/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "FilterProcessing.h" #include "SIMD.h" #include "SVGTurbulenceRenderer-inl.h" namespace mozilla { namespace gfx { template inline already_AddRefed ConvertToB8G8R8A8_SIMD( SourceSurface* aSurface) { IntSize size = aSurface->GetSize(); RefPtr output = Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8); if (!output) { return nullptr; } RefPtr input = aSurface->GetDataSurface(); DataSourceSurface::ScopedMap inputMap(input, DataSourceSurface::READ); DataSourceSurface::ScopedMap outputMap(output, DataSourceSurface::READ_WRITE); uint8_t* inputData = inputMap.GetData(); uint8_t* outputData = outputMap.GetData(); int32_t inputStride = inputMap.GetStride(); int32_t outputStride = outputMap.GetStride(); switch (input->GetFormat()) { case SurfaceFormat::B8G8R8A8: output = input; break; case SurfaceFormat::B8G8R8X8: for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x++) { int32_t inputIndex = y * inputStride + 4 * x; int32_t outputIndex = y * outputStride + 4 * x; outputData[outputIndex + 0] = inputData[inputIndex + 0]; outputData[outputIndex + 1] = inputData[inputIndex + 1]; outputData[outputIndex + 2] = inputData[inputIndex + 2]; outputData[outputIndex + 3] = 255; } } break; case SurfaceFormat::R8G8B8A8: for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x++) { int32_t inputIndex = y * inputStride + 4 * x; int32_t outputIndex = y * outputStride + 4 * x; outputData[outputIndex + 2] = inputData[inputIndex + 0]; outputData[outputIndex + 1] = inputData[inputIndex + 1]; outputData[outputIndex + 0] = inputData[inputIndex + 2]; outputData[outputIndex + 3] = inputData[inputIndex + 3]; } } break; case SurfaceFormat::R8G8B8X8: for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x++) { int32_t inputIndex = y * inputStride + 4 * x; int32_t outputIndex = y * outputStride + 4 * x; outputData[outputIndex + 2] = inputData[inputIndex + 0]; outputData[outputIndex + 1] = inputData[inputIndex + 1]; outputData[outputIndex + 0] = inputData[inputIndex + 2]; outputData[outputIndex + 3] = 255; } } break; case SurfaceFormat::A8: for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x += 16) { int32_t inputIndex = y * inputStride + x; int32_t outputIndex = y * outputStride + 4 * x; u8x16_t p1To16 = simd::Load8(&inputData[inputIndex]); // Turn AAAAAAAAAAAAAAAA into four chunks of 000A000A000A000A by // interleaving with 0000000000000000 twice. u8x16_t zero = simd::FromZero8(); u8x16_t p1To8 = simd::InterleaveLo8(zero, p1To16); u8x16_t p9To16 = simd::InterleaveHi8(zero, p1To16); u8x16_t p1To4 = simd::InterleaveLo8(zero, p1To8); u8x16_t p5To8 = simd::InterleaveHi8(zero, p1To8); u8x16_t p9To12 = simd::InterleaveLo8(zero, p9To16); u8x16_t p13To16 = simd::InterleaveHi8(zero, p9To16); simd::Store8(&outputData[outputIndex], p1To4); if ((x + 4) * 4 < outputStride) { simd::Store8(&outputData[outputIndex + 4 * 4], p5To8); } if ((x + 8) * 4 < outputStride) { simd::Store8(&outputData[outputIndex + 4 * 8], p9To12); } if ((x + 12) * 4 < outputStride) { simd::Store8(&outputData[outputIndex + 4 * 12], p13To16); } } } break; default: output = nullptr; break; } return output.forget(); } template inline void ExtractAlpha_SIMD(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride) { for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x += 16) { // Process 16 pixels at a time. // Turn up to four chunks of BGRABGRABGRABGRA into one chunk of // AAAAAAAAAAAAAAAA. int32_t sourceIndex = y * sourceStride + 4 * x; int32_t targetIndex = y * alphaStride + x; u8x16_t bgrabgrabgrabgra2 = simd::FromZero8(); u8x16_t bgrabgrabgrabgra3 = simd::FromZero8(); u8x16_t bgrabgrabgrabgra4 = simd::FromZero8(); u8x16_t bgrabgrabgrabgra1 = simd::Load8(&sourceData[sourceIndex]); if (4 * (x + 4) < sourceStride) { bgrabgrabgrabgra2 = simd::Load8(&sourceData[sourceIndex + 4 * 4]); } if (4 * (x + 8) < sourceStride) { bgrabgrabgrabgra3 = simd::Load8(&sourceData[sourceIndex + 4 * 8]); } if (4 * (x + 12) < sourceStride) { bgrabgrabgrabgra4 = simd::Load8(&sourceData[sourceIndex + 4 * 12]); } u8x16_t bbggrraabbggrraa1 = simd::InterleaveLo8(bgrabgrabgrabgra1, bgrabgrabgrabgra3); u8x16_t bbggrraabbggrraa2 = simd::InterleaveHi8(bgrabgrabgrabgra1, bgrabgrabgrabgra3); u8x16_t bbggrraabbggrraa3 = simd::InterleaveLo8(bgrabgrabgrabgra2, bgrabgrabgrabgra4); u8x16_t bbggrraabbggrraa4 = simd::InterleaveHi8(bgrabgrabgrabgra2, bgrabgrabgrabgra4); u8x16_t bbbbggggrrrraaaa1 = simd::InterleaveLo8(bbggrraabbggrraa1, bbggrraabbggrraa3); u8x16_t bbbbggggrrrraaaa2 = simd::InterleaveHi8(bbggrraabbggrraa1, bbggrraabbggrraa3); u8x16_t bbbbggggrrrraaaa3 = simd::InterleaveLo8(bbggrraabbggrraa2, bbggrraabbggrraa4); u8x16_t bbbbggggrrrraaaa4 = simd::InterleaveHi8(bbggrraabbggrraa2, bbggrraabbggrraa4); u8x16_t rrrrrrrraaaaaaaa1 = simd::InterleaveHi8(bbbbggggrrrraaaa1, bbbbggggrrrraaaa3); u8x16_t rrrrrrrraaaaaaaa2 = simd::InterleaveHi8(bbbbggggrrrraaaa2, bbbbggggrrrraaaa4); u8x16_t aaaaaaaaaaaaaaaa = simd::InterleaveHi8(rrrrrrrraaaaaaaa1, rrrrrrrraaaaaaaa2); simd::Store8(&alphaData[targetIndex], aaaaaaaaaaaaaaaa); } } } // This function calculates the result color values for four pixels, but for // only two color channels - either b & r or g & a. However, the a result will // not be used. // source and dest each contain 8 values, either bbbb gggg or rrrr aaaa. // sourceAlpha and destAlpha are of the form aaaa aaaa, where each aaaa is the // alpha of all four pixels (and both aaaa's are the same). // blendendComponent1 and blendedComponent2 are the out