/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "imgFrame.h" #include "ImageRegion.h" #include "ShutdownTracker.h" #include "SurfaceCache.h" #include "prenv.h" #include "gfx2DGlue.h" #include "gfxContext.h" #include "gfxPlatform.h" #include "gfxUtils.h" #include "MainThreadUtils.h" #include "mozilla/CheckedInt.h" #include "mozilla/gfx/gfxVars.h" #include "mozilla/gfx/Tools.h" #include "mozilla/gfx/SourceSurfaceRawData.h" #include "mozilla/layers/SourceSurfaceSharedData.h" #include "mozilla/layers/SourceSurfaceVolatileData.h" #include "mozilla/Likely.h" #include "mozilla/MemoryReporting.h" #include "mozilla/ProfilerLabels.h" #include "mozilla/StaticPrefs_browser.h" #include "mozilla/StaticPrefs_image.h" #include "nsMargin.h" #include "nsRefreshDriver.h" #include "nsThreadUtils.h" #include // for min, max namespace mozilla { using namespace gfx; namespace image { /** * This class is identical to SourceSurfaceSharedData but returns a different * type so that SharedSurfacesChild is aware imagelib wants to recycle this * surface for future animation frames. */ class RecyclingSourceSurfaceSharedData final : public SourceSurfaceSharedData { public: MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(RecyclingSourceSurfaceSharedData, override) SurfaceType GetType() const override { return SurfaceType::DATA_RECYCLING_SHARED; } }; static int32_t VolatileSurfaceStride(const IntSize& size, SurfaceFormat format) { // Stride must be a multiple of four or cairo will complain. return (size.width * BytesPerPixel(format) + 0x3) & ~0x3; } static already_AddRefed CreateLockedSurface( DataSourceSurface* aSurface, const IntSize& size, SurfaceFormat format) { switch (aSurface->GetType()) { case SurfaceType::DATA_SHARED: case SurfaceType::DATA_RECYCLING_SHARED: case SurfaceType::DATA_ALIGNED: { // Shared memory is never released until the surface itself is released. // Similar for aligned/heap surfaces. RefPtr surf(aSurface); return surf.forget(); } default: { // Volatile memory requires us to map it first, and it is fallible. DataSourceSurface::ScopedMap smap(aSurface, DataSourceSurface::READ_WRITE); if (smap.IsMapped()) { return MakeAndAddRef(std::move(smap), size, format); } break; } } return nullptr; } static bool ShouldUseHeap(const IntSize& aSize, int32_t aStride, bool aIsAnimated) { // On some platforms (i.e. Android), a volatile buffer actually keeps a file // handle active. We would like to avoid too many since we could easily // exhaust the pool. However, other platforms we do not have the file handle // problem, and additionally we may avoid a superfluous memset since the // volatile memory starts out as zero-filled. Hence the knobs below. // For as long as an animated image is retained, its frames will never be // released to let the OS purge volatile buffers. if (aIsAnimated && StaticPrefs::image_mem_animated_use_heap()) { return true; } // Lets us avoid too many small images consuming all of the handles. The // actual allocation checks for overflow. int32_t bufferSize = (aStride * aSize.height) / 1024; return bufferSize < StaticPrefs::image_mem_volatile_min_threshold_kb(); } static already_AddRefed AllocateBufferForImage( const IntSize& size, SurfaceFormat format, bool aShouldRecycle = false, bool aIsAnimated = false) { int32_t stride = VolatileSurfaceStride(size, format); if (gfxVars::GetUseWebRenderOrDefault() && StaticPrefs::image_mem_shared()) { RefPtr newSurf; if (aShouldRecycle) { newSurf = new RecyclingSourceSurfaceSharedData(); } else { newSurf = new SourceSurfaceSharedData(); } if (newSurf->Init(size, stride, format)) { return newSurf.forget(); } } else if (ShouldUseHeap(size, stride, aIsAnimated)) { RefPtr newSurf = new SourceSurfaceAlignedRawData(); if (newSurf->Init(size, format, false, 0, stride)) { return newSurf.forget(); } } else { RefPtr newSurf = new SourceSurfaceVolatileData(); if (newSurf->Init(size, stride, format)) { return newSurf.forget(); } } return nullptr; } static bool GreenSurface(DataSourceSurface* aSurface, const IntSize& aSize, SurfaceFormat aFormat) { int32_t stride = aSurface->Stride(); uint32_t* surfaceData = reinterpret_cast(aSurface->GetData()); uint32_t surfaceDataLength = (stride * aSize.height) / sizeof(uint32_t); // Start by assuming that GG is in the second byte and // AA is in the final byte -- the most common case. uint32_t color = mozilla::NativeEndian::swapFromBigEndian(0x00FF00FF); // We are only going to handle this type of test