/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set sw=2 ts=8 et ft=cpp : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Hal.h" #include "HalImpl.h" #include "HalLog.h" #include "HalSandbox.h" #include "nsThreadUtils.h" #include "nsXULAppAPI.h" #include "mozilla/Observer.h" #include "nsIDocument.h" #include "nsIDOMDocument.h" #include "nsPIDOMWindow.h" #include "nsIDOMWindow.h" #include "mozilla/Services.h" #include "nsIWebNavigation.h" #include "nsITabChild.h" #include "nsIDocShell.h" #include "mozilla/StaticPtr.h" #include "mozilla/ClearOnShutdown.h" #include "WindowIdentifier.h" #include "mozilla/dom/ScreenOrientation.h" #include "mozilla/dom/ContentChild.h" #include "mozilla/dom/ContentParent.h" #ifdef XP_WIN #include #define getpid _getpid #endif using namespace mozilla::services; using namespace mozilla::dom; #define PROXY_IF_SANDBOXED(_call) \ do { \ if (InSandbox()) { \ if (!hal_sandbox::HalChildDestroyed()) { \ hal_sandbox::_call; \ } \ } else { \ hal_impl::_call; \ } \ } while (0) #define RETURN_PROXY_IF_SANDBOXED(_call, defValue)\ do { \ if (InSandbox()) { \ if (hal_sandbox::HalChildDestroyed()) { \ return defValue; \ } \ return hal_sandbox::_call; \ } else { \ return hal_impl::_call; \ } \ } while (0) namespace mozilla { namespace hal { PRLogModuleInfo * GetHalLog() { static PRLogModuleInfo *sHalLog; if (!sHalLog) { sHalLog = PR_NewLogModule("hal"); } return sHalLog; } namespace { void AssertMainThread() { MOZ_ASSERT(NS_IsMainThread()); } bool InSandbox() { return GeckoProcessType_Content == XRE_GetProcessType(); } void AssertMainProcess() { MOZ_ASSERT(GeckoProcessType_Default == XRE_GetProcessType()); } bool WindowIsActive(nsIDOMWindow* aWindow) { nsCOMPtr window = do_QueryInterface(aWindow); NS_ENSURE_TRUE(window, false); nsIDocument* document = window->GetDoc(); NS_ENSURE_TRUE(document, false); return !document->Hidden(); } StaticAutoPtr gLastIDToVibrate; void InitLastIDToVibrate() { gLastIDToVibrate = new WindowIdentifier::IDArrayType(); ClearOnShutdown(&gLastIDToVibrate); } } // namespace void Vibrate(const nsTArray& pattern, nsIDOMWindow* window) { Vibrate(pattern, WindowIdentifier(window)); } void Vibrate(const nsTArray& pattern, const WindowIdentifier &id) { AssertMainThread(); // Only active windows may start vibrations. If |id| hasn't gone // through the IPC layer -- that is, if our caller is the outside // world, not hal_proxy -- check whether the window is active. If // |id| has gone through IPC, don't check the window's visibility; // only the window corresponding to the bottommost process has its // visibility state set correctly. if (!id.HasTraveledThroughIPC() && !WindowIsActive(id.GetWindow())) { HAL_LOG("Vibrate: Window is inactive, dropping vibrate."); return; } if (!InSandbox()) { if (!gLastIDToVibrate) { InitLastIDToVibrate(); } *gLastIDToVibrate = id.AsArray(); } // Don't forward our ID if we are not in the sandbox, because hal_impl // doesn't need it, and we don't want it to be tempted to read it. The // empty identifier will assert if it's used. PROXY_IF_SANDBOXED(Vibrate(pattern, InSandbox() ? id : WindowIdentifier())); } void CancelVibrate(nsIDOMWindow* window) { CancelVibrate(WindowIdentifier(window)); } void CancelVibrate(const WindowIdentifier &id) { AssertMainThread(); // Although