parameters. template inline void BlendTwoComponentsOfFourPixels(i16x8_t source, i16x8_t sourceAlpha, i16x8_t dest, const i16x8_t& destAlpha, i32x4_t& blendedComponent1, i32x4_t& blendedComponent2) { i16x8_t x255 = simd::FromI16(255); switch (aBlendMode) { case BLEND_MODE_MULTIPLY: { // val = ((255 - destAlpha) * source + (255 - sourceAlpha + source) * // dest); i16x8_t twoFiftyFiveMinusDestAlpha = simd::Sub16(x255, destAlpha); i16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha); i16x8_t twoFiftyFiveMinusSourceAlphaPlusSource = simd::Add16(twoFiftyFiveMinusSourceAlpha, source); i16x8_t sourceInterleavedWithDest1 = simd::InterleaveLo16(source, dest); i16x8_t leftFactor1 = simd::InterleaveLo16( twoFiftyFiveMinusDestAlpha, twoFiftyFiveMinusSourceAlphaPlusSource); blendedComponent1 = simd::MulAdd16x8x2To32x4(sourceInterleavedWithDest1, leftFactor1); blendedComponent1 = simd::FastDivideBy255(blendedComponent1); i16x8_t sourceInterleavedWithDest2 = simd::InterleaveHi16(source, dest); i16x8_t leftFactor2 = simd::InterleaveHi16( twoFiftyFiveMinusDestAlpha, twoFiftyFiveMinusSourceAlphaPlusSource); blendedComponent2 = simd::MulAdd16x8x2To32x4(sourceInterleavedWithDest2, leftFactor2); blendedComponent2 = simd::FastDivideBy255(blendedComponent2); break; } case BLEND_MODE_SCREEN: { // val = 255 * (source + dest) + (0 - dest) * source; i16x8_t sourcePlusDest = simd::Add16(source, dest); i16x8_t zeroMinusDest = simd::Sub16(simd::FromI16(0), dest); i16x8_t twoFiftyFiveInterleavedWithZeroMinusDest1 = simd::InterleaveLo16(x255, zeroMinusDest); i16x8_t sourcePlusDestInterleavedWithSource1 = simd::InterleaveLo16(sourcePlusDest, source); blendedComponent1 = simd::MulAdd16x8x2To32x4(twoFiftyFiveInterleavedWithZeroMinusDest1, sourcePlusDestInterleavedWithSource1); blendedComponent1 = simd::FastDivideBy255(blendedComponent1); i16x8_t twoFiftyFiveInterleavedWithZeroMinusDest2 = simd::InterleaveHi16(x255, zeroMinusDest); i16x8_t sourcePlusDestInterleavedWithSource2 = simd::InterleaveHi16(sourcePlusDest, source); blendedComponent2 = simd::MulAdd16x8x2To32x4(twoFiftyFiveInterleavedWithZeroMinusDest2, sourcePlusDestInterleavedWithSource2); blendedComponent2 = simd::FastDivideBy255(blendedComponent2); break; } case BLEND_MODE_DARKEN: case BLEND_MODE_LIGHTEN: { // Darken: // val = min((255 - destAlpha) * source + 255 * dest, // 255 * source + (255 - sourceAlpha) * dest); // // Lighten: // val = max((255 - destAlpha) * source + 255 * dest, // 255 * source + (255 - sourceAlpha) * dest); i16x8_t twoFiftyFiveMinusDestAlpha = simd::Sub16(x255, destAlpha); i16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha); i16x8_t twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive1 = simd::InterleaveLo16(twoFiftyFiveMinusDestAlpha, x255); i16x8_t twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha1 = simd::InterleaveLo16(x255, twoFiftyFiveMinusSourceAlpha); i16x8_t sourceInterleavedWithDest1 = simd::InterleaveLo16(source, dest); i32x4_t product1_1 = simd::MulAdd16x8x2To32x4( twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive1, sourceInterleavedWithDest1); i32x4_t product1_2 = simd::MulAdd16x8x2To32x4( twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha1, sourceInterleavedWithDest1); blendedComponent1 = aBlendMode == BLEND_MODE_DARKEN ? simd::Min32(product1_1, product1_2) : simd::Max32(product1_1, product1_2); blendedComponent1 = simd::FastDivideBy255(blendedComponent1); i16x8_t twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive2 = simd::InterleaveHi16(twoFiftyFiveMinusDestAlpha, x255); i16x8_t twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha2 = simd::InterleaveHi16(x255, twoFiftyFiveMinusSourceAlpha); i16x8_t sourceInterleavedWithDest2 = simd::InterleaveHi16(source, dest); i32x4_t product2_1 = simd::MulAdd16x8x2To32x4( twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive2, sourceInterleavedWithDest2); i32x4_t product2_2 = simd::MulAdd16x8x2To32x4( twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha2, sourceInterleavedWithDest2); blendedComponent2 = aBlendMode == BLEND_MODE_DARKEN ? simd::Min32(product2_1, product2_2) : simd::Max32(product2_1, product2_2); blendedComponent2 = simd::FastDivideBy255(blendedComponent2); break; } } } // The alpha channel is subject to a different calculation than the RGB // channels, and this calculation is the same for all blend modes: // resultAlpha * 255 = 255 * 255 - (255 - sourceAlpha) * (255 - destAlpha) template inline i32x4_t BlendAlphaOfFourPixels(i16x8_t s_rrrraaaa1234, i16x8_t d_rrrraaaa1234) { // clang-format off // We're using MulAdd16x8x2To32x4, so we need to interleave our factors // appropriately. The calculation is rewritten as follows: // resultAlpha[0] * 255 = 255 * 255 - (255 - sourceAlpha[0]) * (255 - destAlpha[0]) // = 255 * 255 + (255 - sourceAlpha[0]) * (destAlpha[0] - 255) // = (255 - 0) * (510 - 255) + (255 - sourceAlpha[0]) * (destAlpha[0] - 255) // = MulAdd(255 - IntLv(0, sourceAlpha), IntLv(510, destAlpha) - 255)[0] // clang-format on i16x8_t zeroInterleavedWithSourceAlpha = simd::InterleaveHi16(simd::FromI16(0), s_rrrraaaa1234); i16x8_t fiveTenInterleavedWithDestAlpha = simd::InterleaveHi16(simd::FromI16(510), d_rrrraaaa1234); i16x8_t f1 = simd::Sub16(simd::FromI16(255), zeroInterleavedWithSourceAlpha); i16x8_t f2 = simd::Sub16(fiveTenInterleavedWithDestAlpha, simd::FromI16(255)); return simd::FastDivideBy255(simd::MulAdd16x8x2To32x4(f1, f2)); } template inline void UnpackAndShuffleComponents(u8x16_t