aOther.mValue.second())) { if constexpr (!std::is_empty_v) { if (isOk()) { new (mValue.first().addr()) V(std::move(*aOther.mValue.first().addr())); } } } ResultImplementationNullIsOkBase& operator=( ResultImplementationNullIsOkBase&& aOther) { if constexpr (!std::is_empty_v) { if (isOk()) { mValue.first().addr()->~V(); } } mValue.second() = std::move(aOther.mValue.second()); if constexpr (!std::is_empty_v) { if (isOk()) { new (mValue.first().addr()) V(std::move(*aOther.mValue.first().addr())); } } return *this; } constexpr bool isOk() const { return mValue.second() == kNullValue; } constexpr const V& inspect() const { return *mValue.first().addr(); } constexpr V unwrap() { return std::move(*mValue.first().addr()); } constexpr decltype(auto) inspectErr() const { return UnusedZero::Inspect(mValue.second()); } constexpr E unwrapErr() { return UnusedZero::Unwrap(mValue.second()); } }; template > class ResultImplementationNullIsOk; template class ResultImplementationNullIsOk : public ResultImplementationNullIsOkBase { public: using ResultImplementationNullIsOkBase::ResultImplementationNullIsOkBase; }; template class ResultImplementationNullIsOk : public ResultImplementationNullIsOkBase { public: using ResultImplementationNullIsOkBase::ResultImplementationNullIsOkBase; ResultImplementationNullIsOk(ResultImplementationNullIsOk&&) = default; ResultImplementationNullIsOk& operator=(ResultImplementationNullIsOk&&) = default; ~ResultImplementationNullIsOk() { if (this->isOk()) { this->mValue.first().addr()->~V(); } } }; /** * Specialization for when the success type is default-constructible and the * error type is a value type which can never have the value 0 (as determined by * UnusedZero<>). */ template class ResultImplementation : public ResultImplementationNullIsOk { public: using ResultImplementationNullIsOk::ResultImplementationNullIsOk; }; template using UnsignedIntType = std::conditional_t< S == 1, std::uint8_t, std::conditional_t< S == 2, std::uint16_t, std::conditional_t>>>; /** * Specialization for when alignment permits using the least significant bit * as a tag bit. */ template class ResultImplementation { static_assert(std::is_trivially_copyable_v && std::is_trivially_destructible_v); static_assert(std::is_trivially_copyable_v && std::is_trivially_destructible_v); static constexpr size_t kRequiredSize = std::max(sizeof(V), sizeof(E)); using StorageType = UnsignedIntType; #if defined(__clang__) alignas(std::max(alignof(V), alignof(E))) StorageType mBits; #else // Some gcc versions choke on using std::max with alignas, see // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94929 (and this seems to have // regressed in some gcc 9.x version before being fixed again) Keeping the // code above since we would eventually drop this when we no longer support // gcc versions with the bug. alignas(alignof(V) > alignof(E) ? alignof(V) : alignof(E)) StorageType mBits; #endif public: explicit constexpr ResultImplementation(V aValue) : mBits(0) { if constexpr (!std::is_empty_v) { std::memcpy(&mBits, &aValue, sizeof(V)); MOZ_ASSERT((mBits & 1) == 0); } else { (void)aValue; } } explicit constexpr ResultImplementation(E aErrorValue) : mBits(1) { if constexpr (!std::is_empty_v) { std::memcpy(&mBits, &aErrorValue, sizeof(E)); MOZ_ASSERT((mBits & 1) == 0); mBits |= 1; } else { (void)aErrorValue; } } constexpr bool isOk() const { return (mBits & 1) == 0; } constexpr V inspect() const { V res; std::memcpy(&res, &mBits, sizeof(V)); return res; } constexpr V unwrap() { return inspect(); } constexpr E inspectErr() const { const auto bits = mBits ^ 1; E res; std::memcpy(&res, &bits, sizeof(E)); return res; } constexpr E unwrapErr() { return inspectErr(); } }; // Return true if any of the struct can fit in a word. template struct