only active windows may start vibrations, a window may // cancel its own vibration even if it's no longer active. // // After a window is marked as inactive, it sends a CancelVibrate // request. We want this request to cancel a playing vibration // started by that window, so we certainly don't want to reject the // cancellation request because the window is now inactive. // // But it could be the case that, after this window became inactive, // some other window came along and started a vibration. We don't // want this window's cancellation request to cancel that window's // actively-playing vibration! // // To solve this problem, we keep track of the id of the last window // to start a vibration, and only accepts cancellation requests from // the same window. All other cancellation requests are ignored. if (InSandbox() || (gLastIDToVibrate && *gLastIDToVibrate == id.AsArray())) { // Don't forward our ID if we are not in the sandbox, because hal_impl // doesn't need it, and we don't want it to be tempted to read it. The // empty identifier will assert if it's used. PROXY_IF_SANDBOXED(CancelVibrate(InSandbox() ? id : WindowIdentifier())); } } template class ObserversManager { public: void AddObserver(Observer* aObserver) { if (!mObservers) { mObservers = new mozilla::ObserverList(); } mObservers->AddObserver(aObserver); if (mObservers->Length() == 1) { EnableNotifications(); } } void RemoveObserver(Observer* aObserver) { bool removed = mObservers && mObservers->RemoveObserver(aObserver); if (!removed) { return; } if (mObservers->Length() == 0) { DisableNotifications(); OnNotificationsDisabled(); delete mObservers; mObservers = nullptr; } } void BroadcastInformation(const InfoType& aInfo) { // It is possible for mObservers to be nullptr here on some platforms, // because a call to BroadcastInformation gets queued up asynchronously // while RemoveObserver is running (and before the notifications are // disabled). The queued call can then get run after mObservers has // been nulled out. See bug 757025. if (!mObservers) { return; } mObservers->Broadcast(aInfo); } protected: virtual void EnableNotifications() = 0; virtual void DisableNotifications() = 0; virtual void OnNotificationsDisabled() {} private: mozilla::ObserverList* mObservers; }; template class CachingObserversManager : public ObserversManager { public: InfoType GetCurrentInformation() { if (mHasValidCache) { return mInfo; } GetCurrentInformationInternal(&mInfo); mHasValidCache = true; return mInfo; } void CacheInformation(const InfoType& aInfo) { mHasValidCache = true; mInfo = aInfo; } void BroadcastCachedInformation() { this->BroadcastInformation(mInfo); } protected: virtual void GetCurrentInformationInternal(InfoType*) = 0; virtual void OnNotificationsDisabled() { mHasValidCache = false; } private: InfoType mInfo; bool mHasValidCache; }; class BatteryObserversManager : public CachingObserversManager { protected: void EnableNotifications() { PROXY_IF_SANDBOXED(EnableBatteryNotifications()); } void DisableNotifications() { PROXY_IF_SANDBOXED(DisableBatteryNotifications()); } void GetCurrentInformationInternal(BatteryInformation* aInfo) { PROXY_IF_SANDBOXED(GetCurrentBatteryInformation(aInfo)); } }; static BatteryObserversManager sBatteryObservers; class