bgrabgrabgrabgra1234, i16x8_t& bbbbgggg1234, i16x8_t& rrrraaaa1234) { // bgrabgrabgrabgra1234 -> bbbbgggg1234, rrrraaaa1234 i16x8_t bgrabgra12 = simd::UnpackLo8x8ToI16x8(bgrabgrabgrabgra1234); i16x8_t bgrabgra34 = simd::UnpackHi8x8ToI16x8(bgrabgrabgrabgra1234); i16x8_t bbggrraa13 = simd::InterleaveLo16(bgrabgra12, bgrabgra34); i16x8_t bbggrraa24 = simd::InterleaveHi16(bgrabgra12, bgrabgra34); bbbbgggg1234 = simd::InterleaveLo16(bbggrraa13, bbggrraa24); rrrraaaa1234 = simd::InterleaveHi16(bbggrraa13, bbggrraa24); } template inline u8x16_t ShuffleAndPackComponents(i32x4_t bbbb1234, i32x4_t gggg1234, i32x4_t rrrr1234, const i32x4_t& aaaa1234) { // bbbb1234, gggg1234, rrrr1234, aaaa1234 -> bgrabgrabgrabgra1234 i16x8_t bbbbgggg1234 = simd::PackAndSaturate32To16(bbbb1234, gggg1234); i16x8_t rrrraaaa1234 = simd::PackAndSaturate32To16(rrrr1234, aaaa1234); i16x8_t brbrbrbr1234 = simd::InterleaveLo16(bbbbgggg1234, rrrraaaa1234); i16x8_t gagagaga1234 = simd::InterleaveHi16(bbbbgggg1234, rrrraaaa1234); i16x8_t bgrabgra12 = simd::InterleaveLo16(brbrbrbr1234, gagagaga1234); i16x8_t bgrabgra34 = simd::InterleaveHi16(brbrbrbr1234, gagagaga1234); return simd::PackAndSaturate16To8(bgrabgra12, bgrabgra34); } template inline void ApplyBlending_SIMD(const DataSourceSurface::ScopedMap& aInputMap1, const DataSourceSurface::ScopedMap& aInputMap2, const DataSourceSurface::ScopedMap& aOutputMap, const IntSize& aSize) { uint8_t* source1Data = aInputMap1.GetData(); uint8_t* source2Data = aInputMap2.GetData(); uint8_t* targetData = aOutputMap.GetData(); int32_t targetStride = aOutputMap.GetStride(); int32_t source1Stride = aInputMap1.GetStride(); int32_t source2Stride = aInputMap2.GetStride(); for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x += 4) { int32_t targetIndex = y * targetStride + 4 * x; int32_t source1Index = y * source1Stride + 4 * x; int32_t source2Index = y * source2Stride + 4 * x; u8x16_t s1234 = simd::Load8(&source2Data[source2Index]); u8x16_t d1234 = simd::Load8(&source1Data[source1Index]); // The blending calculation for the RGB channels all need access to the // alpha channel of their pixel, and the alpha calculation is different, // so it makes sense to separate by channel. i16x8_t s_bbbbgggg1234, s_rrrraaaa1234; i16x8_t d_bbbbgggg1234, d_rrrraaaa1234; UnpackAndShuffleComponents(s1234, s_bbbbgggg1234, s_rrrraaaa1234); UnpackAndShuffleComponents(d1234, d_bbbbgggg1234, d_rrrraaaa1234); i16x8_t s_aaaaaaaa1234 = simd::Shuffle32<3, 2, 3, 2>(s_rrrraaaa1234); i16x8_t d_aaaaaaaa1234 = simd::Shuffle32<3, 2, 3, 2>(d_rrrraaaa1234); // We only use blendedB, blendedG and blendedR. i32x4_t blendedB, blendedG, blendedR, blendedA; BlendTwoComponentsOfFourPixels( s_bbbbgggg1234, s_aaaaaaaa1234, d_bbbbgggg1234, d_aaaaaaaa1234, blendedB, blendedG); BlendTwoComponentsOfFourPixels( s_rrrraaaa1234, s_aaaaaaaa1234, d_rrrraaaa1234, d_aaaaaaaa1234, blendedR, blendedA); // Throw away blendedA and overwrite it with the correct blended alpha. blendedA = BlendAlphaOfFourPixels(s_rrrraaaa1234, d_rrrraaaa1234); u8x16_t result1234 = ShuffleAndPackComponents( blendedB, blendedG, blendedR, blendedA); simd::Store8(&targetData[targetIndex], result1234); } } } template inline already_AddRefed ApplyBlending_SIMD( DataSourceSurface* aInput1, DataSourceSurface* aInput2) { IntSize size = aInput1->GetSize(); RefPtr target = Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8); if (!target) { return nullptr; } DataSourceSurface::ScopedMap inputMap1(aInput1, DataSourceSurface::READ); DataSourceSurface::ScopedMap outputMap(target, DataSourceSurface::READ_WRITE); if (aInput1->Equals(aInput2)) { ApplyBlending_SIMD(inputMap1, inputMap1, outputMap, size); } else { DataSourceSurface::ScopedMap inputMap2(aInput2, DataSourceSurface::READ); ApplyBlending_SIMD(inputMap1, inputMap2, outputMap, size); } return target.forget(); } template static already_AddRefed ApplyBlending_SIMD( DataSourceSurface* aInput1, DataSourceSurface* aInput2, BlendMode aBlendMode) { switch (aBlendMode) { case BLEND_MODE_MULTIPLY: return ApplyBlending_SIMD( aInput1, aInput2); case BLEND_MODE_SCREEN: return ApplyBlending_SIMD( aInput1, aInput2); case BLEND_MODE_DARKEN: return ApplyBlending_SIMD( aInput1, aInput2); case BLEND_MODE_LIGHTEN: return ApplyBlending_SIMD( aInput1, aInput2); default: return nullptr; } } template static u8x16_t Morph8(u8x16_t a, u8x16_t b) { return Operator == MORPHOLOGY_OPERATOR_ERODE ? simd::Min8(a, b) : simd::Max8(a, b); } // Set every pixel to the per-component minimum or maximum of the pixels around // it that are up to aRadius pixels away from it (horizontally). template inline void ApplyMorphologyHorizontal_SIMD( uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) { static_assert( op == MORPHOLOGY_OPERATOR_ERODE || op == MORPHOLOGY_OPERATOR_DILATE, "unexpected morphology operator"); int32_t kernelSize = aRadius + 1 + aRadius; MOZ_ASSERT(kernelSize >= 3, "don't call this with aRadius <= 0"); MOZ_ASSERT(kernelSize % 4 == 1 || kernelSize % 4 == 3); int32_t completeKernelSizeForFourPixels = kernelSize + 3; MOZ_ASSERT(completeKernelSizeForFourPixels % 4 == 0 || completeKernelSizeForFourPixels % 4 == 2); // aSourceData[-aRadius] and aDestData[0] are both aligned to 16 bytes, just // the way we need them to be. IntRect sourceRect = aDestRect; sourceRect.Inflate(aRadius, 0); for (int32_t y = aDestRect.Y(); y < aDestRect.YMost(); y++) { int32_t kernelStartX = aDestRect.X() - aRadius; for (int32_t x = aDestRect.X(); x < aDestRect.XMost(); x += 4, kernelStartX += 4) { // We process four pixels (16 