IsPackableVariant { struct VEbool { V v; E e; bool ok; }; struct EVbool { E e; V v; bool ok; }; using Impl = std::conditional_t; static const bool value = sizeof(Impl) <= sizeof(uintptr_t); }; /** * Specialization for when both type are not using all the bytes, in order to * use one byte as a tag. */ template class ResultImplementation { using Impl = typename IsPackableVariant::Impl; Impl data; public: explicit constexpr ResultImplementation(V aValue) { data.v = std::move(aValue); data.ok = true; } explicit constexpr ResultImplementation(E aErrorValue) { data.e = std::move(aErrorValue); data.ok = false; } constexpr bool isOk() const { return data.ok; } constexpr const V& inspect() const { return data.v; } constexpr V unwrap() { return std::move(data.v); } constexpr const E& inspectErr() const { return data.e; } constexpr E unwrapErr() { return std::move(data.e); } }; // To use nullptr as a special value, we need the counter part to exclude zero // from its range of valid representations. // // By default assume that zero can be represented. template struct UnusedZero { static const bool value = false; }; // This template can be used as a helper for specializing UnusedZero for scoped // enum types which never use 0 as an error value, e.g. // // namespace mozilla::detail { // // template <> // struct UnusedZero : UnusedZeroEnum {}; // // } // namespace mozilla::detail // template struct UnusedZeroEnum { using StorageType = std::underlying_type_t; static constexpr bool value = true; static constexpr StorageType nullValue = 0; static constexpr T Inspect(const StorageType& aValue) { return static_cast(aValue); } static constexpr T Unwrap(StorageType aValue) { return static_cast(aValue); } static constexpr StorageType Store(T aValue) { return static_cast(aValue); } }; // A bit of help figuring out which of the above specializations to use. // // We begin by safely assuming types don't have a spare bit, unless they are // empty. template struct HasFreeLSB { static const bool value = std::is_empty_v; }; // As an incomplete type, void* does not have a spare bit. template <> struct HasFreeLSB { static const bool value = false; }; // The lowest bit of a properly-aligned pointer is always zero if the pointee // type is greater than byte-aligned. That bit is free to use if it's masked // out of such pointers before they're dereferenced. template struct HasFreeLSB { static const bool value = (alignof(T) & 1) == 0; }; // Select one of the previous result implementation based on the properties of // the V and E types. template struct SelectResultImpl { static const PackingStrategy value = (HasFreeLSB::value && HasFreeLSB::value) ? PackingStrategy::LowBitTagIsError : (UnusedZero::value && sizeof(E) <= sizeof(uintptr_t)) ? PackingStrategy::NullIsOk : (std::is_default_constructible_v && std::is_default_constructible_v && IsPackableVariant::value) ? PackingStrategy::PackedVariant : PackingStrategy::Variant; using Type = ResultImplementation; }; template struct IsResult : std::false_type {}; template struct IsResult> : std::true_type {}; } // namespace detail template constexpr auto ToResult(Result&& aValue) -> decltype(std::forward>(aValue)) { return std::forward>(aValue); } /** * Result represents the outcome of an operation that can either succeed * or fail. It contains either a success value of type V or an error value of * type E. * * All Result methods are const, so results are basically immutable. * This is just like Variant but with a slightly different API, and the * following cases are optimized so Result can be stored more efficiently: * * - If both the success and error types do not use their least significant bit, * are trivially copyable and destructible, Result is guaranteed to be as * large as the larger type. This is