NetworkObserversManager : public CachingObserversManager { protected: void EnableNotifications() { PROXY_IF_SANDBOXED(EnableNetworkNotifications()); } void DisableNotifications() { PROXY_IF_SANDBOXED(DisableNetworkNotifications()); } void GetCurrentInformationInternal(NetworkInformation* aInfo) { PROXY_IF_SANDBOXED(GetCurrentNetworkInformation(aInfo)); } }; static NetworkObserversManager sNetworkObservers; class WakeLockObserversManager : public ObserversManager { protected: void EnableNotifications() { PROXY_IF_SANDBOXED(EnableWakeLockNotifications()); } void DisableNotifications() { PROXY_IF_SANDBOXED(DisableWakeLockNotifications()); } }; static WakeLockObserversManager sWakeLockObservers; class ScreenConfigurationObserversManager : public CachingObserversManager { protected: void EnableNotifications() { PROXY_IF_SANDBOXED(EnableScreenConfigurationNotifications()); } void DisableNotifications() { PROXY_IF_SANDBOXED(DisableScreenConfigurationNotifications()); } void GetCurrentInformationInternal(ScreenConfiguration* aInfo) { PROXY_IF_SANDBOXED(GetCurrentScreenConfiguration(aInfo)); } }; static ScreenConfigurationObserversManager sScreenConfigurationObservers; void RegisterBatteryObserver(BatteryObserver* aObserver) { AssertMainThread(); sBatteryObservers.AddObserver(aObserver); } void UnregisterBatteryObserver(BatteryObserver* aObserver) { AssertMainThread(); sBatteryObservers.RemoveObserver(aObserver); } void GetCurrentBatteryInformation(BatteryInformation* aInfo) { AssertMainThread(); *aInfo = sBatteryObservers.GetCurrentInformation(); } void NotifyBatteryChange(const BatteryInformation& aInfo) { AssertMainThread(); sBatteryObservers.CacheInformation(aInfo); sBatteryObservers.BroadcastCachedInformation(); } bool GetScreenEnabled() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetScreenEnabled(), false); } void SetScreenEnabled(bool aEnabled) { AssertMainThread(); PROXY_IF_SANDBOXED(SetScreenEnabled(aEnabled)); } bool GetKeyLightEnabled() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetKeyLightEnabled(), false); } void SetKeyLightEnabled(bool aEnabled) { AssertMainThread(); PROXY_IF_SANDBOXED(SetKeyLightEnabled(aEnabled)); } bool GetCpuSleepAllowed() { // Generally for interfaces that are accessible by normal web content // we should cache the result and be notified on state changes, like // what the battery API does. But since this is only used by // privileged interface, the synchronous getter is OK here. AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetCpuSleepAllowed(), true); } void SetCpuSleepAllowed(bool aAllowed) { AssertMainThread(); PROXY_IF_SANDBOXED(SetCpuSleepAllowed(aAllowed)); } double GetScreenBrightness() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetScreenBrightness(), 0); } void SetScreenBrightness(double aBrightness) { AssertMainThread(); PROXY_IF_SANDBOXED(SetScreenBrightness(clamped(aBrightness, 0.0, 1.0))); } class SystemClockChangeObserversManager : public ObserversManager { protected: void EnableNotifications() { PROXY_IF_SANDBOXED(EnableSystemClockChangeNotifications()); } void DisableNotifications() { PROXY_IF_SANDBOXED(DisableSystemClockChangeNotifications()); } }; static SystemClockChangeObserversManager sSystemClockChangeObservers; void