/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* This file implements the SERVER Session ID cache. * NOTE: The contents of this file are NOT used by the client. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Note: ssl_FreeSID() in sslnonce.c gets used for both client and server * cache sids! * * About record locking among different server processes: * * All processes that are part of the same conceptual server (serving on * the same address and port) MUST share a common SSL session cache. * This code makes the content of the shared cache accessible to all * processes on the same "server". This code works on Unix and Win32 only. * * We use NSPR anonymous shared memory and move data to & from shared memory. * We must do explicit locking of the records for all reads and writes. * The set of Cache entries are divided up into "sets" of 128 entries. * Each set is protected by a lock. There may be one or more sets protected * by each lock. That is, locks to sets are 1:N. * There is one lock for the entire cert cache. * There is one lock for the set of wrapped sym wrap keys. * * The anonymous shared memory is laid out as if it were declared like this: * * struct { * cacheDescriptor desc; * sidCacheLock sidCacheLocks[ numSIDCacheLocks]; * sidCacheLock keyCacheLock; * sidCacheLock certCacheLock; * sidCacheSet sidCacheSets[ numSIDCacheSets ]; * sidCacheEntry sidCacheData[ numSIDCacheEntries]; * certCacheEntry certCacheData[numCertCacheEntries]; * SSLWrappedSymWrappingKey keyCacheData[SSL_NUM_WRAP_KEYS][SSL_NUM_WRAP_MECHS]; * PRUint8 keyNameSuffix[SELF_ENCRYPT_KEY_VAR_NAME_LEN] * encKeyCacheEntry ticketEncKey; // Wrapped * encKeyCacheEntry ticketMacKey; // Wrapped * PRBool ticketKeysValid; * sidCacheLock srvNameCacheLock; * srvNameCacheEntry srvNameData[ numSrvNameCacheEntries ]; * } cacheMemCacheData; */ #include "seccomon.h" #if defined(XP_UNIX) || defined(XP_WIN32) || defined(XP_OS2) || defined(XP_BEOS) #include "cert.h" #include "ssl.h" #include "sslimpl.h" #include "sslproto.h" #include "pk11func.h" #include "base64.h" #include "keyhi.h" #include "blapit.h" #include "nss.h" /* for NSS_RegisterShutdown */ #include "sechash.h" #include "selfencrypt.h" #include #if defined(XP_UNIX) || defined(XP_BEOS) #include #include #include #include #include #include "unix_err.h" #else #ifdef XP_WIN32 #include #include "win32err.h" #endif #endif #include #include "nspr.h" #include "sslmutex.h" /* ** Format of a cache entry in the shared memory. */ struct sidCacheEntryStr { /* 16 */ PRIPv6Addr addr; /* client's IP address */ /* 4 */ PRUint32 creationTime; /* 4 */ PRUint32 lastAccessTime; /* 4 */ PRUint32 expirationTime; /* 2 */ PRUint16 version; /* 1 */ PRUint8 valid; /* 1 */ PRUint8 sessionIDLength; /* 32 */ PRUint8 sessionID[SSL3_SESSIONID_BYTES]; /* 2 */ PRUint16 authType; /* 2 */ PRUint16 authKeyBits; /* 2 */ PRUint16 keaType; /* 2 */ PRUint16 keaKeyBits; /* 4 */ PRUint32 signatureScheme; /* 4 */ PRUint32 keaGroup; /* 80 - common header total */ union { struct { /* 2 */ ssl3CipherSuite cipherSuite; /* 2 */ PRUint16 compression; /* SSLCompressionMethod */ /* 54 */ ssl3SidKeys keys; /* keys, wrapped as needed. */ /* 4 */ PRUint32 masterWrapMech; /* 4 */ PRInt32 certIndex; /* 4 */ PRInt32 srvNameIndex; /* 32 */ PRUint8 srvNameHash[SHA256_LENGTH]; /* SHA256 name hash */ /* 2 */ PRUint16 namedCurve; /*104 */} ssl3; /* force sizeof(sidCacheEntry) to be a multiple of cache line size */ struct { /*112 */ PRUint8 filler[112]; /* 80+112==192, a multiple of 16 */ } forceSize; } u; }; typedef struct sidCacheEntryStr sidCacheEntry; /* The length of this struct is supposed to be a power of 2, e.g. 4KB */ struct certCacheEntryStr { PRUint16 certLength; /* 2 */ PRUint16 sessionIDLength; /* 2 */ PRUint8 sessionID[SSL3_SESSIONID_BYTES]; /* 32 */ PRUint8 cert[SSL_MAX_CACHED_CERT_LEN]; /* 4060 */ }; /* total 4096 */ typedef struct certCacheEntryStr certCacheEntry; struct sidCacheLockStr { PRUint32 timeStamp; sslMutex mutex; sslPID pid; }; typedef struct sidCacheLockStr sidCacheLock; struct sidCacheSetStr { PRIntn next; }; typedef struct sidCacheSetStr sidCacheSet; struct encKeyCacheEntryStr { PRUint8 bytes[512]; PRInt32 length; }; typedef struct encKeyCacheEntryStr encKeyCacheEntry; #define SSL_MAX_DNS_HOST_NAME 1024 struct srvNameCacheEntryStr { PRUint16 type; /* 2 */ PRUint16 nameLen; /* 2 */ PRUint8 name[SSL_MAX_DNS_HOST_NAME + 12]; /* 1034 */ PRUint8 nameHash[SHA256_LENGTH]; /* 32 */ /* 1072 */ }; typedef struct srvNameCacheEntryStr srvNameCacheEntry; struct cacheDescStr { PRUint32 cacheMemSize; PRUint32 numSIDCacheLocks; PRUint32 numSIDCacheSets; PRUint32 numSIDCacheSetsPerLock; PRUint32 numSIDCacheEntries; PRUint32 sidCacheSize; PRUint32 numCertCacheEntries; PRUint32 certCacheSize; PRUint32 numKeyCacheEntries; PRUint32 keyCacheSize; PRUint32 numSrvNameCacheEntries; PRUint32 srvNameCacheSize; PRUint32 ssl3Timeout; PRUint32 numSIDCacheLocksInitialized; /* These values are volatile, and are accessed through sharedCache-> */ PRUint32 nextCertCacheEntry; /* certCacheLock protects */ PRBool stopPolling; PRBool everInherited; /* The private copies of these values are pointers into shared mem */ /* The copies of these values in shared memory are merely offsets */ sidCacheLock *sidCacheLocks; sidCacheLock *keyCacheLock; sidCacheLock *certCacheLock; sidCacheLock *srvNameCacheLock; sidCacheSet *sidCacheSets; sidCacheEntry *sidCacheData; certCacheEntry *certCacheData; SSLWrappedSymWrappingKey *keyCacheData; PRUint8 *ticketKeyNameSuffix; encKeyCacheEntry *ticketEncKey; encKeyCacheEntry *ticketMacKey; PRUint32 *ticketKeysValid; srvNameCacheEntry *srvNameCacheData; /* Only the private copies of these pointers are valid */ char *cacheMem; struct cacheDescStr *sharedCache; /* shared copy of this struct */ PRFileMap *cacheMemMap; PRThread *poller; PRUint32 mutexTimeout; PRBool shared; }; typedef struct cacheDescStr cacheDesc; static cacheDesc globalCache; static const char envVarName[] = { SSL_ENV_VAR_NAME }; static PRBool isMultiProcess = PR_FALSE; #define DEF_SID_CACHE_ENTRIES 10000 #define DEF_CERT_CACHE_ENTRIES 250 #define MIN_CERT_CACHE_ENTRIES 125 /* the effective size in old releases. */ #define DEF_KEY_CACHE_ENTRIES 250 #define DEF_NAME_CACHE_ENTRIES 1000 #define SID_CACHE_ENTRIES_PER_SET 128 #define SID_ALIGNMENT 16 #define DEF_SSL3_TIMEOUT 86400L /* 24 hours */ #define MAX_SSL3_TIMEOUT 86400L /* 24 hours */ #define MIN_SSL3_TIMEOUT 5 /* seconds */ #if defined(AIX) || defined(LINUX) || defined(NETBSD) || defined(OPENBSD) #define MAX_SID_CACHE_LOCKS 8 /* two FDs per lock */ #elif defined(OSF1) #define MAX_SID_CACHE_LOCKS 16 /* one FD per lock */ #else #define MAX_SID_CACHE_LOCKS 256 #endif #define SID_HOWMANY(val, size) (((val) + ((size)-1)) / (size)) #define SID_ROUNDUP(val, size) ((size)*SID_HOWMANY((val), (size))) static sslPID myPid; static PRUint32 ssl_max_sid_cache_locks = MAX_SID_CACHE_LOCKS; /* forward static function declarations */ static PRUint32 SIDindex(cacheDesc *cache, const PRIPv6Addr *addr, PRUint8 *s, unsigned nl); static SECStatus LaunchLockPoller(cacheDesc *cache); static SECStatus StopLockPoller(cacheDesc *cache); struct inheritanceStr { PRUint32 cacheMemSize; PRUint32 fmStrLen; }; typedef struct inheritanceStr inheritance; #if defined(_WIN32) || defined(XP_OS2) #define DEFAULT_CACHE_DIRECTORY "\\temp" #endif /* _win32 */ #if defined(XP_UNIX) || defined(XP_BEOS) #define DEFAULT_CACHE_DIRECTORY "/tmp" #endif /* XP_UNIX || XP_BEOS */ /************************************************************************/ static PRUint32 LockSidCacheLock(sidCacheLock *lock, PRUint32 now) { SECStatus rv = sslMutex_Lock(&lock->mutex); if (rv != SECSuccess) return 0; if (!now) now = ssl_Time(); lock->timeStamp = now; lock->pid = myPid; return now; } static SECStatus UnlockSidCacheLock(sidCacheLock *lock) { SECStatus rv; lock->pid = 0; rv = sslMutex_Unlock(&lock->mutex); return rv; } /* returns the value of ssl_Time on success, zero on failure. */ static PRUint32 LockSet(cacheDesc *cache, PRUint32 set, PRUint32 now) { PRUint32 lockNum = set % cache->numSIDCacheLocks; sidCacheLock *lock = cache->sidCacheLocks + lockNum; return LockSidCacheLock(lock, now); } static SECStatus UnlockSet(cacheDesc *cache, PRUint32 set) { PRUint32 lockNum = set % cache->numSIDCacheLocks; sidCacheLock *lock = cache->sidCacheLocks + lockNum; return UnlockSidCacheLock(lock); } /************************************************************************/ /* Put a certificate in the cache. Update the cert index in the sce. */ static PRUint32 CacheCert(cacheDesc *cache, CERTCertificate *cert, sidCacheEntry *sce) { PRUint32 now; certCacheEntry cce; if ((cert->derCert.len > SSL_MAX_CACHED_CERT_LEN) || (cert->derCert.len <= 0) || (cert->derCert.data == NULL)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return 0; } cce.sessionIDLength = sce->sessionIDLength; PORT_Memcpy(cce.sessionID, sce->sessionID, cce.sessionIDLength); cce.certLength = cert->derCert.len; PORT_Memcpy(cce.cert, cert->derCert.data, cce.certLength); /* get lock on cert cache */ now = LockSidCacheLock(cache->certCacheLock, 0); if (now) { /* Find where to place the next cert cache entry. */ cacheDesc *sharedCache = cache->sharedCache; PRUint32 ndx = sharedCache->nextCertCacheEntry; /* write the entry */ cache->certCacheData[ndx] = cce; /* remember where we put it. */ sce->u.ssl3.certIndex = ndx; /* update the "next" cache entry index */ sharedCache->nextCertCacheEntry = (ndx + 1) % cache->numCertCacheEntries; UnlockSidCacheLock(cache->certCacheLock); } return now; } /* Server configuration hash tables need to account the SECITEM.type * field as well. These functions accomplish that. */ static PLHashNumber Get32BitNameHash(const SECItem *name) { PLHashNumber rv = SECITEM_Hash(name); PRUint8 *rvc = (PRUint8 *)&rv; rvc[name->len % sizeof(rv)] ^= name->type; return rv; } /* Put a name in the cache. Update the cert index in the sce. */ static PRUint32 CacheSrvName(cacheDesc *cache, SECItem *name, sidCacheEntry *sce) { PRUint32 now; PRUint32 ndx; srvNameCacheEntry snce; if (!name || name->len <= 0 || name->len > SSL_MAX_DNS_HOST_NAME) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return 0; } snce.type = name->type; snce.nameLen = name->len; PORT_Memcpy(snce.name, name->data, snce.nameLen); HASH_HashBuf(HASH_AlgSHA256, snce.nameHash, name->data, name->len); /* get index of the next name */ ndx = Get32BitNameHash(name); /* get lock on cert cache */ now = LockSidCacheLock(cache->srvNameCacheLock, 0); if (now) { if (cache->numSrvNameCacheEntries > 0) { /* Fit the index into array */ ndx %= cache->numSrvNameCacheEntries; /* write the entry */ cache->srvNameCacheData[ndx] = snce; /* remember where we put it. */ sce->u.ssl3.srvNameIndex = ndx; /* Copy hash into sid hash */ PORT_Memcpy(sce->u.ssl3.srvNameHash, snce.nameHash, SHA256_LENGTH); } UnlockSidCacheLock(cache->srvNameCacheLock); } return now; } /* ** Convert local SID to shared memory one */ static void ConvertFromSID(sidCacheEntry *to, sslSessionID *from) { to->valid = 1; to->version = from->version; to->addr = from->addr; to->creationTime = from->creationTime; to->lastAccessTime = from->lastAccessTime; to->expirationTime = from->expirationTime; to->authType = from->authType; to->authKeyBits = from->authKeyBits; to->keaType = from->keaType; to->keaKeyBits = from->keaKeyBits; to->keaGroup = from->keaGroup; to->signatureScheme = from->sigScheme; to->u.ssl3.cipherSuite = from->u.ssl3.cipherSuite; to->u.ssl3.compression = (PRUint16)from->u.ssl3.compression; to->u.ssl3.keys = from->u.ssl3.keys; to->u.ssl3.masterWrapMech = from->u.ssl3.masterWrapMech; to->sessionIDLength = from->u.ssl3.sessionIDLength; to->u.ssl3.certIndex = -1; to->u.ssl3.srvNameIndex = -1; PORT_Memcpy(to->sessionID, from->u.ssl3.sessionID, to->sessionIDLength); to->u.ssl3.namedCurve = 0U; if (from->authType == ssl_auth_ecdsa || from->authType == ssl_auth_ecdh_rsa || from->authType == ssl_auth_ecdh_ecdsa) { PORT_Assert(from->namedCurve); to->u.ssl3.namedCurve = (PRUint16)from->namedCurve->name; } SSL_TRC(8, ("%d: SSL3: ConvertSID: time=%d addr=0x%08x%08x%08x%08x " "cipherSuite=%d", myPid, to->creationTime, to->addr.pr_s6_addr32[0], to->addr.pr_s6_addr32[1], to->addr.pr_s6_addr32[2], to->addr.pr_s6_addr32[3], to->u.ssl3.cipherSuite)); } /* ** Convert shared memory cache-entry to local memory based one ** This is only called from ServerSessionIDLookup(). */ static sslSessionID * ConvertToSID(sidCacheEntry *from, certCacheEntry *pcce, srvNameCacheEntry *psnce, CERTCertDBHandle *dbHandle) { sslSessionID *to; to = PORT_ZNew(sslSessionID); if (!to) { return 0; } to->u.ssl3.sessionIDLength = from->sessionIDLength; to->u.ssl3.cipherSuite = from->u.ssl3.cipherSuite; to->u.ssl3.compression = (SSLCompressionMethod)from->u.ssl3.compression; to->u.ssl3.keys = from->u.ssl3.keys; to->u.ssl3.masterWrapMech = from->u.ssl3.masterWrapMech; if (from->u.ssl3.srvNameIndex != -1 && psnce) { SECItem name; SECStatus rv; name.type = psnce->type; name.len = psnce->nameLen; name.data = psnce->name; rv = SECITEM_CopyItem(NULL, &to->u.ssl3.srvName, &name); if (rv != SECSuccess) { goto loser; } } PORT_Memcpy(to->u.ssl3.sessionID, from->sessionID, from->sessionIDLength); /* the portions of the SID that are only restored on the client * are set to invalid values on the server. */ to->u.ssl3.clientWriteKey = NULL; to->u.ssl3.serverWriteKey = NULL; to->urlSvrName = NULL; to->u.ssl3.masterModuleID = (SECMODModuleID)-1; /* invalid value */ to->u.ssl3.masterSlotID = (CK_SLOT_ID)-1; /* invalid value */ to->u.ssl3.masterWrapIndex = 0; to->u.ssl3.masterWrapSeries = 0; to->u.ssl3.masterValid = PR_FALSE; to->u.ssl3.clAuthModuleID = (SECMODModuleID)-1; /* invalid value */ to->u.ssl3.clAuthSlotID = (CK_SLOT_ID)-1; /* invalid value */ to->u.ssl3.clAuthSeries = 0; to->u.ssl3.clAuthValid = PR_FALSE; if (from->u.ssl3.certIndex != -1 && pcce) { SECItem derCert; derCert.len = pcce->certLength; derCert.data = pcce->cert; to->peerCert = CERT_NewTempCertificate(dbHandle, &derCert, NULL, PR_FALSE, PR_TRUE); if (to->peerCert == NULL) goto loser; } if (from->authType == ssl_auth_ecdsa || from->authType == ssl_auth_ecdh_rsa || from->authType == ssl_auth_ecdh_ecdsa) { to->namedCurve = ssl_LookupNamedGroup((SSLNamedGroup)from->u.ssl3.namedCurve); } to->version = from->version; to->creationTime = from->creationTime; to->lastAccessTime = from->lastAccessTime; to->expirationTime = from->expirationTime; to->cached = in_server_cache; to->addr = from->addr; to->references = 1; to->authType = from->authType; to->authKeyBits = from->authKeyBits; to->keaType = from->keaType; to->keaKeyBits = from->keaKeyBits; to->keaGroup = from->keaGroup; to->sigScheme = from->signatureScheme; return to; loser: if (to) { SECITEM_FreeItem(&to->u.ssl3.srvName, PR_FALSE); PORT_Free(to); } return NULL; } /* ** Perform some mumbo jumbo on the ip-address and the session-id value to ** compute a hash value. */ static PRUint32 SIDindex(cacheDesc *cache, const PRIPv6Addr *addr, PRUint8 *s, unsigned nl) { PRUint32 rv; PRUint32 x[8]; memset(x, 