under // certain circumstances. MOZ_ASSERT(surfaceData); MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 || aFormat == SurfaceFormat::B8G8R8X8 || aFormat == SurfaceFormat::R8G8B8A8 || aFormat == SurfaceFormat::R8G8B8X8 || aFormat == SurfaceFormat::A8R8G8B8 || aFormat == SurfaceFormat::X8R8G8B8); MOZ_ASSERT((stride * aSize.height) % sizeof(uint32_t)); if (aFormat == SurfaceFormat::A8R8G8B8 || aFormat == SurfaceFormat::X8R8G8B8) { color = mozilla::NativeEndian::swapFromBigEndian(0xFF00FF00); } for (uint32_t i = 0; i < surfaceDataLength; i++) { surfaceData[i] = color; } return true; } static bool ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize, SurfaceFormat aFormat) { int32_t stride = aSurface->Stride(); uint8_t* data = aSurface->GetData(); MOZ_ASSERT(data); if (aFormat == SurfaceFormat::OS_RGBX) { // Skia doesn't support RGBX surfaces, so ensure the alpha value is set // to opaque white. While it would be nice to only do this for Skia, // imgFrame can run off main thread and past shutdown where // we might not have gfxPlatform, so just memset every time instead. memset(data, 0xFF, stride * aSize.height); } else if (aSurface->OnHeap()) { // We only need to memset it if the buffer was allocated on the heap. // Otherwise, it's allocated via mmap and refers to a zeroed page and will // be COW once it's written to. memset(data, 0, stride * aSize.height); } return true; } imgFrame::imgFrame() : mMonitor("imgFrame"), mDecoded(0, 0, 0, 0), mLockCount(0), mAborted(false), mFinished(false), mOptimizable(false), mShouldRecycle(false), mTimeout(FrameTimeout::FromRawMilliseconds(100)), mDisposalMethod(DisposalMethod::NOT_SPECIFIED), mBlendMethod(BlendMethod::OVER), mFormat(SurfaceFormat::UNKNOWN), mNonPremult(false) {} imgFrame::~imgFrame() { #ifdef DEBUG MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mAborted || AreAllPixelsWritten()); MOZ_ASSERT(mAborted || mFinished); #endif } nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize, SurfaceFormat aFormat, bool aNonPremult, const Maybe& aAnimParams, bool aShouldRecycle) { // Assert for properties that should be verified by decoders, // warn for properties related to bad content. if (!SurfaceCache::IsLegalSize(aImageSize)) { NS_WARNING("Should have legal image size"); mAborted = true; return NS_ERROR_FAILURE; } mImageSize = aImageSize; // May be updated shortly after InitForDecoder by BlendAnimationFilter // because it needs to take into consideration the previous frames to // properly calculate. We start with the whole frame as dirty. mDirtyRect = GetRect(); if (aAnimParams) { mBlendRect = aAnimParams->mBlendRect; mTimeout = aAnimParams->mTimeout; mBlendMethod = aAnimParams->mBlendMethod; mDisposalMethod = aAnimParams->mDisposalMethod; } else { mBlendRect = GetRect(); } if (aShouldRecycle) { // If we are recycling then we should always use BGRA for the underlying // surface because if we use BGRX, the next frame composited into the // surface could be BGRA and cause rendering problems. MOZ_ASSERT(aAnimParams); mFormat = SurfaceFormat::OS_RGBA; } else { mFormat = aFormat; } mNonPremult = aNonPremult; mShouldRecycle = aShouldRecycle; MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?"); bool postFirstFrame = aAnimParams && aAnimParams->mFrameNum > 0; mRawSurface = AllocateBufferForImage(mImageSize, mFormat, mShouldRecycle, postFirstFrame); if (!mRawSurface) { mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (StaticPrefs::browser_measurement_render_anims_and_video_solid() && aAnimParams) { mBlankRawSurface = AllocateBufferForImage(mImageSize, mFormat); if (!mBlankRawSurface) { mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } } mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat); if (!mLockedSurface) { NS_WARNING("Failed to create LockedSurface"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (mBlankRawSurface) { mBlankLockedSurface = CreateLockedSurface(mBlankRawSurface, mImageSize, mFormat); if (!mBlankLockedSurface) { NS_WARNING("Failed to create BlankLockedSurface"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } } if (!ClearSurface(mRawSurface, mImageSize, mFormat)) { NS_WARNING("Could not clear allocated buffer"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (mBlankRawSurface) { if (!GreenSurface(mBlankRawSurface, mImageSize, mFormat)) { NS_WARNING("Could not clear allocated blank buffer"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } } return NS_OK; } nsresult