RegisterSystemClockChangeObserver(SystemClockChangeObserver* aObserver) { AssertMainThread(); sSystemClockChangeObservers.AddObserver(aObserver); } void UnregisterSystemClockChangeObserver(SystemClockChangeObserver* aObserver) { AssertMainThread(); sSystemClockChangeObservers.RemoveObserver(aObserver); } void NotifySystemClockChange(const int64_t& aClockDeltaMS) { sSystemClockChangeObservers.BroadcastInformation(aClockDeltaMS); } class SystemTimezoneChangeObserversManager : public ObserversManager { protected: void EnableNotifications() { PROXY_IF_SANDBOXED(EnableSystemTimezoneChangeNotifications()); } void DisableNotifications() { PROXY_IF_SANDBOXED(DisableSystemTimezoneChangeNotifications()); } }; static SystemTimezoneChangeObserversManager sSystemTimezoneChangeObservers; void RegisterSystemTimezoneChangeObserver(SystemTimezoneChangeObserver* aObserver) { AssertMainThread(); sSystemTimezoneChangeObservers.AddObserver(aObserver); } void UnregisterSystemTimezoneChangeObserver(SystemTimezoneChangeObserver* aObserver) { AssertMainThread(); sSystemTimezoneChangeObservers.RemoveObserver(aObserver); } void NotifySystemTimezoneChange(const SystemTimezoneChangeInformation& aSystemTimezoneChangeInfo) { sSystemTimezoneChangeObservers.BroadcastInformation(aSystemTimezoneChangeInfo); } void AdjustSystemClock(int64_t aDeltaMilliseconds) { AssertMainThread(); PROXY_IF_SANDBOXED(AdjustSystemClock(aDeltaMilliseconds)); } void SetTimezone(const nsCString& aTimezoneSpec) { AssertMainThread(); PROXY_IF_SANDBOXED(SetTimezone(aTimezoneSpec)); } int32_t GetTimezoneOffset() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetTimezoneOffset(), 0); } nsCString GetTimezone() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetTimezone(), nsCString("")); } void EnableSensorNotifications(SensorType aSensor) { AssertMainThread(); PROXY_IF_SANDBOXED(EnableSensorNotifications(aSensor)); } void DisableSensorNotifications(SensorType aSensor) { AssertMainThread(); PROXY_IF_SANDBOXED(DisableSensorNotifications(aSensor)); } typedef mozilla::ObserverList SensorObserverList; static SensorObserverList* gSensorObservers = nullptr; static SensorObserverList & GetSensorObservers(SensorType sensor_type) { MOZ_ASSERT(sensor_type < NUM_SENSOR_TYPE); if(!gSensorObservers) { gSensorObservers = new SensorObserverList[NUM_SENSOR_TYPE]; } return gSensorObservers[sensor_type]; } void RegisterSensorObserver(SensorType aSensor, ISensorObserver *aObserver) { SensorObserverList &observers = GetSensorObservers(aSensor); AssertMainThread(); observers.AddObserver(aObserver); if(observers.Length() == 1) { EnableSensorNotifications(aSensor); } } void UnregisterSensorObserver(SensorType aSensor, ISensorObserver *aObserver) { AssertMainThread(); if (!gSensorObservers) { return; } SensorObserverList &observers = GetSensorObservers(aSensor); if (!observers.RemoveObserver(aObserver) || observers.Length() > 0) { return; } DisableSensorNotifications(aSensor); // Destroy sSensorObservers only if all observer lists are empty. for (int i = 0; i < NUM_SENSOR_TYPE; i++) { if (gSensorObservers[i].Length() > 0) { return; } } delete [] gSensorObservers; gSensorObservers = nullptr; } void NotifySensorChange(const SensorData &aSensorData) { SensorObserverList &observers = GetSensorObservers(aSensorData.sensor()); AssertMainThread(); observers.Broadcast(aSensorData); } void