color values) at a time. // aSourceData[0] points to the pixel located at aDestRect.TopLeft(); // source values can be read beyond that because the source is extended // by aRadius pixels. int32_t sourceIndex = y * aSourceStride + 4 * kernelStartX; u8x16_t p1234 = simd::Load8(&aSourceData[sourceIndex]); u8x16_t m1234 = p1234; for (int32_t i = 4; i < completeKernelSizeForFourPixels; i += 4) { u8x16_t p5678 = (kernelStartX + i < sourceRect.XMost()) ? simd::Load8(&aSourceData[sourceIndex + 4 * i]) : simd::FromZero8(); u8x16_t p2345 = simd::Rotate8<4>(p1234, p5678); u8x16_t p3456 = simd::Rotate8<8>(p1234, p5678); m1234 = Morph8(m1234, p2345); m1234 = Morph8(m1234, p3456); if (i + 2 < completeKernelSizeForFourPixels) { u8x16_t p4567 = simd::Rotate8<12>(p1234, p5678); m1234 = Morph8(m1234, p4567); m1234 = Morph8(m1234, p5678); } p1234 = p5678; } int32_t destIndex = y * aDestStride + 4 * x; simd::Store8(&aDestData[destIndex], m1234); } } } template inline void ApplyMorphologyHorizontal_SIMD( uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius, MorphologyOperator aOp) { if (aOp == MORPHOLOGY_OPERATOR_ERODE) { ApplyMorphologyHorizontal_SIMD( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } else { ApplyMorphologyHorizontal_SIMD( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } } // Set every pixel to the per-component minimum or maximum of the pixels around // it that are up to aRadius pixels away from it (vertically). template static void ApplyMorphologyVertical_SIMD( uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) { static_assert( op == MORPHOLOGY_OPERATOR_ERODE || op == MORPHOLOGY_OPERATOR_DILATE, "unexpected morphology operator"); int32_t startY = aDestRect.Y() - aRadius; int32_t endY = aDestRect.Y() + aRadius; for (int32_t y = aDestRect.Y(); y < aDestRect.YMost(); y++, startY++, endY++) { for (int32_t x = aDestRect.X(); x < aDestRect.XMost(); x += 4) { int32_t sourceIndex = startY * aSourceStride + 4 * x; u8x16_t u = simd::Load8(&aSourceData[sourceIndex]); sourceIndex += aSourceStride; for (int32_t iy = startY + 1; iy <= endY; iy++, sourceIndex += aSourceStride) { u8x16_t u2 = simd::Load8(&aSourceData[sourceIndex]); u = Morph8(u, u2); } int32_t destIndex = y * aDestStride + 4 * x; simd::Store8(&aDestData[destIndex], u); } } } template inline void ApplyMorphologyVertical_SIMD( uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius, MorphologyOperator aOp) { if (aOp == MORPHOLOGY_OPERATOR_ERODE) { ApplyMorphologyVertical_SIMD( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } else { ApplyMorphologyVertical_SIMD( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } } template static i32x4_t ColorMatrixMultiply(i16x8_t p, i16x8_t rows_bg, i16x8_t rows_ra, const i32x4_t& bias) { // int16_t p[8] == { b, g, r, a, b, g, r, a }. // int16_t rows_bg[8] == { bB, bG, bR, bA, gB, gG, gR, gA }. // int16_t rows_ra[8] == { rB, rG, rR, rA, aB, aG, aR, aA }. // int32_t bias[4] == { _B, _G, _R, _A }. i32x4_t sum = bias; // int16_t bg[8] = { b, g, b, g, b, g, b, g }; i16x8_t bg = simd::ShuffleHi16<1, 0, 1, 0>(simd::ShuffleLo16<1, 0, 1, 0>(p)); // int32_t prodsum_bg[4] = // { b * bB + g * gB, b * bG + g * gG, b * bR + g * gR, b * bA + g * gA } i32x4_t prodsum_bg = simd::MulAdd16x8x2To32x4(bg, rows_bg); sum = simd::Add32(sum, prodsum_bg); // uint16_t ra[8] = { r, a, r, a, r, a, r, a }; i16x8_t ra = simd::ShuffleHi16<3, 2, 3, 2>(simd::ShuffleLo16<3, 2, 3, 2>(p)); // int32_t prodsum_ra[4] = // { r * rB + a * aB, r * rG + a * aG, r * rR + a * aR, r * rA + a * aA } i32x4_t prodsum_ra = simd::MulAdd16x8x2To32x4(ra, rows_ra); sum = simd::Add32(sum, prodsum_ra); // int32_t sum[4] == { b * bB + g * gB + r * rB + a * aB + _B, ... }. return sum; } template static already_AddRefed ApplyColorMatrix_SIMD( DataSourceSurface* aInput, const Matrix5x4& aMatrix) { IntSize size = aInput->GetSize(); RefPtr target = Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8); if (!target) { return nullptr; } DataSourceSurface::ScopedMap inputMap(aInput, DataSourceSurface::READ); DataSourceSurface::ScopedMap outputMap(target, DataSourceSurface::READ_WRITE); uint8_t* sourceData = inputMap.GetData(); uint8_t* targetData = outputMap.GetData(); int32_t sourceStride = inputMap.GetStride(); int32_t targetStride = outputMap.GetStride(); const int16_t factor = 128; const Float floatElementMax = INT16_MAX / factor; // 255 MOZ_ASSERT((floatElementMax * factor) <= INT16_MAX, "badly chosen float-to-int scale"); const Float* floats = &aMatrix._11; ptrdiff_t componentOffsets[4] = { B8G8R8A8_COMPONENT_BYTEOFFSET_R, B8G8R8A8_COMPONENT_BYTEOFFSET_G, B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_A}; // We store the color matrix in rows_bgra in the following format: // { bB, bG, bR, bA, gB, gG, gR, gA }. // { bB, gB, bG, gG, bR, gR, bA, gA } // The way this is interleaved allows us to use the intrinsic _mm_madd_epi16 // which works especially well for our use case. int16_t rows_bgra[2][8]; for (size_t rowIndex = 0; rowIndex < 4; rowIndex++) { for (size_t colIndex = 0; colIndex < 4; colIndex++) { const Float& floatMatrixElement = floats[rowIndex * 4 + colIndex]; Float clampedFloatMatrixElement = std::min( std::max(floatMatrixElement, -floatElementMax), floatElementMax); int16_t scaledIntMatrixElement = int16_t(clampedFloatMatrixElement * factor + 0.5); int8_t bg_or_ra = componentOffsets[rowIndex] / 2; int8_t g_or_a = componentOffsets[rowIndex] % 2; int8_t B_or_G_or_R_or_A = componentOffsets[colIndex]; rows_bgra[bg_or_ra][B_or_G_or_R_or_A * 2 + g_or_a] = scaledIntMatrixElement; } } int32_t rowBias[4]; Float biasMax = (INT32_MAX - 4 * 255 * INT16_MAX) / (factor * 255); for (size_t colIndex = 0; colIndex < 4; colIndex++) { size_t rowIndex = 4; const Float& floatMatrixElement = floats[rowIndex * 4 + colIndex]; Float clampedFloatMatrixElement = std::min(std::max(floatMatrixElement, -biasMax), biasMax); int32_t scaledIntMatrixElement = int32_t(clampedFloatMatrixElement * factor * 255 + 0.5); rowBias[componentOffsets[colIndex]] = scaledIntMatrixElement; } i16x8_t row_bg_v = simd::FromI16( rows_bgra[0][0], rows_bgra[0][1], rows_bgra[0][2], rows_bgra[0][3], rows_bgra[0][4], rows_bgra[0][5], rows_bgra[0][6], rows_bgra[0][7]); i16x8_t row_ra_v = simd::FromI16( rows_bgra[1][0], rows_bgra[1][1], rows_bgra[1][2], rows_bgra[1][3], rows_bgra[1][4], rows_bgra[1][5], rows_bgra[1][6], rows_bgra[1][7]); i32x4_t rowsBias_v = simd::From32(rowBias[0], rowBias[1], rowBias[2], rowBias[3]); for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x += 4) { MOZ_ASSERT(sourceStride >= 4 * (x + 4), "need to be able to read 4 pixels at this position"); MOZ_ASSERT(targetStride >= 4 * (x + 4), "need to be able to write 4 pixels at this position"); int32_t sourceIndex = y * sourceStride + 4 * x; int32_t targetIndex = y * targetStride + 4 * x; // We load 4 pixels, unpack them, process them 1 pixel at a time, and // finally pack and store the 4 result pixels. u8x16_t p1234 = simd::Load8(&sourceData[sourceIndex]); // Splat needed to get each pixel twice into i16x8 i16x8_t p11 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<0>(p1234)); i16x8_t p22 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<1>(p1234)); i16x8_t p33 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<2>(p1234)); i16x8_t p44 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<3>(p1234)); i32x4_t result_p1 = ColorMatrixMultiply(p11, row_bg_v, row_ra_v, rowsBias_v); i32x4_t result_p2 = ColorMatrixMultiply(p22, row_bg_v, row_ra_v, rowsBias_v); i32x4_t result_p3 = ColorMatrixMultiply(p33, row_bg_v, row_ra_v, rowsBias_v); i32x4_t result_p4 = ColorMatrixMultiply(p44, row_bg_v, row_ra_v, rowsBias_v); static_assert(factor == 1 << 7, "Please adapt the calculation in the lines below for a " "different factor."); u8x16_t result_p1234 = simd::PackAndSaturate32To8( simd::ShiftRight32<7>(result_p1), simd::ShiftRight32<7>(result_p2), simd::ShiftRight32<7>(result_p3), simd::ShiftRight32<7>(result_p4)); simd::Store8(&targetData[targetIndex], result_p1234); } } return target.forget(); } // source / dest: bgra bgra // sourceAlpha / destAlpha: aaaa aaaa // result: bgra bgra template static inline u16x8_t CompositeTwoPixels(u16x8_t source, u16x8_t sourceAlpha, u16x8_t dest, const u16x8_t& destAlpha) { u16x8_t x255 = simd::FromU16(255); switch (aCompositeOperator) { case COMPOSITE_OPERATOR_OVER: { // val = dest * (255 - sourceAlpha) + source * 255; u16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha); u16x8_t destSourceInterleaved1 = simd::InterleaveLo16(dest, source); u16x8_t rightFactor1 = simd::InterleaveLo16(twoFiftyFiveMinusSourceAlpha, x255); i32x4_t result1 = simd::MulAdd16x8x2To32x4(destSourceInterleaved1, rightFactor1); u16x8_t destSourceInterleaved2 = simd::InterleaveHi16(dest, source); u16x8_t rightFactor2 = simd::InterleaveHi16(twoFiftyFiveMinusSourceAlpha, x255); i32x4_t result2 = simd::MulAdd16x8x2To32x4(destSourceInterleaved2, rightFactor2); return simd::PackAndSaturate32ToU16(simd::FastDivideBy255(result1), simd::FastDivideBy255(result2)); } case COMPOSITE_OPERATOR_IN: { // val = source * destAlpha; return simd::FastDivideBy255_16(simd::Mul16(source, destAlpha)); } case COMPOSITE_OPERATOR_OUT: { // val = source * (255 - destAlpha); u16x8_t prod = simd::Mul16(source, simd::Sub16(x255, destAlpha)); return simd::FastDivideBy255_16(prod); } case COMPOSITE_OPERATOR_ATOP: { // val = dest * (255 - sourceAlpha) + source * destAlpha; u16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha); u16x8_t destSourceInterleaved1 = simd::InterleaveLo16(dest, source); u16x8_t rightFactor1 = simd::InterleaveLo16(twoFiftyFiveMinusSourceAlpha, destAlpha); i32x4_t result1 = simd::MulAdd16x8x2To32x4(destSourceInterleaved1, rightFactor1); u16x8_t destSourceInterleaved2 = simd::InterleaveHi16(dest, source); u16x8_t rightFactor2 = simd::InterleaveHi16(twoFiftyFiveMinusSourceAlpha, destAlpha); i32x4_t result2 = simd::MulAdd16x8x2To32x4(destSourceInterleaved2, rightFactor2); return simd::PackAndSaturate32ToU16(simd::FastDivideBy255(result1), simd::FastDivideBy255(result2)); } case COMPOSITE_OPERATOR_XOR: { // val = dest * (255 - sourceAlpha) + source * (255 - destAlpha); u16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha); u16x8_t twoFiftyFiveMinusDestAlpha = simd::Sub16(x255, destAlpha); u16x8_t destSourceInterleaved1 = simd::InterleaveLo16(dest, source); u16x8_t rightFactor1 = simd::InterleaveLo16(twoFiftyFiveMinusSourceAlpha, twoFiftyFiveMinusDestAlpha); i32x4_t result1 = simd::MulAdd16x8x2To32x4(destSourceInterleaved1, rightFactor1); u16x8_t destSourceInterleaved2 = simd::InterleaveHi16(dest, source); u16x8_t rightFactor2 = simd::InterleaveHi16(twoFiftyFiveMinusSourceAlpha, twoFiftyFiveMinusDestAlpha); i32x4_t result2 = simd::MulAdd16x8x2To32x4(destSourceInterleaved2, rightFactor2); return simd::PackAndSaturate32ToU16(simd::FastDivideBy255(result1), simd::FastDivideBy255(result2)); } default: return simd::FromU16(0); } } template static void ApplyComposition(DataSourceSurface* aSource, DataSourceSurface* aDest) { IntSize