0, sizeof x); if (nl > sizeof x) nl = sizeof x; memcpy(x, s, nl); rv = (addr->pr_s6_addr32[0] ^ addr->pr_s6_addr32[1] ^ addr->pr_s6_addr32[2] ^ addr->pr_s6_addr32[3] ^ x[0] ^ x[1] ^ x[2] ^ x[3] ^ x[4] ^ x[5] ^ x[6] ^ x[7]) % cache->numSIDCacheSets; return rv; } /* ** Look something up in the cache. This will invalidate old entries ** in the process. Caller has locked the cache set! ** Returns PR_TRUE if found a valid match. PR_FALSE otherwise. */ static sidCacheEntry * FindSID(cacheDesc *cache, PRUint32 setNum, PRUint32 now, const PRIPv6Addr *addr, unsigned char *sessionID, unsigned sessionIDLength) { PRUint32 ndx = cache->sidCacheSets[setNum].next; int i; sidCacheEntry *set = cache->sidCacheData + (setNum * SID_CACHE_ENTRIES_PER_SET); for (i = SID_CACHE_ENTRIES_PER_SET; i > 0; --i) { sidCacheEntry *sce; ndx = (ndx - 1) % SID_CACHE_ENTRIES_PER_SET; sce = set + ndx; if (!sce->valid) continue; if (now > sce->expirationTime) { /* SessionID has timed out. Invalidate the entry. */ SSL_TRC(7, ("%d: timed out sid entry addr=%08x%08x%08x%08x now=%x " "time+=%x", myPid, sce->addr.pr_s6_addr32[0], sce->addr.pr_s6_addr32[1], sce->addr.pr_s6_addr32[2], sce->addr.pr_s6_addr32[3], now, sce->expirationTime)); sce->valid = 0; continue; } /* ** Next, examine specific session-id/addr data to see if the cache ** entry matches our addr+session-id value */ if (sessionIDLength == sce->sessionIDLength && !memcmp(&sce->addr, addr, sizeof(PRIPv6Addr)) && !memcmp(sce->sessionID, sessionID, sessionIDLength)) { /* Found it */ return sce; } } PORT_SetError(SSL_ERROR_SESSION_NOT_FOUND); return NULL; } /************************************************************************/ /* This is the primary function for finding entries in the server's sid cache. * Although it is static, this function is called via the global function * pointer ssl_sid_lookup. */ static sslSessionID * ServerSessionIDLookup(const PRIPv6Addr *addr, unsigned char *sessionID, unsigned int sessionIDLength, CERTCertDBHandle *dbHandle) { sslSessionID *sid = 0; sidCacheEntry *psce; certCacheEntry *pcce = 0; srvNameCacheEntry *psnce = 0; cacheDesc *cache = &globalCache; PRUint32 now; PRUint32 set; PRInt32 cndx; sidCacheEntry sce; certCacheEntry cce; srvNameCacheEntry snce; set = SIDindex(cache, addr, sessionID, sessionIDLength); now = LockSet(cache, set, 0); if (!now) return NULL; psce = FindSID(cache, set, now, addr, sessionID, sessionIDLength); if (psce) { if ((cndx = psce->u.ssl3.certIndex) != -1) { PRUint32 gotLock = LockSidCacheLock(cache->certCacheLock, now); if (gotLock) { pcce = &cache->certCacheData[cndx]; /* See if the cert's session ID matches the sce cache. */ if ((pcce->sessionIDLength == psce->sessionIDLength) && !PORT_Memcmp(pcce->sessionID, psce->sessionID, pcce->sessionIDLength)) { cce = *pcce; } else { /* The cert doesen't match the SID cache entry, ** so invalidate the SID cache entry. */ psce->valid = 0; psce = 0; pcce = 0; } UnlockSidCacheLock(cache->certCacheLock); } else { /* what the ??. Didn't get the cert cache lock. ** Don't invalidate the SID cache entry, but don't find it. */ PORT_Assert(!("Didn't get cert Cache Lock!")); psce = 0; pcce = 0; } } if (psce && ((cndx = psce->u.ssl3.srvNameIndex) != -1)) { PRUint32 gotLock = LockSidCacheLock(cache->srvNameCacheLock, now); if (gotLock) { psnce = &cache->srvNameCacheData[cndx]; if (!PORT_Memcmp(psnce->nameHash, psce->u.ssl3.srvNameHash, SHA256_LENGTH)) { snce = *psnce; } else { /* The name doesen't match the SID cache entry, ** so invalidate the SID cache entry. */ psce->valid = 0; psce = 0; psnce = 0; } UnlockSidCacheLock(cache->srvNameCacheLock); } else { /* what the ??. Didn't get the cert cache lock. ** Don't invalidate the SID cache entry, but don't find it. */ PORT_Assert(!("Didn't get name Cache Lock!")); psce = 0; psnce = 0; } } if (psce) { psce->lastAccessTime = now; sce = *psce; /* grab a copy while holding the lock */ } } UnlockSet(cache, set); if (psce) { /* sce conains a copy of the cache entry. ** Convert shared memory format to local format */ sid = ConvertToSID(&sce, pcce ? &cce : 0, psnce ? &snce : 0, dbHandle); } return sid; } /* ** Place a sid into the cache, if it isn't already there. */ static void ServerSessionIDCache(sslSessionID *sid) { sidCacheEntry sce; PRUint32 now = 0; cacheDesc *cache = &globalCache; if (sid->u.ssl3.sessionIDLength == 0) { return; } if (sid->cached == never_cached || sid->cached == invalid_cache) { PRUint32 set; SECItem *name; PORT_Assert(sid->creationTime != 0); if (!sid->creationTime) sid->lastAccessTime = sid->creationTime = ssl_Time(); /* override caller's expiration time, which uses client timeout * duration, not server timeout duration. */ sid->expirationTime = sid->creationTime + cache->ssl3Timeout; SSL_TRC(8, ("%d: SSL: CacheMT: cached=%d addr=0x%08x%08x%08x%08x time=%x " "cipherSuite=%d", myPid, sid->cached, sid->addr.pr_s6_addr32[0], sid->addr.pr_s6_addr32[1], sid->addr.pr_s6_addr32[2], sid->addr.pr_s6_addr32[3], sid->creationTime, sid->u.ssl3.cipherSuite)); PRINT_BUF(8, (0, "sessionID:", sid->u.ssl3.sessionID, sid->u.ssl3.sessionIDLength)); ConvertFromSID(&sce, sid); name = &sid->u.ssl3.srvName; if (name->len && name->data) { now = CacheSrvName(cache, name, &sce); } if (sid->peerCert != NULL) { now = CacheCert(cache, sid->peerCert, &sce); } set = SIDindex(cache, &sce.addr, sce.sessionID, sce.sessionIDLength); now = LockSet(cache, set, now); if (now) { PRUint32 next = cache->sidCacheSets[set].next; PRUint32 ndx = set * SID_CACHE_ENTRIES_PER_SET + next; /* Write out new cache entry */ cache->sidCacheData[ndx] = sce; cache->sidCacheSets[set].next = (next + 1) % SID_CACHE_ENTRIES_PER_SET; UnlockSet(cache, set); sid->cached = in_server_cache; } } } /* ** Although this is static, it is called from ssl via global function pointer ** ssl_sid_uncache. This invalidates the referenced cache entry. */ static void ServerSessionIDUncache(sslSessionID *sid) { cacheDesc *cache = &globalCache; PRUint8 *sessionID; unsigned int sessionIDLength; PRErrorCode err; PRUint32 set; PRUint32 now; sidCacheEntry *psce; if (sid == NULL) return; /* Uncaching a SID should never change the error code. ** So save it here and restore it before exiting. */ err = PR_GetError(); sessionID = sid->u.ssl3.sessionID; sessionIDLength = sid->u.ssl3.sessionIDLength; SSL_TRC(8, ("%d: SSL3: UncacheMT: valid=%d addr=0x%08x%08x%08x%08x time=%x " "cipherSuite=%d", myPid, sid->cached, sid->addr.pr_s6_addr32[0], sid->addr.pr_s6_addr32[1], sid->addr.pr_s6_addr32[2], sid->addr.pr_s6_addr32[3], sid->creationTime, sid->u.ssl3.cipherSuite)); PRINT_BUF(8, (0, "sessionID:", sessionID, sessionIDLength)); set = SIDindex(cache, &sid->addr, sessionID, sessionIDLength); now = LockSet(cache, set, 0); if (now) { psce = FindSID(cache, set, now, &sid->addr, sessionID, sessionIDLength); if (psce) { psce->valid = 0; } UnlockSet(cache, set); } sid->cached = invalid_cache; PORT_SetError(err); } #ifdef XP_OS2 #define INCL_DOSPROCESS #include long gettid(void) { PTIB ptib; PPIB ppib; DosGetInfoBlocks(&ptib, &ppib); return ((long)ptib->tib_ordinal); /* thread id */ } #endif static void CloseCache(cacheDesc *cache) { int locks_initialized = cache->numSIDCacheLocksInitialized; if (cache->cacheMem) { if (cache->sharedCache) { sidCacheLock *pLock = cache->sidCacheLocks; for (; locks_initialized > 0; --locks_initialized, ++pLock) { /* If everInherited is true, this shared cache was (and may ** still be) in use by multiple processes. We do not wish to ** destroy the mutexes while they are still in