RegisterNetworkObserver(NetworkObserver* aObserver) { AssertMainThread(); sNetworkObservers.AddObserver(aObserver); } void UnregisterNetworkObserver(NetworkObserver* aObserver) { AssertMainThread(); sNetworkObservers.RemoveObserver(aObserver); } void GetCurrentNetworkInformation(NetworkInformation* aInfo) { AssertMainThread(); *aInfo = sNetworkObservers.GetCurrentInformation(); } void NotifyNetworkChange(const NetworkInformation& aInfo) { sNetworkObservers.CacheInformation(aInfo); sNetworkObservers.BroadcastCachedInformation(); } void Reboot() { AssertMainProcess(); AssertMainThread(); PROXY_IF_SANDBOXED(Reboot()); } void PowerOff() { AssertMainProcess(); AssertMainThread(); PROXY_IF_SANDBOXED(PowerOff()); } void StartForceQuitWatchdog(ShutdownMode aMode, int32_t aTimeoutSecs) { AssertMainProcess(); AssertMainThread(); PROXY_IF_SANDBOXED(StartForceQuitWatchdog(aMode, aTimeoutSecs)); } void RegisterWakeLockObserver(WakeLockObserver* aObserver) { AssertMainThread(); sWakeLockObservers.AddObserver(aObserver); } void UnregisterWakeLockObserver(WakeLockObserver* aObserver) { AssertMainThread(); sWakeLockObservers.RemoveObserver(aObserver); } void ModifyWakeLock(const nsAString& aTopic, WakeLockControl aLockAdjust, WakeLockControl aHiddenAdjust, uint64_t aProcessID /* = CONTENT_PROCESS_ID_UNKNOWN */) { AssertMainThread(); if (aProcessID == CONTENT_PROCESS_ID_UNKNOWN) { aProcessID = InSandbox() ? ContentChild::GetSingleton()->GetID() : CONTENT_PROCESS_ID_MAIN; } PROXY_IF_SANDBOXED(ModifyWakeLock(aTopic, aLockAdjust, aHiddenAdjust, aProcessID)); } void GetWakeLockInfo(const nsAString& aTopic, WakeLockInformation* aWakeLockInfo) { AssertMainThread(); PROXY_IF_SANDBOXED(GetWakeLockInfo(aTopic, aWakeLockInfo)); } void NotifyWakeLockChange(const WakeLockInformation& aInfo) { AssertMainThread(); sWakeLockObservers.BroadcastInformation(aInfo); } void RegisterScreenConfigurationObserver(ScreenConfigurationObserver* aObserver) { AssertMainThread(); sScreenConfigurationObservers.AddObserver(aObserver); } void UnregisterScreenConfigurationObserver(ScreenConfigurationObserver* aObserver) { AssertMainThread(); sScreenConfigurationObservers.RemoveObserver(aObserver); } void GetCurrentScreenConfiguration(ScreenConfiguration* aScreenConfiguration) { AssertMainThread(); *aScreenConfiguration = sScreenConfigurationObservers.GetCurrentInformation(); } void NotifyScreenConfigurationChange(const ScreenConfiguration& aScreenConfiguration) { sScreenConfigurationObservers.CacheInformation(aScreenConfiguration); sScreenConfigurationObservers.BroadcastCachedInformation(); } bool LockScreenOrientation(const dom::ScreenOrientation& aOrientation) { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(LockScreenOrientation(aOrientation), false); } void UnlockScreenOrientation() { AssertMainThread(); PROXY_IF_SANDBOXED(UnlockScreenOrientation()); } void EnableSwitchNotifications(SwitchDevice aDevice) { AssertMainThread(); PROXY_IF_SANDBOXED(EnableSwitchNotifications(aDevice)); } void DisableSwitchNotifications(SwitchDevice aDevice) { AssertMainThread(); PROXY_IF_SANDBOXED(DisableSwitchNotifications(aDevice)); } SwitchState GetCurrentSwitchState(SwitchDevice aDevice) { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetCurrentSwitchState(aDevice), SWITCH_STATE_UNKNOWN); } void