imgFrame::InitForDecoderRecycle(const AnimationParams& aAnimParams) { // We want to recycle this frame, but there is no guarantee that consumers are // done with it in a timely manner. Let's ensure they are done with it first. MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0); MOZ_ASSERT(mLockedSurface); if (!mShouldRecycle) { // This frame either was never marked as recyclable, or the flag was cleared // for a caller which does not support recycling. return NS_ERROR_NOT_AVAILABLE; } // Ensure we account for all internal references to the surface. MozRefCountType internalRefs = 1; if (mRawSurface == mLockedSurface) { ++internalRefs; } if (mOptSurface == mLockedSurface) { ++internalRefs; } if (mLockedSurface->refCount() > internalRefs) { if (NS_IsMainThread()) { // We should never be both decoding and recycling on the main thread. Sync // decoding can only be used to produce the first set of frames. Those // either never use recycling because advancing was blocked (main thread // is busy) or we were auto-advancing (to seek to a frame) and the frames // were never accessed (and thus cannot have recycle locks). MOZ_ASSERT_UNREACHABLE("Recycling/decoding on the main thread?"); return NS_ERROR_NOT_AVAILABLE; } // We don't want to wait forever to reclaim the frame because we have no // idea why it is still held. It is possibly due to OMTP. Since we are off // the main thread, and we generally have frames already buffered for the // animation, we can afford to wait a short period of time to hopefully // complete the transaction and reclaim the buffer. // // We choose to wait for, at most, the refresh driver interval, so that we // won't skip more than one frame. If the frame is still in use due to // outstanding transactions, we are already skipping frames. If the frame // is still in use for some other purpose, it won't be returned to the pool // and its owner can hold onto it forever without additional impact here. int32_t refreshInterval = std::max(std::min(nsRefreshDriver::DefaultInterval(), 20), 4); TimeDuration waitInterval = TimeDuration::FromMilliseconds(refreshInterval >> 2); TimeStamp timeout = TimeStamp::Now() + TimeDuration::FromMilliseconds(refreshInterval); while (true) { mMonitor.Wait(waitInterval); if (mLockedSurface->refCount() <= internalRefs) { break; } if (timeout <= TimeStamp::Now()) { // We couldn't secure the frame for recycling. It will allocate a new // frame instead. return NS_ERROR_NOT_AVAILABLE; } } } mBlendRect = aAnimParams.mBlendRect; mTimeout = aAnimParams.mTimeout; mBlendMethod = aAnimParams.mBlendMethod; mDisposalMethod = aAnimParams.mDisposalMethod; mDirtyRect = GetRect(); return NS_OK; } nsresult imgFrame::InitWithDrawable(gfxDrawable* aDrawable, const nsIntSize& aSize, const SurfaceFormat aFormat, SamplingFilter aSamplingFilter, uint32_t aImageFlags, gfx::BackendType aBackend) { // Assert for properties that should be verified by decoders, // warn for properties related to bad content. if (!SurfaceCache::IsLegalSize(aSize)) { NS_WARNING("Should have legal image size"); mAborted = true; return NS_ERROR_FAILURE; } mImageSize = aSize; mFormat = aFormat; RefPtr target; bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend); if (canUseDataSurface) { // It's safe to use data surfaces for content on this platform, so we can // get away with using volatile buffers. MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?"); mRawSurface = AllocateBufferForImage(mImageSize, mFormat); if (!mRawSurface) { mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat); if (!mLockedSurface) { NS_WARNING("Failed to create LockedSurface"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (!ClearSurface(mRawSurface, mImageSize, mFormat)) { NS_WARNING("Could not clear allocated buffer"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } target = gfxPlatform::CreateDrawTargetForData( mLockedSurface->GetData(), mImageSize, mLockedSurface->Stride(), mFormat); } else { // We can't use data surfaces for content, so we'll create an offscreen // surface instead. This means if someone later calls RawAccessRef(), we // may have to do an expensive readback, but we warned callers about that in // the documentation for this method. MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?"); if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) { target = gfxPlatform::GetPlatform()->CreateDrawTargetForBackend( aBackend, mImageSize, mFormat); } else { target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget( mImageSize, mFormat); } } if (!target || !target->IsValid()) { mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } // Draw using the drawable the caller provided. RefPtr ctx = gfxContext::CreateOrNull(target); MOZ_ASSERT(ctx); // Already checked the draw target above. gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mImageSize), ImageRegion::Create(ThebesRect(GetRect())), mFormat, aSamplingFilter, aImageFlags); if (canUseDataSurface && !mLockedSurface) { NS_WARNING("Failed to create VolatileDataSourceSurface"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (!canUseDataSurface) { // We used an offscreen surface, which is an "optimized" surface from // imgFrame's perspective. mOptSurface = target->Snapshot(); } else { FinalizeSurface(); } // If we reach this point, we should regard ourselves as complete. mDecoded = GetRect(); mFinished = true; #ifdef DEBUG MonitorAutoLock lock(mMonitor); MOZ_ASSERT(AreAllPixelsWritten()); #endif return NS_OK; } nsresult imgFrame::Optimize(DrawTarget* aTarget) { MOZ_ASSERT(NS_IsMainThread()); mMonitor.AssertCurrentThreadOwns(); if (mLockCount > 0 || !mOptimizable) { // Don't optimize right now. return NS_OK; } // Check whether image optimization is disabled -- not thread safe! static bool gDisableOptimize = false; static bool hasCheckedOptimize = false; if (!hasCheckedOptimize) { if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) { gDisableOptimize = true; } hasCheckedOptimize = true; } // Don't optimize during shutdown because gfxPlatform may not be available. if (ShutdownTracker::ShutdownHasStarted()) { return NS_OK; } if (gDisableOptimize) { return NS_OK; } if (mOptSurface) { return NS_OK; } // XXX(seth): It's currently unclear if there's any reason why we can't // optimize non-premult surfaces. We should look into removing this. if (mNonPremult) { return NS_OK; } if (!gfxVars::UseWebRender()) { mOptSurface = aTarget->OptimizeSourceSurface(mLockedSurface); } else { mOptSurface = gfxPlatform::GetPlatform() ->ScreenReferenceDrawTarget() ->OptimizeSourceSurface(mLockedSurface); } if (mOptSurface == mLockedSurface) { mOptSurface = nullptr; } if (mOptSurface) { // There's no reason to keep our original surface around if we have an // optimized surface. Release our reference to it. This will leave // |mLockedSurface| as the only thing keeping it alive, so it'll get freed // below. mRawSurface = nullptr; } // Release all strong references to the surface's memory. If the underlying // surface is volatile, this will allow the operating system to free the // memory if it needs to. mLockedSurface = nullptr; mOptimizable = false; return NS_OK; } DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); } RawAccessFrameRef imgFrame::RawAccessRef(bool aOnlyFinished /*= false*/) { return RawAccessFrameRef(this, aOnlyFinished); } void imgFrame::SetRawAccessOnly() { AssertImageDataLocked(); // Lock our data and throw away the key. LockImageData(false); } imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing( bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion, SourceSurface* aSurface) { MOZ_ASSERT(NS_IsMainThread()); mMonitor.AssertCurrentThreadOwns(); if (!aDoPartialDecode) { return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize), mFormat); } gfxRect available = gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height()); if (aDoTile) { // Create a temporary surface. // Give this surface an alpha channel because there are // transparent pixels in the padding or undecoded area RefPtr target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget( mImageSize, SurfaceFormat::OS_RGBA); if (!target) { return SurfaceWithFormat(); } SurfacePattern pattern(aSurface, aRegion.GetExtendMode(), Matrix::Translation(mDecoded.X(), mDecoded.Y())); target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern); RefPtr newsurf = target->Snapshot(); return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize), target->GetFormat()); } // Not tiling, and we have a surface, so we can account for // a partial decode just by twiddling parameters. aRegion = aRegion.Intersect(available); IntSize availableSize(mDecoded.Width(), mDecoded.Height()); return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize), mFormat); } bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion, SamplingFilter aSamplingFilter, uint32_t aImageFlags, float