use, but we do ** want to free mutex resources associated with this process. */ sslMutex_Destroy(&pLock->mutex, cache->sharedCache->everInherited); } } if (cache->shared) { PR_MemUnmap(cache->cacheMem, cache->cacheMemSize); } else { PORT_Free(cache->cacheMem); } cache->cacheMem = NULL; } if (cache->cacheMemMap) { PR_CloseFileMap(cache->cacheMemMap); cache->cacheMemMap = NULL; } memset(cache, 0, sizeof *cache); } static SECStatus InitCache(cacheDesc *cache, int maxCacheEntries, int maxCertCacheEntries, int maxSrvNameCacheEntries, PRUint32 ssl3_timeout, const char *directory, PRBool shared) { ptrdiff_t ptr; sidCacheLock *pLock; char *cacheMem; PRFileMap *cacheMemMap; char *cfn = NULL; /* cache file name */ int locks_initialized = 0; int locks_to_initialize = 0; PRUint32 init_time; if ((!cache) || (maxCacheEntries < 0) || (!directory)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (cache->cacheMem) { /* Already done */ return SECSuccess; } /* make sure loser can clean up properly */ cache->shared = shared; cache->cacheMem = cacheMem = NULL; cache->cacheMemMap = cacheMemMap = NULL; cache->sharedCache = (cacheDesc *)0; cache->numSIDCacheLocksInitialized = 0; cache->nextCertCacheEntry = 0; cache->stopPolling = PR_FALSE; cache->everInherited = PR_FALSE; cache->poller = NULL; cache->mutexTimeout = 0; cache->numSIDCacheEntries = maxCacheEntries ? maxCacheEntries : DEF_SID_CACHE_ENTRIES; cache->numSIDCacheSets = SID_HOWMANY(cache->numSIDCacheEntries, SID_CACHE_ENTRIES_PER_SET); cache->numSIDCacheEntries = cache->numSIDCacheSets * SID_CACHE_ENTRIES_PER_SET; cache->numSIDCacheLocks = PR_MIN(cache->numSIDCacheSets, ssl_max_sid_cache_locks); cache->numSIDCacheSetsPerLock = SID_HOWMANY(cache->numSIDCacheSets, cache->numSIDCacheLocks); cache->numCertCacheEntries = (maxCertCacheEntries > 0) ? maxCertCacheEntries : 0; cache->numSrvNameCacheEntries = (maxSrvNameCacheEntries >= 0) ? maxSrvNameCacheEntries : DEF_NAME_CACHE_ENTRIES; /* compute size of shared memory, and offsets of all pointers */ ptr = 0; cache->cacheMem = (char *)ptr; ptr += SID_ROUNDUP(sizeof(cacheDesc), SID_ALIGNMENT); cache->sidCacheLocks = (sidCacheLock *)ptr; cache->keyCacheLock = cache->sidCacheLocks + cache->numSIDCacheLocks; cache->certCacheLock = cache->keyCacheLock + 1; cache->srvNameCacheLock = cache->certCacheLock + 1; ptr = (ptrdiff_t)(cache->srvNameCacheLock + 1); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->sidCacheSets = (sidCacheSet *)ptr; ptr = (ptrdiff_t)(cache->sidCacheSets + cache->numSIDCacheSets); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->sidCacheData = (sidCacheEntry *)ptr; ptr = (ptrdiff_t)(cache->sidCacheData + cache->numSIDCacheEntries); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->certCacheData = (certCacheEntry *)ptr; cache->sidCacheSize = (char *)cache->certCacheData - (char *)cache->sidCacheData; if (cache->numCertCacheEntries < MIN_CERT_CACHE_ENTRIES) { /* This is really a poor way to computer this! */ cache->numCertCacheEntries = cache->sidCacheSize / sizeof(certCacheEntry); if (cache->numCertCacheEntries < MIN_CERT_CACHE_ENTRIES) cache->numCertCacheEntries = MIN_CERT_CACHE_ENTRIES; } ptr = (ptrdiff_t)(cache->certCacheData + cache->numCertCacheEntries); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->keyCacheData = (SSLWrappedSymWrappingKey *)ptr; cache->certCacheSize = (char *)cache->keyCacheData - (char *)cache->certCacheData; cache->numKeyCacheEntries = SSL_NUM_WRAP_KEYS * SSL_NUM_WRAP_MECHS; ptr = (ptrdiff_t)(cache->keyCacheData + cache->numKeyCacheEntries); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->keyCacheSize = (char *)ptr - (char *)cache->keyCacheData; cache->ticketKeyNameSuffix = (PRUint8 *)ptr; ptr = (ptrdiff_t)(cache->ticketKeyNameSuffix + SELF_ENCRYPT_KEY_VAR_NAME_LEN); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->ticketEncKey = (encKeyCacheEntry *)ptr; ptr = (ptrdiff_t)(cache->ticketEncKey + 1); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->ticketMacKey = (encKeyCacheEntry *)ptr; ptr = (ptrdiff_t)(cache->ticketMacKey + 1); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->ticketKeysValid = (PRUint32 *)ptr; ptr = (ptrdiff_t)(cache->ticketKeysValid + 1); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->srvNameCacheData = (srvNameCacheEntry *)ptr; cache->srvNameCacheSize = cache->numSrvNameCacheEntries * sizeof(srvNameCacheEntry); ptr = (ptrdiff_t)(cache->srvNameCacheData + cache->numSrvNameCacheEntries); ptr = SID_ROUNDUP(ptr, SID_ALIGNMENT); cache->cacheMemSize = ptr; if (ssl3_timeout) { if (ssl3_timeout > MAX_SSL3_TIMEOUT) { ssl3_timeout = MAX_SSL3_TIMEOUT; } if (ssl3_timeout < MIN_SSL3_TIMEOUT) { ssl3_timeout = MIN_SSL3_TIMEOUT; } cache->ssl3Timeout = ssl3_timeout; } else { cache->ssl3Timeout = DEF_SSL3_TIMEOUT; } if (shared) { /* Create file names */ #if defined(XP_UNIX) || defined(XP_BEOS) /* there's some confusion here about whether PR_OpenAnonFileMap wants ** a directory name or a file name for its first argument. cfn = PR_smprintf("%s/.sslsvrcache.%d", directory, myPid); */ cfn = PR_smprintf("%s", directory); #elif defined(XP_WIN32) cfn = PR_smprintf("%s/svrcache_%d_%x.ssl", directory, myPid, GetCurrentThreadId()); #elif defined(XP_OS2) cfn = PR_smprintf("%s/svrcache_%d_%x.ssl", directory, myPid, gettid()); #else #error "Don't know how to create file name for this platform!" #endif if (!cfn) { goto loser; } /* Create cache */ cacheMemMap = PR_OpenAnonFileMap(cfn, cache->cacheMemSize, PR_PROT_READWRITE); PR_smprintf_free(cfn); if (!cacheMemMap) { goto loser; } cacheMem = PR_MemMap(cacheMemMap, 0, cache->cacheMemSize); } else { cacheMem = PORT_Alloc(cache->cacheMemSize); } if (!cacheMem) { goto loser; } /* Initialize shared memory. This may not be necessary on all platforms */ memset(cacheMem, 0, cache->cacheMemSize); /* Copy cache descriptor header into shared memory */ memcpy(cacheMem, cache, sizeof *cache); /* save private copies of these values */ cache->cacheMemMap = cacheMemMap; cache->cacheMem = cacheMem; cache->sharedCache = (cacheDesc *)cacheMem; /* Fix pointers in our private copy of cache descriptor to point to ** spaces in shared memory */ cache->sidCacheLocks = (sidCacheLock *)(cache->cacheMem + (ptrdiff_t)cache->sidCacheLocks); cache->keyCacheLock = (sidCacheLock *)(cache->cacheMem + (ptrdiff_t)cache->keyCacheLock); cache->certCacheLock = (sidCacheLock *)(cache->cacheMem + (ptrdiff_t)cache->certCacheLock); cache->srvNameCacheLock = (sidCacheLock *)(cache->cacheMem + (ptrdiff_t)cache->srvNameCacheLock); cache->sidCacheSets = (sidCacheSet *)(cache->cacheMem + (ptrdiff_t)cache->sidCacheSets); cache->sidCacheData = (sidCacheEntry *)(cache->cacheMem + (ptrdiff_t)cache->sidCacheData); cache->certCacheData = (certCacheEntry *)(cache->cacheMem + (ptrdiff_t)cache->certCacheData); cache->keyCacheData = (SSLWrappedSymWrappingKey *)(cache->cacheMem + (ptrdiff_t)cache->keyCacheData); cache->ticketKeyNameSuffix = (PRUint8 *)(cache->cacheMem + (ptrdiff_t)cache->ticketKeyNameSuffix); cache->ticketEncKey = (encKeyCacheEntry *)(cache->cacheMem + (ptrdiff_t)cache->ticketEncKey); cache->ticketMacKey = (encKeyCacheEntry *)(cache->cacheMem + (ptrdiff_t)cache->ticketMacKey); cache->ticketKeysValid = (PRUint32 *)(cache->cacheMem + (ptrdiff_t)cache->ticketKeysValid); cache->srvNameCacheData = (srvNameCacheEntry *)(cache->cacheMem + (ptrdiff_t)cache->srvNameCacheData); /* initialize the locks */ init_time = ssl_Time(); pLock = cache->sidCacheLocks; for (locks_to_initialize = cache->numSIDCacheLocks + 3; locks_initialized < locks_to_initialize; ++locks_initialized, ++pLock) { SECStatus err = sslMutex_Init(&pLock->mutex, shared); if (err) { cache->numSIDCacheLocksInitialized = locks_initialized; goto loser; } pLock->timeStamp = init_time; pLock->pid = 0; } cache->numSIDCacheLocksInitialized = locks_initialized; return SECSuccess; loser: CloseCache(cache); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PRUint32 SSL_GetMaxServerCacheLocks(void) { return ssl_max_sid_cache_locks + 2; /* The extra two are the cert cache lock and the key cache lock. */ } SECStatus SSL_SetMaxServerCacheLocks(PRUint32 maxLocks) { /* Minimum is 1 sid cache lock, 1 cert cache lock and 1 key cache lock. ** We'd like to test for a maximum value, but not all platforms' header ** files provide a symbol or function or other means of determining ** the maximum, other than trial and error. */ if (maxLocks < 3) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } ssl_max_sid_cache_locks = maxLocks - 2; /* The extra two are the cert cache lock and the key cache lock. */ return SECSuccess; } static SECStatus ssl_ConfigServerSessionIDCacheInstanceWithOpt(cacheDesc *cache, PRUint32 ssl3_timeout, const char *directory, PRBool shared, int maxCacheEntries, int maxCertCacheEntries, int maxSrvNameCacheEntries) { SECStatus rv; PORT_Assert(sizeof(sidCacheEntry) == 192); PORT_Assert(sizeof(certCacheEntry) == 4096); PORT_Assert(sizeof(srvNameCacheEntry) == 1072); rv = ssl_Init(); if (rv != SECSuccess) { return rv; } myPid = SSL_GETPID(); if (!directory) { directory = DEFAULT_CACHE_DIRECTORY; } rv = InitCache(cache, maxCacheEntries, maxCertCacheEntries, maxSrvNameCacheEntries, ssl3_timeout, directory, shared); if (rv) { return SECFailure; } ssl_sid_lookup = ServerSessionIDLookup; ssl_sid_cache = ServerSessionIDCache; ssl_sid_uncache = ServerSessionIDUncache; return SECSuccess; } SECStatus SSL_ConfigServerSessionIDCacheInstance(cacheDesc *cache, int maxCacheEntries, PRUint32 ssl2_timeout, PRUint32 ssl3_timeout, const char *directory, PRBool shared) { return ssl_ConfigServerSessionIDCacheInstanceWithOpt(cache, ssl3_timeout, directory, shared, maxCacheEntries, -1, -1); } SECStatus SSL_ConfigServerSessionIDCache(int maxCacheEntries, PRUint32 ssl2_timeout, PRUint32 ssl3_timeout, const char *directory) { ssl_InitSessionCacheLocks(PR_FALSE); return SSL_ConfigServerSessionIDCacheInstance(&globalCache, maxCacheEntries, ssl2_timeout, ssl3_timeout, directory, PR_FALSE); } SECStatus SSL_ShutdownServerSessionIDCacheInstance(cacheDesc *cache) { CloseCache(cache); return SECSuccess; } SECStatus SSL_ShutdownServerSessionIDCache(void) { #if defined(XP_UNIX) || defined(XP_BEOS) /* Stop the thread that polls cache for expired locks on Unix */ StopLockPoller(&globalCache); #endif SSL3_ShutdownServerCache(); return SSL_ShutdownServerSessionIDCacheInstance(&globalCache); } /* Use this function, instead of SSL_ConfigServerSessionIDCache, * if the cache will be shared by multiple processes. */ static SECStatus ssl_ConfigMPServerSIDCacheWithOpt(PRUint32 ssl3_timeout, const char *directory, int maxCacheEntries, int maxCertCacheEntries, int maxSrvNameCacheEntries) { char *envValue; char *inhValue; cacheDesc *cache = &globalCache; PRUint32 fmStrLen; SECStatus result; PRStatus prStatus; SECStatus putEnvFailed; inheritance inherit; char fmString[PR_FILEMAP_STRING_BUFSIZE]; isMultiProcess = PR_TRUE; result = ssl_ConfigServerSessionIDCacheInstanceWithOpt(cache, ssl3_timeout, directory, PR_TRUE, maxCacheEntries, maxCacheEntries, maxSrvNameCacheEntries); if (result != SECSuccess) return result; prStatus = PR_ExportFileMapAsString(cache->cacheMemMap, sizeof fmString, fmString); if ((prStatus != PR_SUCCESS) || !(fmStrLen = strlen(fmString))) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } inherit.cacheMemSize = cache->cacheMemSize; inherit.fmStrLen = fmStrLen; inhValue = BTOA_DataToAscii((unsigned char *)&inherit, sizeof inherit); if (!inhValue || !strlen(inhValue)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } envValue = PR_smprintf("%s,%s", inhValue, fmString); if (!envValue || !strlen(envValue)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PORT_Free(inhValue); putEnvFailed = (SECStatus)NSS_PutEnv(envVarName, envValue); PR_smprintf_free(envValue); if (putEnvFailed) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); result = SECFailure; } #if defined(XP_UNIX) || defined(XP_BEOS) /* Launch thread to poll cache for expired locks on Unix */ LaunchLockPoller(cache); #endif return result; } /* Use this function, instead of SSL_ConfigServerSessionIDCache, * if the cache will be shared by multiple processes. */ SECStatus SSL_ConfigMPServerSIDCache(int maxCacheEntries, PRUint32 ssl2_timeout, PRUint32 ssl3_timeout, const char *directory) { return ssl_ConfigMPServerSIDCacheWithOpt(ssl3_timeout, directory, maxCacheEntries, -1, -1); } SECStatus SSL_ConfigServerSessionIDCacheWithOpt( PRUint32 ssl2_timeout, PRUint32 ssl3_timeout, const char *directory, int maxCacheEntries, int maxCertCacheEntries, int maxSrvNameCacheEntries, PRBool enableMPCache) { if (!enableMPCache) { ssl_InitSessionCacheLocks(PR_FALSE); return ssl_ConfigServerSessionIDCacheInstanceWithOpt(&globalCache, ssl3_timeout, directory, PR_FALSE, maxCacheEntries, maxCertCacheEntries, maxSrvNameCacheEntries); } else { return ssl_ConfigMPServerSIDCacheWithOpt(ssl3_timeout, directory, maxCacheEntries, maxCertCacheEntries, maxSrvNameCacheEntries); } } SECStatus SSL_InheritMPServerSIDCacheInstance(cacheDesc *cache, const char *envString) { unsigned char *decoString = NULL; char *fmString = NULL; char *myEnvString = NULL; unsigned int decoLen; inheritance inherit; cacheDesc my; #ifdef WINNT sidCacheLock *newLocks; int locks_initialized = 0; int locks_to_initialize = 0; #endif SECStatus status = ssl_Init(); if (status != SECSuccess) { return status; } myPid = SSL_GETPID(); /* If this child was created by fork(), and not by exec() on unix, ** then isMultiProcess will already be set. ** If not, we'll set it below. */ if (isMultiProcess) { if (cache && cache->sharedCache) { cache->sharedCache->everInherited = PR_TRUE; } return SECSuccess; /* already done. */ } ssl_InitSessionCacheLocks(PR_FALSE); ssl_sid_lookup = ServerSessionIDLookup; ssl_sid_cache = ServerSessionIDCache; ssl_sid_uncache = ServerSessionIDUncache; if (!envString) { envString = PR_GetEnvSecure(envVarName); if (!envString) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } } myEnvString = PORT_Strdup(envString); if (!myEnvString) return SECFailure; fmString = strchr(myEnvString, ','); if (!fmString) goto loser; *fmString++ = 0; decoString = ATOB_AsciiToData(myEnvString, &decoLen); if (!decoString) { goto loser; } if (decoLen != sizeof inherit) { goto loser; } PORT_Memcpy(&inherit, decoString, sizeof inherit); if (strlen(fmString) != inherit.fmStrLen) { goto loser; } memset(cache, 0, sizeof *cache); cache->cacheMemSize = inherit.cacheMemSize; /* Create cache */ cache->cacheMemMap = PR_ImportFileMapFromString(fmString); if (!cache->cacheMemMap) { goto loser; } cache->cacheMem = PR_MemMap(cache->cacheMemMap, 0, cache->cacheMemSize); if (!cache->cacheMem) { goto loser; } cache->sharedCache = (cacheDesc *)cache->cacheMem; if (cache->sharedCache->cacheMemSize != cache->cacheMemSize) { goto loser; } /* We're now going to overwrite the local cache instance with the ** shared copy of the cache struct, then update several values in ** the local cache using the values for cache->cacheMemMap and ** cache->cacheMem computed just above. So, we copy cache into ** the automatic