NotifySwitchStateFromInputDevice(SwitchDevice aDevice, SwitchState aState) { AssertMainThread(); PROXY_IF_SANDBOXED(NotifySwitchStateFromInputDevice(aDevice, aState)); } typedef mozilla::ObserverList SwitchObserverList; static SwitchObserverList *sSwitchObserverLists = nullptr; static SwitchObserverList& GetSwitchObserverList(SwitchDevice aDevice) { MOZ_ASSERT(0 <= aDevice && aDevice < NUM_SWITCH_DEVICE); if (sSwitchObserverLists == nullptr) { sSwitchObserverLists = new SwitchObserverList[NUM_SWITCH_DEVICE]; } return sSwitchObserverLists[aDevice]; } static void ReleaseObserversIfNeeded() { for (int i = 0; i < NUM_SWITCH_DEVICE; i++) { if (sSwitchObserverLists[i].Length() != 0) return; } //The length of every list is 0, no observer in the list. delete [] sSwitchObserverLists; sSwitchObserverLists = nullptr; } void RegisterSwitchObserver(SwitchDevice aDevice, SwitchObserver *aObserver) { AssertMainThread(); SwitchObserverList& observer = GetSwitchObserverList(aDevice); observer.AddObserver(aObserver); if (observer.Length() == 1) { EnableSwitchNotifications(aDevice); } } void UnregisterSwitchObserver(SwitchDevice aDevice, SwitchObserver *aObserver) { AssertMainThread(); if (!sSwitchObserverLists) { return; } SwitchObserverList& observer = GetSwitchObserverList(aDevice); if (!observer.RemoveObserver(aObserver) || observer.Length() > 0) { return; } DisableSwitchNotifications(aDevice); ReleaseObserversIfNeeded(); } void NotifySwitchChange(const SwitchEvent& aEvent) { // When callback this notification, main thread may call unregister function // first. We should check if this pointer is valid. if (!sSwitchObserverLists) return; SwitchObserverList& observer = GetSwitchObserverList(aEvent.device()); observer.Broadcast(aEvent); } static AlarmObserver* sAlarmObserver; bool RegisterTheOneAlarmObserver(AlarmObserver* aObserver) { MOZ_ASSERT(!InSandbox()); MOZ_ASSERT(!sAlarmObserver); sAlarmObserver = aObserver; RETURN_PROXY_IF_SANDBOXED(EnableAlarm(), false); } void UnregisterTheOneAlarmObserver() { if (sAlarmObserver) { sAlarmObserver = nullptr; PROXY_IF_SANDBOXED(DisableAlarm()); } } void NotifyAlarmFired() { if (sAlarmObserver) { sAlarmObserver->Notify(void_t()); } } bool SetAlarm(int32_t aSeconds, int32_t aNanoseconds) { // It's pointless to program an alarm nothing is going to observe ... MOZ_ASSERT(sAlarmObserver); RETURN_PROXY_IF_SANDBOXED(SetAlarm(aSeconds, aNanoseconds), false); } void SetProcessPriority(int aPid, ProcessPriority aPriority, uint32_t aLRU) { // n.b. The sandboxed implementation crashes; SetProcessPriority works only // from the main process. PROXY_IF_SANDBOXED(SetProcessPriority(aPid, aPriority, aLRU)); } void SetCurrentThreadPriority(hal::ThreadPriority aThreadPriority) { PROXY_IF_SANDBOXED(SetCurrentThreadPriority(aThreadPriority)); } void SetThreadPriority(PlatformThreadId aThreadId, hal::ThreadPriority aThreadPriority) { PROXY_IF_SANDBOXED(SetThreadPriority(aThreadId, aThreadPriority)); } // From HalTypes.h. const char* ProcessPriorityToString(ProcessPriority aPriority) { switch (aPriority) { case PROCESS_PRIORITY_MASTER: return "MASTER"; case PROCESS_PRIORITY_PREALLOC: return "PREALLOC"; case PROCESS_PRIORITY_FOREGROUND_HIGH: return "FOREGROUND_HIGH"; case