determined via the HasFreeLSB trait. By * default, empty classes (in particular Ok) and aligned pointer types are * assumed to have a free LSB, but you can specialize this trait for other * types. If the success type is empty, the representation is guaranteed to be * all zero bits on success. Do not change this representation! There is JIT * code that depends on it. (Implementation note: The lowest bit is used as a * tag bit: 0 to indicate the Result's bits are a success value, 1 to indicate * the Result's bits (with the 1 masked out) encode an error value) * * - Else, if the error type can't have a all-zero bits representation and is * not larger than a pointer, a CompactPair is used to represent this rather * than a Variant. This has shown to be better optimizable, and the template * code is much simpler than that of Variant, so it should also compile faster. * Whether an error type can't be all-zero bits, is determined via the * UnusedZero trait. MFBT doesn't declare any public type UnusedZero, but * nsresult is declared UnusedZero in XPCOM. * * The purpose of Result is to reduce the screwups caused by using `false` or * `nullptr` to indicate errors. * What screwups? See for * a partial list. * * Result or Result are not meaningful. The success or * error values in a Result instance are non-modifiable in-place anyway. This * guarantee must also be maintained when evolving Result. They can be * unwrap()ped, but this loses const qualification. However, Result * or Result may be misleading and prevent movability. Just use * Result. (Result may make sense though, just Result is not possible.) */ template class MOZ_MUST_USE_TYPE Result final { // See class comment on Result and Result. static_assert(!std::is_const_v); static_assert(!std::is_const_v); static_assert(!std::is_reference_v); static_assert(!std::is_reference_v); using Impl = typename detail::SelectResultImpl::Type; Impl mImpl; public: using ok_type = V; using err_type = E; /** Create a success result. */ MOZ_IMPLICIT constexpr Result(V&& aValue) : mImpl(std::forward(aValue)) { MOZ_ASSERT(isOk()); } /** Create a success result. */ MOZ_IMPLICIT constexpr Result(const V& aValue) : mImpl(aValue) { MOZ_ASSERT(isOk()); } /** Create a success result in-place. */ template explicit constexpr Result(std::in_place_t, Args&&... aArgs) : mImpl(std::in_place, std::forward(aArgs)...) { MOZ_ASSERT(isOk()); } /** Create an error result. */ explicit constexpr Result(E aErrorValue) : mImpl(std::move(aErrorValue)) { MOZ_ASSERT(isErr()); } /** * Create a (success/error) result from another (success/error) result with a * different but convertible error type. */ template >> MOZ_IMPLICIT constexpr Result(Result&& aOther) : mImpl(aOther.isOk() ? Impl{aOther.unwrap()} : Impl{aOther.unwrapErr()}) {} /** * Implementation detail of MOZ_TRY(). * Create an error result from another error result. */ template MOZ_IMPLICIT constexpr Result(GenericErrorResult&& aErrorResult) : mImpl(std::move(aErrorResult.mErrorValue)) { static_assert(std::is_convertible_v, "E2 must be convertible to E"); MOZ_ASSERT(isErr()); } /** * Implementation detail of MOZ_TRY(). * Create an error result from another error result. */ template MOZ_IMPLICIT constexpr Result(const GenericErrorResult& aErrorResult) : mImpl(aErrorResult.mErrorValue) { static_assert(std::is_convertible_v, "E2 must be convertible to E"); MOZ_ASSERT(isErr()); } Result(const Result&) = delete; Result(Result&&) = default; Result& operator=(const Result&) = delete; Result& operator=(Result&&) = default; /** True if this Result is a success result. */ constexpr bool isOk() const { return mImpl.isOk(); } /** True if this Result is an error result. */ constexpr bool isErr() const { return !mImpl.isOk(); } /** Take the success value from this