size = aDest->GetSize(); DataSourceSurface::ScopedMap input(aSource, DataSourceSurface::READ); DataSourceSurface::ScopedMap output(aDest, DataSourceSurface::READ_WRITE); uint8_t* sourceData = input.GetData(); uint8_t* destData = output.GetData(); uint32_t sourceStride = input.GetStride(); uint32_t destStride = output.GetStride(); for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x += 4) { uint32_t sourceIndex = y * sourceStride + 4 * x; uint32_t destIndex = y * destStride + 4 * x; u8x16_t s1234 = simd::Load8(&sourceData[sourceIndex]); u8x16_t d1234 = simd::Load8(&destData[destIndex]); u16x8_t s12 = simd::UnpackLo8x8ToU16x8(s1234); u16x8_t d12 = simd::UnpackLo8x8ToU16x8(d1234); u16x8_t sa12 = simd::Splat16<3, 3>(s12); u16x8_t da12 = simd::Splat16<3, 3>(d12); u16x8_t result12 = CompositeTwoPixels(s12, sa12, d12, da12); u16x8_t s34 = simd::UnpackHi8x8ToU16x8(s1234); u16x8_t d34 = simd::UnpackHi8x8ToU16x8(d1234); u16x8_t sa34 = simd::Splat16<3, 3>(s34); u16x8_t da34 = simd::Splat16<3, 3>(d34); u16x8_t result34 = CompositeTwoPixels(s34, sa34, d34, da34); u8x16_t result1234 = simd::PackAndSaturate16To8(result12, result34); simd::Store8(&destData[destIndex], result1234); } } } template static void ApplyComposition_SIMD(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator) { switch (aOperator) { case COMPOSITE_OPERATOR_OVER: ApplyComposition( aSource, aDest); break; case COMPOSITE_OPERATOR_IN: ApplyComposition( aSource, aDest); break; case COMPOSITE_OPERATOR_OUT: ApplyComposition( aSource, aDest); break; case COMPOSITE_OPERATOR_ATOP: ApplyComposition( aSource, aDest); break; case COMPOSITE_OPERATOR_XOR: ApplyComposition( aSource, aDest); break; default: MOZ_CRASH("GFX: Incomplete switch"); } } template static void SeparateColorChannels_SIMD( const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride) { for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x += 16) { // Process 16 pixels at a time. int32_t sourceIndex = y * sourceStride + 4 * x; int32_t targetIndex = y * channelStride + x; u8x16_t bgrabgrabgrabgra2 = simd::FromZero8(); u8x16_t bgrabgrabgrabgra3 = simd::FromZero8(); u8x16_t bgrabgrabgrabgra4 = simd::FromZero8(); u8x16_t bgrabgrabgrabgra1 = simd::Load8(&sourceData[sourceIndex]); if (4 * (x + 4) < sourceStride) { bgrabgrabgrabgra2 = simd::Load8(&sourceData[sourceIndex + 4 * 4]); } if (4 * (x + 8) < sourceStride) { bgrabgrabgrabgra3 = simd::Load8(&sourceData[sourceIndex + 4 * 8]); } if (4 * (x + 12) < sourceStride) { bgrabgrabgrabgra4 = simd::Load8(&sourceData[sourceIndex + 4 * 12]); } u8x16_t bbggrraabbggrraa1 = simd::InterleaveLo8(bgrabgrabgrabgra1, bgrabgrabgrabgra3); u8x16_t bbggrraabbggrraa2 = simd::InterleaveHi8(bgrabgrabgrabgra1, bgrabgrabgrabgra3); u8x16_t bbggrraabbggrraa3 = simd::InterleaveLo8(bgrabgrabgrabgra2, bgrabgrabgrabgra4); u8x16_t bbggrraabbggrraa4 = simd::InterleaveHi8(bgrabgrabgrabgra2, bgrabgrabgrabgra4); u8x16_t bbbbggggrrrraaaa1 = simd::InterleaveLo8(bbggrraabbggrraa1, bbggrraabbggrraa3); u8x16_t bbbbggggrrrraaaa2 = simd::InterleaveHi8(bbggrraabbggrraa1, bbggrraabbggrraa3); u8x16_t bbbbggggrrrraaaa3 = simd::InterleaveLo8(bbggrraabbggrraa2, bbggrraabbggrraa4); u8x16_t bbbbggggrrrraaaa4 = simd::InterleaveHi8(bbggrraabbggrraa2, bbggrraabbggrraa4); u8x16_t bbbbbbbbgggggggg1 = simd::InterleaveLo8(bbbbggggrrrraaaa1, bbbbggggrrrraaaa3); u8x16_t rrrrrrrraaaaaaaa1 = simd::InterleaveHi8(bbbbggggrrrraaaa1, bbbbggggrrrraaaa3); u8x16_t bbbbbbbbgggggggg2 = simd::InterleaveLo8(bbbbggggrrrraaaa2, bbbbggggrrrraaaa4); u8x16_t rrrrrrrraaaaaaaa2 = simd::InterleaveHi8(bbbbggggrrrraaaa2, bbbbggggrrrraaaa4); u8x16_t bbbbbbbbbbbbbbbb = simd::InterleaveLo8(bbbbbbbbgggggggg1, bbbbbbbbgggggggg2); u8x16_t gggggggggggggggg = simd::InterleaveHi8(bbbbbbbbgggggggg1, bbbbbbbbgggggggg2); u8x16_t rrrrrrrrrrrrrrrr = simd::InterleaveLo8(rrrrrrrraaaaaaaa1, rrrrrrrraaaaaaaa2); u8x16_t aaaaaaaaaaaaaaaa = simd::InterleaveHi8(rrrrrrrraaaaaaaa1, rrrrrrrraaaaaaaa2); simd::Store8(&channel0Data[targetIndex], bbbbbbbbbbbbbbbb); simd::Store8(&channel1Data[targetIndex], gggggggggggggggg); simd::Store8(&channel2Data[targetIndex], rrrrrrrrrrrrrrrr); simd::Store8(&channel3Data[targetIndex], aaaaaaaaaaaaaaaa); } } } template static void CombineColorChannels_SIMD( const IntSize& size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data) { for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x += 16) { // Process 16 pixels at a time. int32_t resultIndex = y * resultStride + 4 * x; int32_t channelIndex = y * channelStride + x; u8x16_t bbbbbbbbbbbbbbbb = simd::Load8(&channel0Data[channelIndex]); u8x16_t gggggggggggggggg = simd::Load8(&channel1Data[channelIndex]); u8x16_t rrrrrrrrrrrrrrrr = simd::Load8(&channel2Data[channelIndex]); u8x16_t aaaaaaaaaaaaaaaa = simd::Load8(&channel3Data[channelIndex]); u8x16_t brbrbrbrbrbrbrbr1 = simd::InterleaveLo8(bbbbbbbbbbbbbbbb, rrrrrrrrrrrrrrrr); u8x16_t brbrbrbrbrbrbrbr2 = simd::InterleaveHi8(bbbbbbbbbbbbbbbb, rrrrrrrrrrrrrrrr); u8x16_t gagagagagagagaga1 = simd::InterleaveLo8(gggggggggggggggg, aaaaaaaaaaaaaaaa); u8x16_t gagagagagagagaga2 = simd::InterleaveHi8(gggggggggggggggg, aaaaaaaaaaaaaaaa); u8x16_t bgrabgrabgrabgra1 = simd::InterleaveLo8(brbrbrbrbrbrbrbr1, gagagagagagagaga1); u8x16_t bgrabgrabgrabgra2 = simd::InterleaveHi8(brbrbrbrbrbrbrbr1, gagagagagagagaga1); u8x16_t bgrabgrabgrabgra3 = simd::InterleaveLo8(brbrbrbrbrbrbrbr2, gagagagagagagaga2); u8x16_t bgrabgrabgrabgra4 = simd::InterleaveHi8(brbrbrbrbrbrbrbr2, gagagagagagagaga2); simd::Store8(&resultData[resultIndex], bgrabgrabgrabgra1); if (4 * (x + 4) < resultStride) { simd::Store8(&resultData[resultIndex + 4 * 4], bgrabgrabgrabgra2); } if (4 * (x + 8) < resultStride) { simd::Store8(&resultData[resultIndex + 8 * 4], bgrabgrabgrabgra3); } if (4 * (x + 12) < resultStride) { simd::Store8(&resultData[resultIndex + 12 * 4], bgrabgrabgrabgra4); } } } } template static void DoPremultiplicationCalculation_SIMD(const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride, uint8_t* aSourceData, int32_t aSourceStride) { const u8x16_t alphaMask = simd::From8(0, 0, 0, 0xff, 0, 0, 0, 0xff, 0, 0, 0, 0xff, 0, 0, 0, 0xff); for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x += 4) { int32_t inputIndex = y * aSourceStride + 4 * x; int32_t targetIndex = y * aTargetStride + 4 * x; u8x16_t p1234 = simd::Load8(&aSourceData[inputIndex]); u16x8_t p12 = simd::UnpackLo8x8ToU16x8(p1234); u16x8_t p34 = simd::UnpackHi8x8ToU16x8(p1234); // Multiply all components with alpha. p12 = simd::Mul16(p12, simd::Splat16<3, 3>(p12)); p34 = simd::Mul16(p34, simd::Splat16<3, 3>(p34)); // Divide by 255 and pack. u8x16_t result = simd::PackAndSaturate16To8( simd::FastDivideBy255_16(p12), simd::FastDivideBy255_16(p34)); // Get the original alpha channel value back from p1234. result = simd::Pick(alphaMask, result, p1234); simd::Store8(&aTargetData[targetIndex], result); } } } // We use a table of precomputed factors for unpremultiplying. // We want to compute round(r / (alpha / 255.0f)) for arbitrary values of // r and alpha in constant time. This table of factors has the property that // (r * sAlphaFactors[alpha] + 128) >> 8 roughly gives the result we want (with // a maximum deviation of 1). // // sAlphaFactors[alpha] == round(255.0 * (1 << 8) / alpha) // // This table has been created using the python code // ", ".join("%d" % (round(255.0 * 256 / alpha) if alpha > 0 else 0) for alpha // in range(256)) static const uint16_t sAlphaFactors[256] = { 0, 65280, 32640, 21760, 16320, 13056, 10880, 9326, 8160, 7253, 6528, 5935, 5440, 5022, 4663, 4352, 4080, 3840, 3627, 3436, 3264, 3109, 2967, 2838, 2720, 2611, 2511, 2418, 2331, 2251, 2176, 2106, 2040, 1978, 1920, 1865, 1813, 1764, 1718, 1674, 1632, 1592, 1554, 1518, 1484, 1451, 1419, 1389, 1360, 1332, 1306, 1280, 1255, 1232, 1209, 1187, 1166, 1145, 1126, 1106, 1088, 1070, 1053, 1036, 1020, 1004, 989, 974, 960, 946, 933, 919, 907, 894, 882, 870, 859, 848, 837, 826, 816, 806, 796, 787, 777, 768, 759, 750, 742, 733, 725, 717, 710, 702, 694, 687, 680, 673, 666, 659, 653, 646, 640, 634, 628, 622, 616, 610, 604, 599, 593, 588, 583, 578, 573, 568, 563, 558, 553, 549, 544, 540, 535, 531, 526, 522, 518, 514, 510, 506, 502, 498, 495, 491, 487, 484, 480, 476, 473, 470, 466, 463, 460, 457, 453, 450, 447, 444, 441, 438, 435, 432, 429, 427, 424, 421, 418, 416, 413, 411, 408, 405, 403, 400, 398, 396, 393, 391, 389, 386, 384, 382, 380, 377, 375, 373, 371, 369, 367, 365, 363, 361, 359, 357, 355, 353, 351, 349, 347, 345, 344, 342, 340, 338, 336, 335, 333, 331, 330, 328, 326, 325, 323, 322, 320, 318, 317, 315, 314, 312, 311, 309, 308, 306, 305, 304, 302, 301, 299, 298, 297, 295, 294, 293, 291, 290, 289, 288, 286, 285, 284, 283, 281, 280, 279, 278, 277, 275, 274, 273, 272, 271, 270, 269, 268, 266, 265, 264, 263, 262, 261, 260, 259, 258, 257, 256}; template static void DoUnpremultiplicationCalculation_SIMD(const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride, uint8_t* aSourceData, int32_t aSourceStride) { for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x += 4) { int32_t inputIndex = y * aSourceStride + 4 * x; int32_t targetIndex = y * aTargetStride + 4 * x; union { u8x16_t p1234; uint8_t u8[4][4]; }; p1234 = simd::Load8(&aSourceData[inputIndex]); // Prepare the alpha factors. uint16_t aF1 = sAlphaFactors[u8[0][B8G8R8A8_COMPONENT_BYTEOFFSET_A]]; uint16_t aF2 = sAlphaFactors[u8[1][B8G8R8A8_COMPONENT_BYTEOFFSET_A]]; uint16_t aF3 = sAlphaFactors[u8[2][B8G8R8A8_COMPONENT_BYTEOFFSET_A]]; uint16_t aF4 = sAlphaFactors[u8[3][B8G8R8A8_COMPONENT_BYTEOFFSET_A]]; u16x8_t aF12 = simd::FromU16(aF1, aF1, aF1, 1 << 8, aF2, aF2, aF2, 1 << 8); u16x8_t aF34 = simd::FromU16(aF3, aF3, aF3, 1 << 8, aF4, aF4, aF4, 1 << 8); u16x8_t p12 = simd::UnpackLo8x8ToU16x8(p1234); u16x8_t p34 = simd::UnpackHi8x8ToU16x8(p1234); // Multiply with the alpha factors, add 128 for rounding, and shift right // by 8 bits. p12 = simd::ShiftRight16<8>( simd::Add16(simd::Mul16(p12, aF12), simd::FromU16(128))); p34 = simd::ShiftRight16<8>( simd::Add16(simd::Mul16(p34, aF34), simd::FromU16(128))); u8x16_t result = simd::PackAndSaturate16To8(p12, p34); simd::Store8(&aTargetData[targetIndex], result); } } } template static void DoOpacityCalculation_SIMD(const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride, uint8_t* aSourceData, int32_t aSourceStride, Float aOpacity) { uint8_t alphaValue = uint8_t(roundf(255.f * aOpacity)); u16x8_t alphaValues = simd::FromU16(alphaValue, alphaValue, alphaValue, alphaValue, alphaValue, alphaValue, alphaValue, alphaValue); for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x += 4) { int32_t inputIndex = y * aSourceStride + 4 * x; int32_t targetIndex = y * aTargetStride + 4 * x; u8x16_t p1234 = simd::Load8(&aSourceData[inputIndex]); u16x8_t p12 = simd::UnpackLo8x8ToU16x8(p1234); u16x8_t p34 = simd::UnpackHi8x8ToU16x8(p1234); // Multiply all components with alpha. p12 = simd::Mul16(p12, alphaValues); p34 = simd::Mul16(p34, alphaValues); // Divide by 255 and pack. u8x16_t result = simd::PackAndSaturate16To8(simd::ShiftRight16<8>(p12), simd::ShiftRight16<8>(p34)); simd::Store8(&aTargetData[targetIndex], result); } } } template static already_AddRefed RenderTurbulence_SIMD( const IntSize& aSize, const Point& aOffset, const Size& aBaseFrequency, int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect& aTileRect) { #define RETURN_TURBULENCE(Type, Stitch) \ SVGTurbulenceRenderer renderer( \ aBaseFrequency, aSeed, aNumOctaves, aTileRect); \ return renderer.Render(aSize, aOffset); switch (aType) { case TURBULENCE_TYPE_TURBULENCE: { if (aStitch) { RETURN_TURBULENCE(TURBULENCE_TYPE_TURBULENCE, true); } RETURN_TURBULENCE(TURBULENCE_TYPE_TURBULENCE, false); } case TURBULENCE_TYPE_FRACTAL_NOISE: { if (aStitch) { RETURN_TURBULENCE(TURBULENCE_TYPE_FRACTAL_NOISE, true); } RETURN_TURBULENCE(TURBULENCE_TYPE_FRACTAL_NOISE, false); } } return nullptr; #undef RETURN_TURBULENCE } // k1 * in1 * in2 + k2 * in1 + k3 * in2 + k4 template static MOZ_ALWAYS_INLINE i16x8_t ArithmeticCombineTwoPixels( i16x8_t in1, i16x8_t in2, const i16x8_t& k1And4, const i16x8_t& k2And3) { // Calculate input product: inProd = (in1 * in2) / 255. i32x4_t inProd_1, inProd_2; simd::Mul16x4x2x2To32x4x2(in1, in2, inProd_1, inProd_2); i16x8_t inProd = simd::PackAndSaturate32To16(simd::FastDivideBy255(inProd_1), simd::FastDivideBy255(inProd_2)); // Calculate k1 * ((in1 * in2) / 255) + (k4/128) * 128 i16x8_t oneTwentyEight = simd::FromI16(128); i16x8_t inProd1AndOneTwentyEight = simd::InterleaveLo16(inProd, oneTwentyEight); i16x8_t inProd2AndOneTwentyEight = simd::InterleaveHi16(inProd, oneTwentyEight); i32x4_t inProdTimesK1PlusK4_1 = simd::MulAdd16x8x2To32x4(k1And4, inProd1AndOneTwentyEight); i32x4_t inProdTimesK1PlusK4_2 = simd::MulAdd16x8x2To32x4(k1And4, inProd2AndOneTwentyEight); // Calculate k2 * in1 + k3 * in2 i16x8_t in12_1 = simd::InterleaveLo16(in1, in2); i16x8_t in12_2 = simd::InterleaveHi16(in1, in2); i32x4_t inTimesK2K3_1 = simd::MulAdd16x8x2To32x4(k2And3, in12_1); i32x4_t inTimesK2K3_2 = simd::MulAdd16x8x2To32x4(k2And3, in12_2); // Sum everything up and truncate the fractional part. i32x4_t result_1 = simd::ShiftRight32<7>(simd::Add32(inProdTimesK1PlusK4_1, inTimesK2K3_1)); i32x4_t result_2 = simd::ShiftRight32<7>(simd::Add32(inProdTimesK1PlusK4_2, inTimesK2K3_2)); return simd::PackAndSaturate32To16(result_1, result_2); } template static void ApplyArithmeticCombine_SIMD( const DataSourceSurface::ScopedMap& aInputMap1, const DataSourceSurface::ScopedMap& aInputMap2, const DataSourceSurface::ScopedMap& aOutputMap, const IntSize& aSize, Float aK1, Float aK2, Float aK3, Float aK4) { uint8_t* source1Data = aInputMap1.GetData(); uint8_t* source2Data = aInputMap2.GetData(); uint8_t* targetData = aOutputMap.GetData(); uint32_t source1Stride = aInputMap1.GetStride(); uint32_t source2Stride = aInputMap2.GetStride(); uint32_t targetStride = aOutputMap.GetStride(); // The arithmetic combine filter does the following calculation: // result = k1 * in1 * in2 + k2 * in1 + k3 * in2 + k4 // // Or, with in1/2 integers between 0 and 255: // result = (k1 * in1 * in2) / 255 + k2 * in1 + k3 * in2 + k4 * 255 // // We want the whole calculation to happen in integer, with 16-bit factors. // So we convert our factors to fixed-point with precision 1.8.7. // K4 is premultiplied with 255, and it will be multiplied with 128 later // during the actual calculation, because premultiplying it with 255 * 128 // would overflow int16. i16x8_t k1 = simd::FromI16( int16_t(floorf(std::min(std::max(aK1, -255.0f), 255.0f) * 128 + 0.5f))); i16x8_t k2 = simd::FromI16( int16_t(floorf(std::min(std::max(aK2, -255.0f), 255.0f) * 128 + 0.5f))); i16x8_t k3 = simd::FromI16( int16_t(floorf(std::min(std::max(aK3, -255.0f), 255.0f) * 128 + 0.5f))); i16x8_t k4 = simd::FromI16( int16_t(floorf(std::min(std::max(aK4, -128.0f), 128.0f) * 255 + 0.5f))); i16x8_t k1And4 = simd::InterleaveLo16(k1, k4); i16x8_t k2And3 = simd::InterleaveLo16(k2, k3); for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x += 4) { uint32_t source1Index = y * source1Stride + 4 * x; uint32_t source2Index = y * source2Stride + 4 * x; uint32_t targetIndex = y * targetStride + 4 * x; // Load and unpack. u8x16_t in1 = simd::Load8(&source1Data[source1Index]); u8x16_t in2 = simd::Load8(&source2Data[source2Index]); i16x8_t in1_12 = simd::UnpackLo8x8ToI16x8(in1); i16x8_t in1_34 = simd::UnpackHi8x8ToI16x8(in1); i16x8_t in2_12 = simd::UnpackLo8x8ToI16x8(in2); i16x8_t in2_34 = simd::UnpackHi8x8ToI16x8(in2); // Multiply and add. i16x8_t result_12 = ArithmeticCombineTwoPixels( in1_12, in2_12, k1And4, k2And3); i16x8_t result_34 = ArithmeticCombineTwoPixels( in1_34, in2_34, k1And4, k2And3); // Pack and store. simd::Store8(&targetData[targetIndex], simd::PackAndSaturate16To8(result_12, result_34)); } } } template static already_AddRefed ApplyArithmeticCombine_SIMD( DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4) { IntSize size = aInput1->GetSize(); RefPtr target = Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8); if (!target) { return nullptr; } DataSourceSurface::ScopedMap inputMap1(aInput1, DataSourceSurface::READ); DataSourceSurface::ScopedMap outputMap(target, DataSourceSurface::READ_WRITE); if (aInput1->Equals(aInput2)) { ApplyArithmeticCombine_SIMD( inputMap1, inputMap1, outputMap, size, aK1, aK2, aK3, aK4); } else { DataSourceSurface::ScopedMap inputMap2(aInput2, DataSourceSurface::READ); ApplyArithmeticCombine_SIMD( inputMap1, inputMap2, outputMap, size, aK1, aK2, aK3, aK4); } return target.forget(); } } // namespace gfx } // namespace mozilla