PROCESS_PRIORITY_FOREGROUND: return "FOREGROUND"; case PROCESS_PRIORITY_FOREGROUND_KEYBOARD: return "FOREGROUND_KEYBOARD"; case PROCESS_PRIORITY_BACKGROUND_PERCEIVABLE: return "BACKGROUND_PERCEIVABLE"; case PROCESS_PRIORITY_BACKGROUND: return "BACKGROUND"; case PROCESS_PRIORITY_UNKNOWN: return "UNKNOWN"; default: MOZ_ASSERT(false); return "???"; } } const char * ThreadPriorityToString(ThreadPriority aPriority) { switch (aPriority) { case THREAD_PRIORITY_COMPOSITOR: return "COMPOSITOR"; default: MOZ_ASSERT(false); return "???"; } } static StaticAutoPtr > sFMRadioObservers; static StaticAutoPtr > sFMRadioRDSObservers; static void InitializeFMRadioObserver() { if (!sFMRadioObservers) { sFMRadioObservers = new ObserverList; sFMRadioRDSObservers = new ObserverList; ClearOnShutdown(&sFMRadioRDSObservers); ClearOnShutdown(&sFMRadioObservers); } } void RegisterFMRadioObserver(FMRadioObserver* aFMRadioObserver) { AssertMainThread(); InitializeFMRadioObserver(); sFMRadioObservers->AddObserver(aFMRadioObserver); } void UnregisterFMRadioObserver(FMRadioObserver* aFMRadioObserver) { AssertMainThread(); InitializeFMRadioObserver(); sFMRadioObservers->RemoveObserver(aFMRadioObserver); } void NotifyFMRadioStatus(const FMRadioOperationInformation& aFMRadioState) { InitializeFMRadioObserver(); sFMRadioObservers->Broadcast(aFMRadioState); } void RegisterFMRadioRDSObserver(FMRadioRDSObserver* aFMRadioRDSObserver) { AssertMainThread(); InitializeFMRadioObserver(); sFMRadioRDSObservers->AddObserver(aFMRadioRDSObserver); } void UnregisterFMRadioRDSObserver(FMRadioRDSObserver* aFMRadioRDSObserver) { AssertMainThread(); InitializeFMRadioObserver(); sFMRadioRDSObservers->RemoveObserver(aFMRadioRDSObserver); } void NotifyFMRadioRDSGroup(const FMRadioRDSGroup& aRDSGroup) { InitializeFMRadioObserver(); sFMRadioRDSObservers->Broadcast(aRDSGroup); } void EnableFMRadio(const FMRadioSettings& aInfo) { AssertMainThread(); PROXY_IF_SANDBOXED(EnableFMRadio(aInfo)); } void DisableFMRadio() { AssertMainThread(); PROXY_IF_SANDBOXED(DisableFMRadio()); } void FMRadioSeek(const FMRadioSeekDirection& aDirection) { PROXY_IF_SANDBOXED(FMRadioSeek(aDirection)); } void GetFMRadioSettings(FMRadioSettings* aInfo) { AssertMainThread(); PROXY_IF_SANDBOXED(GetFMRadioSettings(aInfo)); } void SetFMRadioFrequency(const uint32_t aFrequency) { PROXY_IF_SANDBOXED(SetFMRadioFrequency(aFrequency)); } uint32_t GetFMRadioFrequency() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetFMRadioFrequency(), 0); } bool IsFMRadioOn() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(IsFMRadioOn(), false); } uint32_t GetFMRadioSignalStrength() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(GetFMRadioSignalStrength(), 0); } void CancelFMRadioSeek() { AssertMainThread(); PROXY_IF_SANDBOXED(CancelFMRadioSeek()); } bool EnableRDS(uint32_t aMask) { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(EnableRDS(aMask), false); } void DisableRDS() { AssertMainThread(); PROXY_IF_SANDBOXED(DisableRDS()); } FMRadioSettings GetFMBandSettings(FMRadioCountry aCountry) { FMRadioSettings settings; switch (aCountry) { case FM_RADIO_COUNTRY_US: case FM_RADIO_COUNTRY_EU: settings.upperLimit() = 108000; settings.lowerLimit() = 87800; settings.spaceType() = 200; settings.preEmphasis() = 75; break; case