Result, which must be a success result. */ constexpr V unwrap() { MOZ_ASSERT(isOk()); return mImpl.unwrap(); } /** * Take the success value from this Result, which must be a success result. * If it is an error result, then return the aValue. */ constexpr V unwrapOr(V aValue) { return MOZ_LIKELY(isOk()) ? mImpl.unwrap() : std::move(aValue); } /** Take the error value from this Result, which must be an error result. */ constexpr E unwrapErr() { MOZ_ASSERT(isErr()); return mImpl.unwrapErr(); } /** See the success value from this Result, which must be a success result. */ constexpr decltype(auto) inspect() const { static_assert(!std::is_reference_v< std::invoke_result_t> || std::is_const_v>>); MOZ_ASSERT(isOk()); return mImpl.inspect(); } /** See the error value from this Result, which must be an error result. */ constexpr decltype(auto) inspectErr() const { static_assert( !std::is_reference_v< std::invoke_result_t> || std::is_const_v>>); MOZ_ASSERT(isErr()); return mImpl.inspectErr(); } /** Propagate the error value from this Result, which must be an error result. * * This can be used to propagate an error from a function call to the caller * with a different value type, but the same error type: * * Result Func1() { * Result res = Func2(); * if (res.isErr()) { return res.propagateErr(); } * } */ constexpr GenericErrorResult propagateErr() { MOZ_ASSERT(isErr()); return GenericErrorResult{mImpl.unwrapErr()}; } /** * Map a function V -> V2 over this result's success variant. If this result * is an error, do not invoke the function and propagate the error. * * Mapping over success values invokes the function to produce a new success * value: * * // Map Result to another Result * Result res(5); * Result res2 = res.map([](int x) { return x * x; }); * MOZ_ASSERT(res.isOk()); * MOZ_ASSERT(res2.unwrap() == 25); * * // Map Result to Result * Result res("hello, map!"); * Result res2 = res.map(strlen); * MOZ_ASSERT(res.isOk()); * MOZ_ASSERT(res2.unwrap() == 11); * * Mapping over an error does not invoke the function and propagates the * error: * * Result res(5); * MOZ_ASSERT(res.isErr()); * Result res2 = res.map([](V v) { ... }); * MOZ_ASSERT(res2.isErr()); * MOZ_ASSERT(res2.unwrapErr() == 5); */ template constexpr auto map(F f) -> Result, E> { using RetResult = Result, E>; return MOZ_LIKELY(isOk()) ? RetResult(f(unwrap())) : RetResult(unwrapErr()); } /** * Map a function E -> E2 over this result's error variant. If this result is * a success, do not invoke the function and move the success over. * * Mapping over error values invokes the function to produce a new error * value: * * // Map Result to another Result * Result res(5); * Result res2 = res.mapErr([](int x) { return x * x; }); * MOZ_ASSERT(res2.isErr()); * MOZ_ASSERT(res2.unwrapErr() == 25); * * // Map Result to Result * Result res("hello, mapErr!"); * Result res2 = res.mapErr(strlen); * MOZ_ASSERT(res2.isErr()); * MOZ_ASSERT(res2.unwrapErr() == 14); * * Mapping over a success does not invoke the function and moves the success: * * Result res(5); * MOZ_ASSERT(res.isOk()); * Result res2 = res.mapErr([](E e) { ... }); * MOZ_ASSERT(res2.isOk()); * MOZ_ASSERT(res2.unwrap() == 5); */ template constexpr auto mapErr(F f) { using RetResult = Result>; return MOZ_UNLIKELY(isErr()) ? RetResult(f(unwrapErr())) : RetResult(unwrap()); } /** * Map a function E -> Result over this result's error variant. If * this result is a success, do not invoke the function and move the success * over. * * `orElse`ing over error values invokes the function to produce a new * result: * * // `orElse` Result error variant to another Result * // error variant or Result success variant * auto orElse = [](int x) -> Result { * if (x != 6) { * return Err(x * x); * } * return V(...); * }; * * Result res(5); * auto