aOpacity) { AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS); MOZ_ASSERT(NS_IsMainThread()); NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!"); NS_ASSERTION(!aRegion.IsRestricted() || !aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(), "We must be allowed to sample *some* source pixels!"); // Perform the draw and freeing of the surface outside the lock. We want to // avoid contention with the decoder if we can. The surface may also attempt // to relock the monitor if it is freed (e.g. RecyclingSourceSurface). RefPtr surf; SurfaceWithFormat surfaceResult; ImageRegion region(aRegion); gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height); { MonitorAutoLock lock(mMonitor); // Possibly convert this image into a GPU texture, this may also cause our // mLockedSurface to be released and the OS to release the underlying // memory. Optimize(aContext->GetDrawTarget()); bool doPartialDecode = !AreAllPixelsWritten(); // Most draw targets will just use the surface only during DrawPixelSnapped // but captures/recordings will retain a reference outside this stack // context. While in theory a decoder thread could be trying to recycle this // frame at this very moment, in practice the only way we can get here is if // this frame is the current frame of the animation. Since we can only // advance on the main thread, we know nothing else will try to use it. DrawTarget* drawTarget = aContext->GetDrawTarget(); bool recording = drawTarget->GetBackendType() == BackendType::RECORDING; RefPtr surf = GetSourceSurfaceInternal(); if (!surf) { return false; } bool doTile = !imageRect.Contains(aRegion.Rect()) && !(aImageFlags & imgIContainer::FLAG_CLAMP); surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf); // If we are recording, then we cannot recycle the surface. The blob // rasterizer is not properly synchronized for recycling in the compositor // process. The easiest thing to do is just mark the frames it consumes as // non-recyclable. if (recording && surfaceResult.IsValid()) { mShouldRecycle = false; } } if (surfaceResult.IsValid()) { gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable, imageRect.Size(), region, surfaceResult.mFormat, aSamplingFilter, aImageFlags, aOpacity); } return true; } nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) { MonitorAutoLock lock(mMonitor); return ImageUpdatedInternal(aUpdateRect); } nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) { mMonitor.AssertCurrentThreadOwns(); // Clamp to the frame rect to ensure that decoder bugs don't result in a // decoded rect that extends outside the bounds of the frame rect. IntRect updateRect = aUpdateRect.Intersect(GetRect()); if (updateRect.IsEmpty()) { return NS_OK; } mDecoded.UnionRect(mDecoded, updateRect); // Update our invalidation counters for any consumers watching for changes // in the surface. if (mRawSurface) { mRawSurface->Invalidate(updateRect); } if (mLockedSurface && mRawSurface != mLockedSurface) { mLockedSurface->Invalidate(updateRect); } return NS_OK; } void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */, bool aFinalize /* = true */) { MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); IntRect frameRect(GetRect()); if (!mDecoded.IsEqualEdges(frameRect)) { // The decoder should have produced rows starting from either the bottom or // the top of the image. We need to calculate the region for which we have // not yet invalidated. IntRect delta(0, 0, frameRect.width, 0); if (mDecoded.y == 0) { delta.y = mDecoded.height; delta.height = frameRect.height - mDecoded.height; } else if (mDecoded.y + mDecoded.height == frameRect.height) { delta.height = frameRect.height - mDecoded.y; } else { MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!"); delta = frameRect; } ImageUpdatedInternal(delta); } MOZ_ASSERT(mDecoded.IsEqualEdges(frameRect)); if (aFinalize) { FinalizeSurfaceInternal(); } mFinished = true; // The image is now complete, wake up anyone who's waiting. mMonitor.NotifyAll(); } uint32_t imgFrame::GetImageBytesPerRow() const { mMonitor.AssertCurrentThreadOwns(); if (mRawSurface) { return mImageSize.width * BytesPerPixel(mFormat); } return 0; } uint32_t imgFrame::GetImageDataLength() const { return GetImageBytesPerRow() * mImageSize.height; } void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const { MonitorAutoLock lock(mMonitor); GetImageDataInternal(aData, aLength); } void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const { mMonitor.AssertCurrentThreadOwns(); MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); MOZ_ASSERT(mLockedSurface); if (mLockedSurface) { // TODO: This is okay for now because we only realloc shared surfaces on // the main thread after decoding has finished, but if animations want to // read frame data off the main thread, we will need to reconsider this. *aData = mLockedSurface->GetData(); MOZ_ASSERT( *aData, "mLockedSurface is non-null, but GetData is null in GetImageData"); } else { *aData = nullptr; } *aLength = GetImageDataLength(); } uint8_t* imgFrame::GetImageData() const { uint8_t* data; uint32_t length; GetImageData(&data, &length); return data; } uint8_t* imgFrame::LockImageData(bool aOnlyFinished) { MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks"); if (mLockCount < 0 || (aOnlyFinished && !mFinished)) { return nullptr; } uint8_t* data; if (mLockedSurface) { data = mLockedSurface->GetData(); } else { data = nullptr; } // If the raw data is still available, we should get a valid pointer for it. if (!data) { MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame"); return nullptr; } ++mLockCount; return data; } void imgFrame::AssertImageDataLocked() const { #ifdef DEBUG MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); #endif } nsresult imgFrame::UnlockImageData() { MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!"); if (mLockCount <= 0) { return NS_ERROR_FAILURE; } MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted, "Should have Finish()'d or aborted before unlocking"); mLockCount--; return NS_OK; } void imgFrame::SetOptimizable() { AssertImageDataLocked(); MonitorAutoLock lock(mMonitor); mOptimizable = true; } void imgFrame::FinalizeSurface() { MonitorAutoLock lock(mMonitor); FinalizeSurfaceInternal(); } void imgFrame::FinalizeSurfaceInternal() { mMonitor.AssertCurrentThreadOwns(); // Not all images will have mRawSurface to finalize (i.e. paletted images). if (mShouldRecycle || !mRawSurface || mRawSurface->GetType() != SurfaceType::DATA_SHARED) { return; } auto* sharedSurf = static_cast(mRawSurface.get()); sharedSurf->Finalize(); } already_AddRefed imgFrame::GetSourceSurface() { MonitorAutoLock lock(mMonitor); return GetSourceSurfaceInternal(); } already_AddRefed imgFrame::GetSourceSurfaceInternal() { mMonitor.AssertCurrentThreadOwns(); if (mOptSurface) { if (mOptSurface->IsValid()) { RefPtr surf(mOptSurface); return surf.forget(); } mOptSurface = nullptr; } if (mBlankLockedSurface) { // We are going to return the blank surface because of the flags. // We are including comments here that are copied from below // just so that we are on the same page! RefPtr surf(mBlankLockedSurface); return surf.forget(); } if (mLockedSurface) { RefPtr surf(mLockedSurface); return surf.forget(); } MOZ_ASSERT(!mShouldRecycle, "Should recycle but no locked surface!"); if (!mRawSurface) { return nullptr; } return CreateLockedSurface(mRawSurface, mImageSize, mFormat); } void imgFrame::Abort() { MonitorAutoLock lock(mMonitor); mAborted = true; // Wake up anyone who's waiting. mMonitor.NotifyAll(); } bool imgFrame::IsAborted() const { MonitorAutoLock lock(mMonitor); return mAborted; } bool imgFrame::IsFinished() const { MonitorAutoLock lock(mMonitor); return mFinished; } void imgFrame::WaitUntilFinished() const { MonitorAutoLock lock(mMonitor); while (true) { // Return if we're aborted or complete. if (mAborted || mFinished) { return; } // Not complete yet, so we'll have to wait. mMonitor.Wait(); } } bool imgFrame::AreAllPixelsWritten() const { mMonitor.AssertCurrentThreadOwns(); return mDecoded.IsEqualInterior(GetRect()); } void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf, const AddSizeOfCb& aCallback) const { MonitorAutoLock lock(mMonitor); AddSizeOfCbData metadata; metadata.mFinished = mFinished; if (mLockedSurface) { // The locked surface should only be present if we have mRawSurface. Hence // we only need to get its allocation size to avoid double counting. metadata.mHeapBytes += aMallocSizeOf(mLockedSurface); metadata.AddType(mLockedSurface->GetType()); } if (mOptSurface) { metadata.mHeapBytes += aMallocSizeOf(mOptSurface); SourceSurface::SizeOfInfo info; mOptSurface->SizeOfExcludingThis(aMallocSizeOf, info); metadata.Accumulate(info); } if (mRawSurface) { metadata.mHeapBytes += aMallocSizeOf(mRawSurface); SourceSurface::SizeOfInfo info; mRawSurface->SizeOfExcludingThis(aMallocSizeOf, info); metadata.Accumulate(info); } aCallback(metadata); } } // namespace image } // namespace mozilla