FM_RADIO_COUNTRY_JP_STANDARD: settings.upperLimit() = 76000; settings.lowerLimit() = 90000; settings.spaceType() = 100; settings.preEmphasis() = 50; break; case FM_RADIO_COUNTRY_CY: case FM_RADIO_COUNTRY_DE: case FM_RADIO_COUNTRY_DK: case FM_RADIO_COUNTRY_ES: case FM_RADIO_COUNTRY_FI: case FM_RADIO_COUNTRY_FR: case FM_RADIO_COUNTRY_HU: case FM_RADIO_COUNTRY_IR: case FM_RADIO_COUNTRY_IT: case FM_RADIO_COUNTRY_KW: case FM_RADIO_COUNTRY_LT: case FM_RADIO_COUNTRY_ML: case FM_RADIO_COUNTRY_NO: case FM_RADIO_COUNTRY_OM: case FM_RADIO_COUNTRY_PG: case FM_RADIO_COUNTRY_NL: case FM_RADIO_COUNTRY_CZ: case FM_RADIO_COUNTRY_UK: case FM_RADIO_COUNTRY_RW: case FM_RADIO_COUNTRY_SN: case FM_RADIO_COUNTRY_SI: case FM_RADIO_COUNTRY_ZA: case FM_RADIO_COUNTRY_SE: case FM_RADIO_COUNTRY_CH: case FM_RADIO_COUNTRY_TW: case FM_RADIO_COUNTRY_UA: settings.upperLimit() = 108000; settings.lowerLimit() = 87500; settings.spaceType() = 100; settings.preEmphasis() = 50; break; case FM_RADIO_COUNTRY_VA: case FM_RADIO_COUNTRY_MA: case FM_RADIO_COUNTRY_TR: settings.upperLimit() = 10800; settings.lowerLimit() = 87500; settings.spaceType() = 100; settings.preEmphasis() = 75; break; case FM_RADIO_COUNTRY_AU: case FM_RADIO_COUNTRY_BD: settings.upperLimit() = 108000; settings.lowerLimit() = 87500; settings.spaceType() = 200; settings.preEmphasis() = 75; break; case FM_RADIO_COUNTRY_AW: case FM_RADIO_COUNTRY_BS: case FM_RADIO_COUNTRY_CO: case FM_RADIO_COUNTRY_KR: settings.upperLimit() = 108000; settings.lowerLimit() = 88000; settings.spaceType() = 200; settings.preEmphasis() = 75; break; case FM_RADIO_COUNTRY_EC: settings.upperLimit() = 108000; settings.lowerLimit() = 88000; settings.spaceType() = 200; settings.preEmphasis() = 0; break; case FM_RADIO_COUNTRY_GM: settings.upperLimit() = 108000; settings.lowerLimit() = 88000; settings.spaceType() = 0; settings.preEmphasis() = 75; break; case FM_RADIO_COUNTRY_QA: settings.upperLimit() = 108000; settings.lowerLimit() = 88000; settings.spaceType() = 200; settings.preEmphasis() = 50; break; case FM_RADIO_COUNTRY_SG: settings.upperLimit() = 108000; settings.lowerLimit() = 88000; settings.spaceType() = 200; settings.preEmphasis() = 50; break; case FM_RADIO_COUNTRY_IN: settings.upperLimit() = 100000; settings.lowerLimit() = 108000; settings.spaceType() = 100; settings.preEmphasis() = 50; break; case FM_RADIO_COUNTRY_NZ: settings.upperLimit() = 100000; settings.lowerLimit() = 88000; settings.spaceType() = 50; settings.preEmphasis() = 50; break; case FM_RADIO_COUNTRY_USER_DEFINED: break; default: MOZ_ASSERT(0); break; }; return settings; } void FactoryReset(mozilla::dom::FactoryResetReason& aReason) { AssertMainThread(); PROXY_IF_SANDBOXED(FactoryReset(aReason)); } void StartDiskSpaceWatcher() { AssertMainProcess(); AssertMainThread(); PROXY_IF_SANDBOXED(StartDiskSpaceWatcher()); } void StopDiskSpaceWatcher() { AssertMainProcess(); AssertMainThread(); PROXY_IF_SANDBOXED(StopDiskSpaceWatcher()); } uint32_t GetTotalSystemMemory() { return hal_impl::GetTotalSystemMemory(); } uint32_t GetTotalSystemMemoryLevel() { return hal_impl::GetTotalSystemMemoryLevel(); } bool IsHeadphoneEventFromInputDev() { AssertMainThread(); RETURN_PROXY_IF_SANDBOXED(IsHeadphoneEventFromInputDev(), false); } } // namespace hal } // namespace mozilla