res2 = res.orElse(orElse); * MOZ_ASSERT(res2.isErr()); * MOZ_ASSERT(res2.unwrapErr() == 25); * * Result res3(6); * auto res4 = res3.orElse(orElse); * MOZ_ASSERT(res4.isOk()); * MOZ_ASSERT(res4.unwrap() == ...); * * // `orElse` Result error variant to Result * // error variant or Result success variant * auto orElse = [](const char* s) -> Result { * if (strcmp(s, "foo")) { * return Err(strlen(s)); * } * return V(...); * }; * * Result res("hello, orElse!"); * auto res2 = res.orElse(orElse); * MOZ_ASSERT(res2.isErr()); * MOZ_ASSERT(res2.unwrapErr() == 14); * * Result res3("foo"); * auto res4 = ress.orElse(orElse); * MOZ_ASSERT(res4.isOk()); * MOZ_ASSERT(res4.unwrap() == ...); * * `orElse`ing over a success does not invoke the function and moves the * success: * * Result res(5); * MOZ_ASSERT(res.isOk()); * Result res2 = res.orElse([](E e) { ... }); * MOZ_ASSERT(res2.isOk()); * MOZ_ASSERT(res2.unwrap() == 5); */ template auto orElse(F f) -> Result::err_type> { return MOZ_UNLIKELY(isErr()) ? f(unwrapErr()) : unwrap(); } /** * Given a function V -> Result, apply it to this result's success * value and return its result. If this result is an error value, it is * propagated. * * This is sometimes called "flatMap" or ">>=" in other contexts. * * `andThen`ing over success values invokes the function to produce a new * result: * * Result res("hello, andThen!"); * Result res2 = res.andThen([](const char* s) { * return containsHtmlTag(s) * ? Result(Error("Invalid: contains HTML")) * : Result(HtmlFreeString(s)); * } * }); * MOZ_ASSERT(res2.isOk()); * MOZ_ASSERT(res2.unwrap() == HtmlFreeString("hello, andThen!"); * * `andThen`ing over error results does not invoke the function, and just * propagates the error result: * * Result res("some error"); * auto res2 = res.andThen([](int x) { ... }); * MOZ_ASSERT(res2.isErr()); * MOZ_ASSERT(res.unwrapErr() == res2.unwrapErr()); */ template >::value>> constexpr auto andThen(F f) -> std::invoke_result_t { return MOZ_LIKELY(isOk()) ? f(unwrap()) : propagateErr(); } }; /** * A type that auto-converts to an error Result. This is like a Result without * a success type. It's the best return type for functions that always return * an error--functions designed to build and populate error objects. It's also * useful in error-handling macros; see MOZ_TRY for an example. */ template class MOZ_MUST_USE_TYPE GenericErrorResult { E mErrorValue; template friend class Result; public: explicit constexpr GenericErrorResult(const E& aErrorValue) : mErrorValue(aErrorValue) {} explicit constexpr GenericErrorResult(E&& aErrorValue) : mErrorValue(std::move(aErrorValue)) {} }; template inline constexpr auto Err(E&& aErrorValue) { return GenericErrorResult>(std::forward(aErrorValue)); } } // namespace mozilla /** * MOZ_TRY(expr) is the C++ equivalent of Rust's `try!(expr);`. First, it * evaluates expr, which must produce a Result value. On success, it * discards the result altogether. On error, it immediately returns an error * Result from the enclosing function. */ #define MOZ_TRY(expr) \ do { \ auto mozTryTempResult_ = ::mozilla::ToResult(expr); \ if (MOZ_UNLIKELY(mozTryTempResult_.isErr())) { \ return mozTryTempResult_.propagateErr(); \ } \ } while (0) /** * MOZ_TRY_VAR(target, expr) is the C++ equivalent of Rust's `target = * try!(expr);`. First, it evaluates expr, which must produce a Result value. On * success, the result's success value is assigned to target. On error, * immediately returns the error result. |target| must be an lvalue. */ #define MOZ_TRY_VAR(target, expr) \ do { \ auto mozTryVarTempResult_ = (expr); \ if (MOZ_UNLIKELY(mozTryVarTempResult_.isErr())) { \ return mozTryVarTempResult_.propagateErr(); \ } \ (target) = mozTryVarTempResult_.unwrap(); \ } while (0) #endif // mozilla_Result_h