variable "my", to preserve the variables while ** cache is overwritten. */ my = *cache; /* save values computed above. */ memcpy(cache, cache->sharedCache, sizeof *cache); /* overwrite */ /* Fix pointers in our private copy of cache descriptor to point to ** spaces in shared memory, whose address is now in "my". */ cache->sidCacheLocks = (sidCacheLock *)(my.cacheMem + (ptrdiff_t)cache->sidCacheLocks); cache->keyCacheLock = (sidCacheLock *)(my.cacheMem + (ptrdiff_t)cache->keyCacheLock); cache->certCacheLock = (sidCacheLock *)(my.cacheMem + (ptrdiff_t)cache->certCacheLock); cache->srvNameCacheLock = (sidCacheLock *)(my.cacheMem + (ptrdiff_t)cache->srvNameCacheLock); cache->sidCacheSets = (sidCacheSet *)(my.cacheMem + (ptrdiff_t)cache->sidCacheSets); cache->sidCacheData = (sidCacheEntry *)(my.cacheMem + (ptrdiff_t)cache->sidCacheData); cache->certCacheData = (certCacheEntry *)(my.cacheMem + (ptrdiff_t)cache->certCacheData); cache->keyCacheData = (SSLWrappedSymWrappingKey *)(my.cacheMem + (ptrdiff_t)cache->keyCacheData); cache->ticketKeyNameSuffix = (PRUint8 *)(my.cacheMem + (ptrdiff_t)cache->ticketKeyNameSuffix); cache->ticketEncKey = (encKeyCacheEntry *)(my.cacheMem + (ptrdiff_t)cache->ticketEncKey); cache->ticketMacKey = (encKeyCacheEntry *)(my.cacheMem + (ptrdiff_t)cache->ticketMacKey); cache->ticketKeysValid = (PRUint32 *)(my.cacheMem + (ptrdiff_t)cache->ticketKeysValid); cache->srvNameCacheData = (srvNameCacheEntry *)(my.cacheMem + (ptrdiff_t)cache->srvNameCacheData); cache->cacheMemMap = my.cacheMemMap; cache->cacheMem = my.cacheMem; cache->sharedCache = (cacheDesc *)cache->cacheMem; #ifdef WINNT /* On Windows NT we need to "fix" the sidCacheLocks here to support fibers ** When NT fibers are used in a multi-process server, a second level of ** locking is needed to prevent a deadlock, in case a fiber acquires the ** cross-process mutex, yields, and another fiber is later scheduled on ** the same native thread and tries to acquire the cross-process mutex. ** We do this by using a PRLock in the sslMutex. However, it is stored in ** shared memory as part of sidCacheLocks, and we don't want to overwrite ** the PRLock of the parent process. So we need to make new, private ** copies of sidCacheLocks before modifying the sslMutex with our own ** PRLock */ /* note from jpierre : this should be free'd in child processes when ** a function is added to delete the SSL session cache in the future. */ locks_to_initialize = cache->numSIDCacheLocks + 3; newLocks = PORT_NewArray(sidCacheLock, locks_to_initialize); if (!newLocks) goto loser; /* copy the old locks */ memcpy(newLocks, cache->sidCacheLocks, locks_to_initialize * sizeof(sidCacheLock)); cache->sidCacheLocks = newLocks; /* fix the locks */ for (; locks_initialized < locks_to_initialize; ++locks_initialized) { /* now, make a local PRLock in this sslMutex for this child process */ SECStatus err; err = sslMutex_2LevelInit(&newLocks[locks_initialized].mutex); if (err != SECSuccess) { cache->numSIDCacheLocksInitialized = locks_initialized; goto loser; } } cache->numSIDCacheLocksInitialized = locks_initialized; /* also fix the key and cert cache which use the last 2 lock entries */ cache->keyCacheLock = cache->sidCacheLocks + cache->numSIDCacheLocks; cache->certCacheLock = cache->keyCacheLock + 1; cache->srvNameCacheLock = cache->certCacheLock + 1; #endif PORT_Free(myEnvString); PORT_Free(decoString); /* mark that we have inherited this. */ cache->sharedCache->everInherited = PR_TRUE; isMultiProcess = PR_TRUE; return SECSuccess; loser: PORT_Free(myEnvString); if (decoString) PORT_Free(decoString); CloseCache(cache); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } SECStatus SSL_InheritMPServerSIDCache(const char *envString) { return SSL_InheritMPServerSIDCacheInstance(&globalCache, envString); } #if defined(XP_UNIX) || defined(XP_BEOS) #define SID_LOCK_EXPIRATION_TIMEOUT 30 /* seconds */ static void LockPoller(void *arg) { cacheDesc *cache = (cacheDesc *)arg; cacheDesc *sharedCache = cache->sharedCache; sidCacheLock *pLock; PRIntervalTime timeout; PRUint32 now; PRUint32 then; int locks_polled = 0; int locks_to_poll = cache->numSIDCacheLocks + 2; PRUint32 expiration = cache->mutexTimeout; timeout = PR_SecondsToInterval(expiration); while (!sharedCache->stopPolling) { PR_Sleep(timeout); if (sharedCache->stopPolling) break; now = ssl_Time(); then = now - expiration; for (pLock = cache->sidCacheLocks, locks_polled = 0; locks_to_poll > locks_polled && !sharedCache->stopPolling; ++locks_polled, ++pLock) { pid_t pid; if (pLock->timeStamp < then && pLock->timeStamp != 0 && (pid = pLock->pid) != 0) { /* maybe we should try the lock? */ int result = kill(pid, 0); if (result < 0 && errno == ESRCH) { SECStatus rv; /* No process exists by that pid any more. ** Treat this mutex as abandoned. */ pLock->timeStamp = now; pLock->pid = 0; rv = sslMutex_Unlock(&pLock->mutex); if (rv != SECSuccess) { /* Now what? */ } } } } /* end of loop over locks */ } /* end of entire polling loop */ } /* Launch thread to poll cache for expired locks */ static SECStatus LaunchLockPoller(cacheDesc *cache) { const char *timeoutString; PRThread *pollerThread; cache->mutexTimeout = SID_LOCK_EXPIRATION_TIMEOUT; timeoutString = PR_GetEnvSecure("NSS_SSL_SERVER_CACHE_MUTEX_TIMEOUT"); if (timeoutString) { long newTime = strtol(timeoutString, 0, 0); if (newTime == 0) return SECSuccess; /* application doesn't want poller thread */ if (newTime > 0) cache->mutexTimeout = (PRUint32)newTime; /* if error (newTime < 0) ignore it and use default */ } pollerThread = PR_CreateThread(PR_USER_THREAD, LockPoller, cache, PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD, PR_JOINABLE_THREAD, 0); if (!pollerThread) { return SECFailure; } cache->poller = pollerThread; return SECSuccess; } /* Stop the thread that polls cache for expired locks */ static SECStatus StopLockPoller(cacheDesc *cache) { if (!cache->poller) { return SECSuccess; } cache->sharedCache->stopPolling = PR_TRUE; if (PR_Interrupt(cache->poller) != PR_SUCCESS) { return SECFailure; } if (PR_JoinThread(cache->poller) != PR_SUCCESS) { return SECFailure; } cache->poller = NULL; return SECSuccess; } #endif /************************************************************************ * Code dealing with shared wrapped symmetric wrapping keys below * ************************************************************************/ /* The asymmetric key we use for wrapping the self-encryption keys. This is a * global structure that can be initialized without a socket. Access is * synchronized on the reader-writer lock. This is setup either by calling * SSL_SetSessionTicketKeyPair() or by configuring a certificate of the * ssl_auth_rsa_decrypt type. */ static struct { PRCallOnceType setup; PRRWLock *lock; SECKEYPublicKey *pubKey; SECKEYPrivateKey *privKey; PRBool configured; } ssl_self_encrypt_key_pair; /* The symmetric self-encryption keys. This requires a socket to construct * and requires that the global structure be initialized before use. */ static sslSelfEncryptKeys ssl_self_encrypt_keys; /* Externalize the self encrypt keys. Purely used for testing. */ sslSelfEncryptKeys * ssl_GetSelfEncryptKeysInt() { return &ssl_self_encrypt_keys; } static void ssl_CleanupSelfEncryptKeyPair() { if (ssl_self_encrypt_key_pair.pubKey) { PORT_Assert(ssl_self_encrypt_key_pair.privKey); SECKEY_DestroyPublicKey(ssl_self_encrypt_key_pair.pubKey); SECKEY_DestroyPrivateKey(ssl_self_encrypt_key_pair.privKey); } } void ssl_ResetSelfEncryptKeys() { if (ssl_self_encrypt_keys.encKey) { PORT_Assert(ssl_self_encrypt_keys.macKey); PK11_FreeSymKey(ssl_self_encrypt_keys.encKey); PK11_FreeSymKey(ssl_self_encrypt_keys.macKey); } PORT_Memset(&ssl_self_encrypt_keys, 0, sizeof(ssl_self_encrypt_keys)); } static SECStatus ssl_SelfEncryptShutdown(void *appData, void *nssData) { ssl_CleanupSelfEncryptKeyPair(); PR_DestroyRWLock(ssl_self_encrypt_key_pair.lock); PORT_Memset(&ssl_self_encrypt_key_pair, 0, sizeof(ssl_self_encrypt_key_pair)); ssl_ResetSelfEncryptKeys(); return SECSuccess; } static PRStatus ssl_SelfEncryptSetup(void) { SECStatus rv = NSS_RegisterShutdown(ssl_SelfEncryptShutdown, NULL); if (rv != SECSuccess) { return PR_FAILURE; } ssl_self_encrypt_key_pair.lock = PR_NewRWLock(PR_RWLOCK_RANK_NONE, NULL); if (!ssl_self_encrypt_key_pair.lock) { return PR_FAILURE; } return PR_SUCCESS; } /* Configure a self encryption key pair. |explicitConfig| is set to true for * calls to SSL_SetSessionTicketKeyPair(), false for implicit configuration. * This assumes that the setup has been run. */ static SECStatus ssl_SetSelfEncryptKeyPair(SECKEYPublicKey *pubKey, SECKEYPrivateKey *privKey, PRBool explicitConfig) { SECKEYPublicKey *pubKeyCopy; SECKEYPrivateKey *privKeyCopy; PORT_Assert(ssl_self_encrypt_key_pair.lock); pubKeyCopy = SECKEY_CopyPublicKey(pubKey); if (!pubKeyCopy) { PORT_SetError(SEC_ERROR_NO_MEMORY); return SECFailure; } privKeyCopy = SECKEY_CopyPrivateKey(privKey); if (!privKeyCopy) { SECKEY_DestroyPublicKey(pubKeyCopy); PORT_SetError(SEC_ERROR_NO_MEMORY); return SECFailure; } PR_RWLock_Wlock(ssl_self_encrypt_key_pair.lock); ssl_CleanupSelfEncryptKeyPair(); ssl_self_encrypt_key_pair.pubKey = pubKeyCopy; ssl_self_encrypt_key_pair.privKey = privKeyCopy; ssl_self_encrypt_key_pair.configured = explicitConfig; PR_RWLock_Unlock(ssl_self_encrypt_key_pair.lock); return SECSuccess; } /* This is really the self-encryption keys but it has the * wrong name for historical API stability reasons. */ SECStatus SSL_SetSessionTicketKeyPair(SECKEYPublicKey *pubKey, SECKEYPrivateKey *privKey) { if (SECKEY_GetPublicKeyType(pubKey) != rsaKey || SECKEY_GetPrivateKeyType(privKey) != rsaKey) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (PR_SUCCESS != PR_CallOnce(&ssl_self_encrypt_key_pair.setup, &ssl_SelfEncryptSetup)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } return ssl_SetSelfEncryptKeyPair(pubKey, privKey, PR_TRUE); } /* When configuring a server cert, we should save the RSA key in case it is * needed for self-encryption. This saves the latest copy, unless there has * been an explicit call to SSL_SetSessionTicketKeyPair(). */ SECStatus ssl_MaybeSetSelfEncryptKeyPair(const sslKeyPair *keyPair) { PRBool configured; if (PR_SUCCESS != PR_CallOnce(&ssl_self_encrypt_key_pair.setup, &ssl_SelfEncryptSetup)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PR_RWLock_Rlock(ssl_self_encrypt_key_pair.lock); configured = ssl_self_encrypt_key_pair.configured; PR_RWLock_Unlock(ssl_self_encrypt_key_pair.lock); if (configured) { return SECSuccess; } return ssl_SetSelfEncryptKeyPair(keyPair->pubKey, keyPair->privKey, PR_FALSE); } static SECStatus ssl_GetSelfEncryptKeyPair(SECKEYPublicKey **pubKey, SECKEYPrivateKey **privKey) { if (PR_SUCCESS != PR_CallOnce(&ssl_self_encrypt_key_pair.setup, &ssl_SelfEncryptSetup)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PR_RWLock_Rlock(ssl_self_encrypt_key_pair.lock); *pubKey = ssl_self_encrypt_key_pair.pubKey; *privKey = ssl_self_encrypt_key_pair.privKey; PR_RWLock_Unlock(ssl_self_encrypt_key_pair.lock); if (!*pubKey) { PORT_Assert(!*privKey); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PORT_Assert(*privKey); return SECSuccess; } static PRBool ssl_GenerateSelfEncryptKeys(void *pwArg, PRUint8 *keyName, PK11SymKey **aesKey, PK11SymKey **macKey); static PRStatus ssl_GenerateSelfEncryptKeysOnce(void *arg) { SECStatus rv; /* Get a copy of the session keys from shared memory. */ PORT_Memcpy(ssl_self_encrypt_keys.keyName, SELF_ENCRYPT_KEY_NAME_PREFIX, sizeof(SELF_ENCRYPT_KEY_NAME_PREFIX)); /* This function calls ssl_GetSelfEncryptKeyPair(), which initializes the * key pair stuff. That allows this to use the same shutdown function. */ rv = ssl_GenerateSelfEncryptKeys(arg, ssl_self_encrypt_keys.keyName, &ssl_self_encrypt_keys.encKey, &ssl_self_encrypt_keys.macKey); if (rv != SECSuccess) { return PR_FAILURE; } return PR_SUCCESS; } SECStatus ssl_GetSelfEncryptKeys(sslSocket *ss, PRUint8 *keyName, PK11SymKey **encKey, PK11SymKey **macKey) { if (PR_SUCCESS != PR_CallOnceWithArg(&ssl_self_encrypt_keys.setup, &ssl_GenerateSelfEncryptKeysOnce, ss->pkcs11PinArg)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (!ssl_self_encrypt_keys.encKey || !ssl_self_encrypt_keys.macKey) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PORT_Memcpy(keyName, ssl_self_encrypt_keys.keyName, sizeof(ssl_self_encrypt_keys.keyName)); *encKey = ssl_self_encrypt_keys.encKey; *macKey = ssl_self_encrypt_keys.macKey; return SECSuccess; } /* If lockTime is zero, it implies that the lock is not held, and must be * aquired here. */ static SECStatus getSvrWrappingKey(unsigned int symWrapMechIndex, unsigned int wrapKeyIndex, SSLWrappedSymWrappingKey *wswk, cacheDesc *cache, PRUint32 lockTime) { PRUint32 ndx = (wrapKeyIndex * SSL_NUM_WRAP_MECHS) + symWrapMechIndex; SSLWrappedSymWrappingKey *pwswk = cache->keyCacheData + ndx; PRUint32 now = 0; PRBool rv = SECFailure; if (!cache->cacheMem) { /* cache is uninitialized */ PORT_SetError(SSL_ERROR_SERVER_CACHE_NOT_CONFIGURED); return SECFailure; } if (!lockTime) { now = LockSidCacheLock(cache->keyCacheLock, 0); if (!now) { return SECFailure; } } if (pwswk->wrapKeyIndex == wrapKeyIndex && pwswk->wrapMechIndex == symWrapMechIndex && pwswk->wrappedSymKeyLen != 0) { *wswk = *pwswk; rv = SECSuccess; } if (now) { UnlockSidCacheLock(cache->keyCacheLock); } return rv; } SECStatus ssl_GetWrappingKey(unsigned int wrapMechIndex, unsigned int wrapKeyIndex, SSLWrappedSymWrappingKey *wswk) { PORT_Assert(wrapMechIndex < SSL_NUM_WRAP_MECHS); PORT_Assert(wrapKeyIndex < SSL_NUM_WRAP_KEYS); if (wrapMechIndex >= SSL_NUM_WRAP_MECHS || wrapKeyIndex >= SSL_NUM_WRAP_KEYS) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } return getSvrWrappingKey(wrapMechIndex, wrapKeyIndex, wswk, &globalCache, 0); } /* Wrap and cache a session ticket key. */ static SECStatus WrapSelfEncryptKey(SECKEYPublicKey *svrPubKey, PK11SymKey *symKey, const char *keyName, encKeyCacheEntry *cacheEntry) { SECItem wrappedKey = { siBuffer, NULL, 0 }; wrappedKey.len = SECKEY_PublicKeyStrength(svrPubKey); PORT_Assert(wrappedKey.len <= sizeof(cacheEntry->bytes)); if (wrappedKey.len > sizeof(cacheEntry->bytes)) return PR_FALSE; wrappedKey.data = cacheEntry->bytes; if (PK11_PubWrapSymKey(CKM_RSA_PKCS, svrPubKey, symKey, &wrappedKey) != SECSuccess) { SSL_DBG(("%d: SSL[%s]: Unable to wrap self encrypt key %s.", SSL_GETPID(), "unknown", keyName)); return SECFailure; } cacheEntry->length = wrappedKey.len; return SECSuccess; } static SECStatus GenerateSelfEncryptKeys(void *pwArg, PRUint8 *keyName, PK11SymKey **aesKey, PK11SymKey **macKey) { PK11SlotInfo *slot; CK_MECHANISM_TYPE mechanismArray[2]; PK11SymKey *aesKeyTmp = NULL; PK11SymKey *macKeyTmp = NULL; cacheDesc *cache = &globalCache; PRUint8 ticketKeyNameSuffixLocal[SELF_ENCRYPT_KEY_VAR_NAME_LEN]; PRUint8 *ticketKeyNameSuffix; if (!cache->cacheMem) { /* cache is not initalized. Use stack buffer */ ticketKeyNameSuffix = ticketKeyNameSuffixLocal; } else { ticketKeyNameSuffix = cache->ticketKeyNameSuffix; } if (PK11_GenerateRandom(ticketKeyNameSuffix, SELF_ENCRYPT_KEY_VAR_NAME_LEN) != SECSuccess) { SSL_DBG(("%d: SSL[%s]: Unable to generate random key name bytes.", SSL_GETPID(), "unknown")); return SECFailure; } mechanismArray[0] = CKM_AES_CBC; mechanismArray[1] = CKM_SHA256_HMAC; slot = PK11_GetBestSlotMultiple(mechanismArray, 2, pwArg); if (slot) { aesKeyTmp = PK11_KeyGen(slot, mechanismArray[0], NULL, AES_256_KEY_LENGTH, pwArg); macKeyTmp = PK11_KeyGen(slot, mechanismArray[1], NULL, SHA256_LENGTH, pwArg); PK11_FreeSlot(slot); } if (aesKeyTmp == NULL || macKeyTmp == NULL) { SSL_DBG(("%d: SSL[%s]: Unable to generate session ticket keys.", SSL_GETPID(), "unknown")); goto loser; } PORT_Memcpy(keyName, ticketKeyNameSuffix, SELF_ENCRYPT_KEY_VAR_NAME_LEN); *aesKey = aesKeyTmp; *macKey = macKeyTmp; return SECSuccess; loser: if (aesKeyTmp) PK11_FreeSymKey(aesKeyTmp); if (macKeyTmp) PK11_FreeSymKey(macKeyTmp); return SECFailure; } static SECStatus GenerateAndWrapSelfEncryptKeys(SECKEYPublicKey *svrPubKey, void *pwArg, PRUint8 *keyName, PK11SymKey **aesKey, PK11SymKey **macKey) { PK11SymKey *aesKeyTmp = NULL; PK11SymKey *macKeyTmp = NULL; cacheDesc *cache = &globalCache; SECStatus rv; rv = GenerateSelfEncryptKeys(pwArg, keyName, &aesKeyTmp, &macKeyTmp); if (rv != SECSuccess) { return SECFailure; } if (cache->cacheMem) { /* Export the keys to the shared cache in wrapped form. */ rv = WrapSelfEncryptKey(svrPubKey, aesKeyTmp, "enc key", cache->ticketEncKey); if (rv != SECSuccess) { goto loser; } rv = WrapSelfEncryptKey(svrPubKey, macKeyTmp, "mac key", cache->ticketMacKey); if (rv != SECSuccess) { goto loser; } } *aesKey = aesKeyTmp; *macKey = macKeyTmp; return SECSuccess; loser: PK11_FreeSymKey(aesKeyTmp); PK11_FreeSymKey(macKeyTmp); return SECFailure; } static SECStatus UnwrapCachedSelfEncryptKeys(SECKEYPrivateKey *svrPrivKey, PRUint8 *keyName, PK11SymKey **aesKey, PK11SymKey **macKey) { SECItem wrappedKey = { siBuffer, NULL, 0 }; PK11SymKey *aesKeyTmp = NULL; PK11SymKey *macKeyTmp = NULL; cacheDesc *cache = &globalCache; wrappedKey.data = cache->ticketEncKey->bytes; wrappedKey.len = cache->ticketEncKey->length; PORT_Assert(wrappedKey.len <= sizeof(cache->ticketEncKey->bytes)); aesKeyTmp = PK11_PubUnwrapSymKey(svrPrivKey, &wrappedKey, CKM_AES_CBC, CKA_DECRYPT, 0); wrappedKey.data = cache->ticketMacKey->bytes; wrappedKey.len = cache->ticketMacKey->length; PORT_Assert(wrappedKey.len <= sizeof(cache->ticketMacKey->bytes)); macKeyTmp = PK11_PubUnwrapSymKey(svrPrivKey, &wrappedKey, CKM_SHA256_HMAC, CKA_SIGN, 0); if (aesKeyTmp == NULL || macKeyTmp == NULL) { SSL_DBG(("%d: SSL[%s]: Unable to unwrap session ticket keys.", SSL_GETPID(), "unknown")); goto loser; } SSL_DBG(("%d: SSL[%s]: Successfully unwrapped session ticket keys.", SSL_GETPID(), "unknown")); PORT_Memcpy(keyName, cache->ticketKeyNameSuffix, SELF_ENCRYPT_KEY_VAR_NAME_LEN); *aesKey = aesKeyTmp; *macKey = macKeyTmp; return SECSuccess; loser: if (aesKeyTmp) PK11_FreeSymKey(aesKeyTmp); if (macKeyTmp) PK11_FreeSymKey(macKeyTmp); return SECFailure; } static SECStatus ssl_GenerateSelfEncryptKeys(void *pwArg, PRUint8 *keyName, PK11SymKey **encKey, PK11SymKey **macKey) { SECKEYPrivateKey *svrPrivKey; SECKEYPublicKey *svrPubKey; PRUint32 now; SECStatus rv; cacheDesc *cache = &globalCache; rv = ssl_GetSelfEncryptKeyPair(&svrPubKey, &svrPrivKey); if (rv != SECSuccess || !cache->cacheMem) { /* No key pair for wrapping, or the cache is uninitialized. Generate * keys and return them without caching. */ return GenerateSelfEncryptKeys(pwArg, keyName, encKey, macKey); } now = LockSidCacheLock(cache->keyCacheLock, 0); if (!now) return SECFailure; if (*(cache->ticketKeysValid)) { rv = UnwrapCachedSelfEncryptKeys(svrPrivKey, keyName, encKey, macKey); } else { /* Keys do not exist, create them. */ rv = GenerateAndWrapSelfEncryptKeys(svrPubKey, pwArg, keyName, encKey, macKey); if (rv == SECSuccess) { *(cache->ticketKeysValid) = 1; } } UnlockSidCacheLock(cache->keyCacheLock); return rv; } /* The caller passes in the new value it wants * to set. This code tests the wrapped sym key entry in the shared memory. * If it is uninitialized, this function writes the caller's value into * the disk entry, and returns false. * Otherwise, it overwrites the caller's wswk with the value obtained from * the disk, and returns PR_TRUE. * This is all done while holding the locks/mutexes necessary to make * the operation atomic. */ SECStatus ssl_SetWrappingKey(SSLWrappedSymWrappingKey *wswk) { cacheDesc *cache = &globalCache; PRBool rv = SECFailure; PRUint32 ndx; PRUint32 now; SSLWrappedSymWrappingKey myWswk; if (!cache->cacheMem) { /* cache is uninitialized */ PORT_SetError(SSL_ERROR_SERVER_CACHE_NOT_CONFIGURED); return SECFailure; } PORT_Assert(wswk->wrapMechIndex < SSL_NUM_WRAP_MECHS); PORT_Assert(wswk->wrapKeyIndex < SSL_NUM_WRAP_KEYS); if (wswk->wrapMechIndex >= SSL_NUM_WRAP_MECHS || wswk->wrapKeyIndex >= SSL_NUM_WRAP_KEYS) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } ndx = (wswk->wrapKeyIndex * SSL_NUM_WRAP_MECHS) + wswk->wrapMechIndex; PORT_Memset(&myWswk, 0, sizeof myWswk); /* eliminate UMRs. */ now = LockSidCacheLock(cache->keyCacheLock, 0); if (!now) { return SECFailure; } rv = getSvrWrappingKey(wswk->wrapMechIndex, wswk->wrapKeyIndex, &myWswk, cache, now); if (rv == SECSuccess) { /* we found it on disk, copy it out to the caller. */ PORT_Memcpy(wswk, &myWswk, sizeof *wswk); } else { /* Wasn't on disk, and we're still holding the lock, so write it. */ cache->keyCacheData[ndx] = *wswk; } UnlockSidCacheLock(cache->keyCacheLock); return rv; } #else /* MAC version or other platform */ #include "seccomon.h" #include "cert.h" #include "ssl.h" #include "sslimpl.h" SECStatus SSL_ConfigServerSessionIDCache(int maxCacheEntries, PRUint32 ssl2_timeout, PRUint32 ssl3_timeout, const char *directory) { PR_ASSERT(!"SSL servers are not supported on this platform. (SSL_ConfigServerSessionIDCache)"); return SECFailure; } SECStatus SSL_ConfigMPServerSIDCache(int maxCacheEntries, PRUint32 ssl2_timeout, PRUint32 ssl3_timeout, const char *directory) { PR_ASSERT(!"SSL servers are not supported on this platform. (SSL_ConfigMPServerSIDCache)"); return SECFailure; } SECStatus SSL_InheritMPServerSIDCache(const char *envString) { PR_ASSERT(!"SSL servers are not supported on this platform. (SSL_InheritMPServerSIDCache)"); return SECFailure; } SECStatus ssl_GetWrappingKey(unsigned int wrapMechIndex, unsigned int wrapKeyIndex, SSLWrappedSymWrappingKey *wswk) { PR_ASSERT(!"SSL servers are not supported on this platform. (ssl_GetWrappingKey)"); return SECFailure; } /* This is a kind of test-and-set. The caller passes in the new value it wants * to set. This code tests the wrapped sym key entry in the shared memory. * If it is uninitialized, this function writes the caller's value into * the disk entry, and returns false. * Otherwise, it overwrites the caller's wswk with the value obtained from * the disk, and returns PR_TRUE. * This is all done while holding the locks/mutexes necessary to make * the operation atomic. */ SECStatus ssl_SetWrappingKey(SSLWrappedSymWrappingKey *wswk) { PR_ASSERT(!"SSL servers are not supported on this platform. (ssl_SetWrappingKey)"); return SECFailure; } PRUint32 SSL_GetMaxServerCacheLocks(void) { PR_ASSERT(!"SSL servers are not supported on this platform. (SSL_GetMaxServerCacheLocks)"); return -1; } SECStatus SSL_SetMaxServerCacheLocks(PRUint32 maxLocks) { PR_ASSERT(!"SSL servers are not supported on this platform. (SSL_SetMaxServerCacheLocks)"); return SECFailure; } #endif /* XP_UNIX || XP_WIN32 */